

Malpractice of Epiphyseal Cannulated Screw Fixation in a Child with Avulsion Fracture of the Tibial Eminence Complicating with Lack of Knee Extension and Distal Femoral Fracture

Tsung-Ying Tsai^{1,2}, Jen-Huei Chang¹, Yu-Kai Yeh¹, Fu-Kai Chuang¹, Che-Wei Liu¹, and Shyu-Jye Wang^{1*}

¹Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei; ²Department of Orthopedics, Hualien Armed Forces General Hospital, Hualien, Taiwan, Republic of China

Avulsion fracture of the tibial eminence is rare in children. This report describes a case of a 9-year-old boy who had been treated previously with an epiphyseal cannulated screw and washer , but without notchplasty, for an avulsion fracture of the tibial eminence. The patient subsequently presented with extension block and knee stif fness. After removal of the implants and manipulation, an iatrogenically-induced distal femur fracture was observed postoperatively with callus formation noted at follow-up. This case serves to illustrate the importance of identifying and treating screw head impingement during f xation surgery, of avoiding vigorous manipulation during removal of f xation devices, and of consulting radiographs after any manipulation.

Key words: avulsion fracture, tibial eminence, cannulated screw, washer

INTRODUCTION

Tibial eminence fractures resulting from chondroepiphyseal avulsion are relatively uncommon in children. A system for classifying chondroepiphyseal avulsion fractures has been proposed by Meyers and McKeever ¹. According to this system, a nondisplaced fracture is classif ed as type I, a partially displaced fracture is classif ed as type II, and a fully displaced fracture is classi fed as type III. Zaricznyj² added a type IV displaced fracture in which the fragment is comminuted. For displaced tibial eminence fractures, open reduction and fixation of the fragment with screws or through use of suturing methods is usually indicated. This report describes two complications arising from mismanagement of an avulsion fracture of the tibial eminence in a child: lack of knee extension resulting from improper f xation and distal femoral fracture resulting from subsequent manipulation.

Received: April 1, 2009; Revised: June 30, 2009; Accepted: August 11, 2009

*Corresponding author: Shyu-Jye Wang, Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-gong Rd, Taipei 114, Taiwan, Republic of China. Tel: +886-2-87927185; Fax: +886-2-87927186; E-mail: tsaiort@mail.ndmctsgh.edu.tw

CASE REPORT

A 9-year-old boy presented with swelling and tender ness of the left knee after suffering a fall from a bicycle three months earlier. Initially, he was sent to a local hospital where he was diagnosed as having a fracture of the tibial eminence. The fracture was classified as Meyers and McKeever type II but maintaining a posterior attachment (Figure 1). Open reduction and internal fixation with an epiphyseal cannulated screw and washer was therefore performed (Figure 2). A long-leg splint was applied for 6 weeks postoperatively.

Fig. 1 Tibial radiographs of a 9-year -old boy three months before surgery. Radiograph showed type II tibial eminence fracture with partially displaced but maintaining a posterior attachment.

Fig. 2 Immediate post-operative radiograph in local hospital. The fragment was reduced (see arrow) at that time.

Figure 3. Over three months after sur gery, the radiograph showed a bony union without screw loosening.

Three months later, he complained of persistent and increasing knee pain and stiffness and was referred to our center. Physical examination of the affected knee showed a limited range of motion and stif fness, with 15 ° extension and 120° f exion. The radiograph (Figure 3) revealed a bony union without screw loosening.

Under the impression that the lack of knee extension was the consequence of mismanagement of the previous cannulated screw f xation, arthroscopic-assisted removal of the screw and washer was performed. During this procedure impingement of the screw and washer, which had been placed without performing notchplasty, was found to be the cause of the extension block (Figure 4). After removal of the screw and washer, manipulation was performed resulting in full extension of the affected knee. However, a neglected iatrogenically-induced fracture of the distal femur was identifed postoperatively (Figure 5). At two months post-sur gery, fracture healing with callus



Fig. 4 Arthroscopic image showing impingement of the screw and washer, which had been placed without performing notchplasty, was found to be the cause of the extension block. Partial wear of the femoral condylar cartilage was observed.

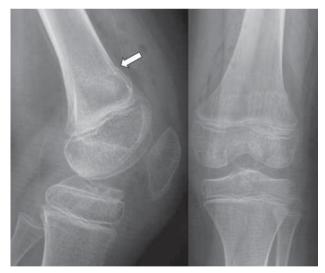


Fig. 5 After removal of the screw and washer, manipulation was performed. A neglected iatrogenically-induced fracture (see arrow) of the distal femur was identifed postoperatively

formation was noted at follow-up in the outpatient department (Figure 6).

DISCUSSION

Avulsion fracture of the tibial eminence in children is

Fig. 6 At two months post-surgery, fracture healing with callus formation was noted (see arrow) at follow-up in the outpatient department

relatively uncommon, occurring in 3 per 100,000 children per year³. This injury occurs most often between the ages of 8 and 14 years⁴, with bicycle accidents and athletic activities reported to be the most common causes¹. The most common mechanism underpinning tibial eminence fracture is forced valgus and external rotation of the tibia. This type of fracture may also occur in response to a direct blow to the distal femur when the knee is f exed⁴.

The integrity of structures of the internal joint, such as the anterior cruciate ligament, may be compromised in avulsion fractures of the tibial eminence. Tibial eminence fractures result from chondroepiphyseal avulsion of the anterior cruciate ligament insertion on the anteromedial tibial eminence. In adults, this stress can cause an isolated tear of the anterior cruciate ligament. In children, however, the incompletely ossified tibial eminence is generally weaker and more sensitive to tensile stress than the ligament, and failure occurs via the cancellous bone beneath the subchondral bone of the tibial eminence⁵. Accordingly, no evidence for ligament rupture was observed in our case.

Treatment of avulsion fractures of the tibial eminence depends on the appearance of the fracture. Displaced avulsion fractures of the tibial eminence result in eventual instability and notch impingement, leading to loss of extension^{2,6}. Therefore, reduction with internal f xation is recommended for all Meyers and McKeever ^{1,2} classif cation type III and IV fractures and should be considered for all displaced type II fractures⁷.

Various fixation devices, such as epiphyseal cannulated screws, staples, wires, pull-out sutures, and suture anchors, are currently used to manage avulsion fractures of the tibial eminence ⁸⁻¹⁷. Fixation with a cannulated screw over the threaded guide wire is simple and is considered more effective in obtaining rigid fixation and compression across the fracture site. A disadvantage of screw f xation is breakage of the fracture fragment during insertion. For comminuted or small size fragments, both suture f xation ^{10,16} and screw f xation with a toothed washer ¹⁵ are being utilized.

A toothed washer was used in the present case to pull the fragments and the ligament f ber together, to prevent the screw head from being buried under the ligament fber, and to facilitate f nding the screw when removal was indicated. However, use of a toothed washer may cause bulging of the screw head and lead to extension impingement. In this circumstance, notchplasty is indicated to recover full knee extension. In the present case, notchplasty was not performed and extension impingement followed.

In conclusion, any pediatric patient with a displaced avulsion fracture of the tibial eminence should receive surgical f xation of the detached fragment. Such sur gery permits early mobilization and is conducive to good outcome. However, as is illustrated by our case, patients should be examined intra-operatively for the possibility of screw head impingement which, if present, should be treated by notchplasty to recover full extension of the knee. This case also illustrates that overly vigorous manipulation during removal of a f xation device should be avoided to prevent iatrogenic fracture and that consultation of radiographs after each manipulation is essential. In the case of our patient, a neglected fracture of the distal femur occurring during sur gical removal of implants and manipulation was found postoperatively, and callus formation was noted at follow-up.

REFERENCES

- 1. Meyers MH, McKeever FM. Fracture of the intercondylar eminence of the tibia. J Bone Joint Sur g Am 1970;52:1677-1684.
- 2. Zaricznyj B. Avulsion fracture of the tibial eminence: treatment by open reduction and pinning. J Bone Joint Surg Am 1977;59:1111-1114.
- Skak SV, Jensen TT, Poulsen TD, Sturup J. Epidemiology of knee injuries in children. Acta Orthop Scand 1987;58:78-81.
- 4. Accousti WK, Willis RB. Tibial eminence fractures. Orthop Clin North Am 2003;34:365-375.

- 5. Zionts LE. Fractures around the knee in children. J Am Acad Orthop Surg 2002;10:345-355.
- 6. Kendall NS, Hsu SY, Chan KM. Fracture of the tibial spine in adults and children. A review of 31 cases. J Bone Joint Surg Br 1992;74:848-852.
- Lubowitz JH, Elson WS, Guttmann D. Part II: arthroscopic treatment of tibial plateau fractures: inter condylar eminence avulsion fractures. Arthroscopy 2005;21: 86-92.
- 8. Berg EE. Pediatric tibial eminence fractures: arthroscopic cannulated screw fixation. Arthroscopy 1995;11:328-331.
- 9. Jung YB, Yum JK, Koo BH. A new method for arthroscopic treatment of tibial eminence fractures with eyed Steinmann pins. Arthroscopy 1999;15:672-675.
- Kogan MG, Marks P, Amendola A. Technique for arthroscopic suture fixation of displaced tibial intercondylar eminence fractures. Arthroscopy 1997;13:301-306.
- 11. Lehman RA, Jr., Murphy KP, Machen MS, Kuklo TR. Modif ed arthroscopic suture f xation of a displaced tibial eminence fracture. Arthroscopy 2003;19:E6.
- 12. Oohashi Y. A simple technique for arthroscopic suture f xation of displaced fracture of the intercondylar eminence of the tibia using folded sur gical steels. Arthroscopy 2001;17:1007-1011.

- 13. Osti L, Merlo F, Liu SH, Bocchi L. A simple modif ed arthroscopic procedure for f xation of displaced tibial eminence fractures. Arthroscopy 2000;16:379-382.
- 14. Reynders P, Reynders K, Broos P. Pediatric and adolescent tibial eminence fractures: arthroscopic cannulated screw f xation. J Trauma 2002;53:49-54.
- 15. Senekovic V, Veselko M. Anterograde arthroscopic fixation of avulsion fractures of the tibial eminence with a cannulated screw: five-year results. Arthroscopy 2003;19: 54-61.
- 16. Yip DK, Wong JW, Chien EP, Chan CF. Modif ed arthroscopic suture f xation of displaced tibial eminence fractures using a suture loop transporter. Arthroscopy 2001;17:101-106.
- 17. In Y, Kim JM, Woo YK, Choi NY, Moon CW, Kim MW. Arthroscopic f xation of anterior cruciate ligament tibial avulsion fractures using bioabsorbable suture anchors. Knee Surg Sports Traumatol Arthrosc 2008;16:286-289.
- 18. Tsukada H, Ishibashi Y, Tsuda E, Hiraga Y, Toh S. A biomechanical comparison of repair techniques for anterior cruciate ligament tibial avulsion fracture under cyclic loading. Arthroscopy 2005;21:1197-1201.