

Relationship of Leptin and Adiponectin to Five-year Weight Change in Taiwanese Adolescents

Chang-Hsun Hsieh^{1**}, Yi-Jen Hung^{1**}, Shu-Chuan Wang², Chih-Tsueng He¹, Chien-Hsing Lee¹, and Nain-Feng Chu^{3*}

¹Division of Endocrinology and Metabolism, Department of Internal Medicine;

³Departments of Public Health and Community Medicine,
Tri-Service General Hospital, National Defense Medical Center, Taipei;

²School of Public Health, National Defense Medical Center, Taipei,
Taiwan, Republic of China

Background: Leptin is associated with body weight (BW) regulation in adults and adolescents. Decrease in adiponectin in obese adults and adolescents may be associated with the development of obesity and insulin resistance. This study investigated the relationship of plasma leptin and adiponectin levels to changes in BW and body mass index (BMI) over five years among adolescents in Taiwan. **Methods:** This was a prospective study involving school adolescents aged 12 to 15 years. Demographic data, anthropometric variables, and blood specimens were collected from 1500 adolescents at baseline. Body height, weight and body mass index (BMI) were evaluated at baseline, and after five years in 580 adolescents. Plasma leptin and adiponectin levels were measured using radioimmune assay (RIA). **Results:** Baseline serum levels of leptin and adiponectin were higher in girls than in boys. Baseline plasma leptin levels correlated positively, and adiponectin levels negatively with BW and BMI at baseline and after five years. Plasma leptin levels were negatively associated with five-year changes in BW and BMI both in normal-weight boys (=-0.57, p < 0.01, and =-0.25, p < 0.001, respectively) and girls (=-0.28, p < 0.001, and =-0.11, p < 0.001, respectively). The correlation between plasma adiponectin levels and five-year change in BW and BMI in both genders was not statistically significant. **Conclusions:** In Taiwanese adolescents, plasma leptin levels were negatively and significantly associated with the changes in BW and BMI during the five-year follow-up period in both genders, but adiponectin levels were not. Such finding suggests that plasma leptin levels may be a negative marker of body weight gain over time.

Key words: leptin, adiponectin, body weight change, body mass index.

INTRODUCTION

Obesity is a worldwide concern with significant medical, psychological and economic consequences. It is an important public issue in adolescents as well as adults^{1,2}. Childhood obesity is epidemic in industrialized countries and associated with chronic disease risk factors such

Received: October 31, 2008; Revised: February 10, 2009; Accepted: April 8, 2009

*Corresponding author: Nain-Feng Chu, Departments of Public Health and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-gong Road, Taipei 114, Taiwan, Republic of China. Tel: +886-2-8792-0506; Fax: +886-2-8791-0590; E-mail: chuepi@ndmctsgh.edu.tw

**The first two authors have equal contribution to the manuscript and consider being the co-first author.

as high blood pressure, hyperlipidemia, or hyperinsulinemia³. Overweight adolescents are prone to develop type 2 diabetes or other long-term disorders⁴.

Leptin, an adipose tissue-derived product regulated by the obesity (*ob*) gene, is associated with body weight regulation⁵ and the occurrence of obesity and related disorders in humans⁶. Leptin levels are strongly and positively correlated with quantity of body fat and body mass index (BMI) in both adults⁷ and adolescents⁸.

Adiponectin, a novel adipocytokine, is the most abundant adipose-specific protein and is exclusively secreted by adipose tissue⁹. Plasma adiponectin concentrations are decreased in adults¹⁰ or adolescents with obesity^{11,12}.

Whether blood leptin or adiponectin levels predict weight change in adults and adolescents remains unclear. Hence, we examined whether plasma leptin and adiponectin levels are associated with adiposity of school adolescents, and investigated whether plasma leptin and adiponectin levels at baseline can predict change in body weight and BMI over a five-year period of follow-up.

METHODS

Study design and sampling method

The Taipei Children Heart Study was an epidemiological survey conducted in 1995 on cardiovascular disease risk factors among school adolescents in Taipei. Details of sampling methods and results have been described elsewhere 13,14. Briefly, a cross-sectional survey was conducted to explore a representative distribution of demographic, lifestyle and biochemical characteristics and cardiovascular disease risk factors among junior high school adolescents aged 12 to 15 years. A total of 1500 school adolescents randomly sampled were included in the original survey. In 2000, we followed up these adolescents by phone and questionnaire to determine their changes in body height, body weight and BMI and obtained data from 580 subjects (294 boys and 286 girls). The baseline anthropometric characteristics of response and non-response adolescents were similar.

The Ethical committee of the Scientific Institute approved this study and informed consent was obtained from both parents and adolescents.

Data collection, anthropometric measurements of leptin and adiponectin

All participating adolescents completed a structured questionnaire regarding socio-demographic characteristics, medical history and lifestyle characteristics (including cigarette smoking, alcohol consumption, pubertal development, usual physical activity and dietary intake) at baseline.

Research technicians recorded body weight to the nearest 0.1 kg using a standard beam balance scale with adolescents barefoot and wearing light indoor clothing. Body height was measured with a wall-mounted stadiometer to the nearest 0.5 cm. In 2000, we re-contacted these adolescents by telephone for response the same questionnaire. We asked and recorded the most recent body height and body weight status among these adolescents. We calculated BMI as the ratio of body weight to body height squared expressed as kg/m².

In 1995, a 10-ml blood specimen was collected and stored at -80°C from each participant. Plasma leptin levels were measured twice using a commercial radioimmunoassay (RIA) kit (Linco Research St. Charles, MO, USA.). Plasma leptin remained stable after being stored at -80°C for five years and the inter- and intra-assay coef-

ficients of variation were 8.3% and 3.4%, respectively. Serum adiponectin was assayed by a commercial RIA kit (Linco Research St. Charles, MO, USA). This assay had a sensitivity of 1 ng/mL and intra- and inter-assay coefficients of variation being less than 8%.

Definitions of overweight

We considered adolescents to be overweight if their BMI was greater than or equal to the eighty-fifth percentile of age- and gender-specific strata¹⁵. For boys, the cutoff points designating overweight were 25.0 kg/m², 24.6 kg/m² and 25.5 kg/m² for 12, 13, and 14 years old or above, respectively. For girls, the cutoff points designating overweight were 22.4 kg/m², 23.3 kg/m², and 24.8 kg/m², respectively. We conducted subanalyses using different body weight categories (normal and overweight) to evaluate more detailed relationships between these variables.

Statistical analyses

We used mean and standard deviation (SD) to describe the distributions of age; baseline and five-year body weight, height, and BMI; and changes in these anthropometric measures after five years with gender specification. Analysis of variance (ANOVA) test was employed to evaluate the difference between genders. We calculated the Spearman correlation coefficient between plasma leptin and adiponectin levels on baseline and fiveyear anthropometric measurements and changes in these measurements with gender specification. We performed multiple regression analysis of leptin and adiponectin on changes in weight among baseline normal-weight or overweight subgroups with gender specification. In the final models, we used multivariate linear regression analyses to evaluate the association of different plasma leptin subgroups on changes in five-year BMI with gender specification after adjusting for potential confounders. All models were adjusted for age, cigarette smoking, alcohol intake, and pubertal development. A two-tailed p value less than 0.05 was considered statistically significant. All statistical analyses were conducted using the statistical package SAS (SAS Institute Inc, Cary, NC, USA).

RESULTS

In brief, boys were taller, heavier and had higher BMIs and lower plasma leptin and adiponectin levels than did girls at baseline. Changes in body weight and BMI after five years were also greater in boys than in girls. In girls,

Table 1 General characteristic of study adolescents

	Boys (n=294)	Girls(n=286)
Variable	Mean ± SD	Mean ± SD
Age# (years)	13.3 ± 0.9	13.3 ± 0.9
BH95 (cm)	161.5 ± 8.6	$156.3 \pm 5.7***$
BW95 (kg)	55.3 ± 13.1	50.4 ± 9.5***
BMI95 (kg/m^2)	21.1 ± 4.1	20.6 ± 3.4
BH00 (cm)	172.4 ± 6.1	160.5 ± 5.4***
BW00 (kg)	64.6 ± 11.3	52.5 ± 8.4***
BMI00 (kg/ m^2)	21.7 ± 3.5	20.4 ± 3.0***
BH (cm)	10.9 ± 6.8	4.2 ± 2.9***
BW (kg)	9.3 ± 7.8	2.1 ± 5.7***
BMI (kg/m^2)	0.7 ± 2.4	$-0.2 \pm 2.2 ***$
Leptin (ng/ml)	4.1 ± 4.2	10.0 ± 6.4 ***
Adiponectin (mg/L)	16.3 ± 9.7	$18.3 \pm 9.4*$

#: age at 1995; BH95, body height at 1995; BW 95, body weight at 1995; BMI95, body mass index at 1995; BH00, body height at 2000; BW 00, body weight at 2000; BMI00, body mass index at 2000; BH, BH00-BH95; BW, BW00-BW95; BMI, BMI00-BMI95

Table 2 Spearman correlation of plasma leptin and adiponectin on anthropometric measures among adolescents

	Boys (n=294)		Girls	s(n=286)
Variable	Leptin	Adiponectin	Leptin	Adiponectin
BH95 (cm)	-0.11	-0.03	0.20**	0.04
BW95 (kg)	0.45***	-0.19**	0.65***	-0.22**
BMI95 (kg/m^2)	0.63***	-0.23***	0.65***	-0.28***
BH00 (cm)	0.02	0.05	0.07	0.09
BW00 (kg)	0.44***	-0.17**	0.42**	-0.15*
$BMI00 (kg/m^2)$	0.48***	-0.20**	0.42***	-0.24***
BH (cm)	0.13*	0.05	-0.28***	0.09
BW (kg)	-0.12*	0.08	-0.43***	0.16***
BMI (kg/ m ²)	-0.36***	0.10	-0.42***	0.16**

BH95, body height at 1995; BW 95, body weight at 1995; BMI95, body mass index at 1995; BH00, body height at 2000; BW 00, body weight at 2000; BMI00, body mass index at 2000; BH, BH00-BH95; BW, BW00-BW95; BMI, BMI00-BMI95.

mean BMI actually decreased at five-year follow-up (Table 1).

Table 2 shows the Spearman correlation coefficients of plasma leptin and adiponectin levels at baseline and at five-year follow-up, and changes in these anthropometric measurements among adolescents. Plasma leptin levels

Table 3 Multiple regression analyses of plasma leptin and adiponectin on body weight change among adolescents

	Boys	(n=294)	Girls(n=286)		
	Normal (248)	Overweight (46)	Normal (233)	Overweight (43)	
Variable	(se)	(se)	(se)	(se)	
Leptin					
BH (cm)	-0.05(0.13)	0.297(0.15)	-0.06(0.03)	0.01(0.02)	
BW (kg)	-0.57(0.18)**	-0.56(0.29)	-0.28(0.07)***	-0.22(0.12)	
$BMI(kg/m^2)$	-0.25(0.05)***	-0.31(0.09)**	-0.11(0.03)***	-0.09(0.05)	
Adiponectin					
BH (cm)	- 0.01(0.03)	0.01(0.12)	0.03(0.02)	0.03(0.02)	
BW (kg)	0.01(0.04)	0.12(0.23)	0.04(0.03)	-0.14(0.17)	
BMI (kg/m ²)	0.01(0.01)	0.06(0.08)	0.01(0.01)	-0.06(0.07)	

BH, BH00-BH95; BW, BW00-BW95; BMI, BMI00-BMI95; , regression coefficient. Adolescents to be overweight if their BMI was greater than or equal the 85th percentile of age- and gender-specific strata. For boys, the cut point for overweight was 25.0 kg/m², 24.6 kg/m² and 25.5 kg/m² for 12, 13, and 14 or greater years old; for girls, the cut point for overweight was 22.4 kg/m², 23.3 kg/m², and 24.8 kg/m² respectively.

*p<0.05, **p<0.01, ***p<0.001 after adjustment for age, smoking, drinking and Tanner's stage.

were positively and adiponectin negatively correlated with baseline and five-year follow-up body weight and BMI in both genders. Plasma leptin levels were negatively correlated with five-year changes in body weight and BMI in both genders. However, plasma adiponectin levels were positively correlated with changes in five-year body weight and BMI in girls only.

When subjects were divided into baseline normal-weight or overweight subgroups, the relationship of plasma leptin levels to change in five-year BMI persisted in boys, but only in normal-weight girls. The relationship of plasma adiponectin to change in weight or BMI was attenuated and became insignificant after adjusting for confounding factors (Table 3).

We further divided these adolescents into four subgroups according to their baseline plasma leptin levels (1.5; 1.5-2.45; 2.45-4.8; and 4.8 ng/ml in boys and 6.2; 6.2-8.95; 8.95-12.3; and 12.3 ng/ml in girls). Baseline and five-year follow-up anthropometric measurements and their changes among different plasma leptin subgroups are presented in Table 4. Generally, adolescents with the highest plasma leptin were heavier and had greater BMIs at baseline and at five-year follow up when compared with the adolescents with relatively normal leptin level. Adolescents with higher plasma leptin levels showed lesser change in body weight and BMI. However, boys with the highest leptin levels had smaller

^{*}p<0.05, **p<0.01, ***p<0.001 using ANOVA test.

^{*}p<0.05, **p<0.01, ***p<0.001

Table 4 Anthropometric measures among	different len	ntin suboroun ((quartiles)	children with	gender specification
Table + Antinoponicule incasules among	different lep	mii suogioup (quartites	Cilliaich with	gender speemeanon

	Boys (n=294)			Girls(n=286)				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Leptin (ng/ml)	< 1.5	1.5-2.45	2.45-4.8	>4.8	< 6.2	6.2-8.95	8.95-12.3	>12.3
BH95 (cm)	161.9 ± 0.9	160.4 ± 0.8	161.5 ± 0.8	162.4 ± 0.8	155.2 ± 0.7	156.0 ± 0.6	157.2 ± 0.6	156.8 ± 0.6^{b}
BW95(kg)	47.6 ± 1.2	49.1 ± 1.0	56.3 ± 1.1	67.8 ± 1.1^{ab}	44.7 ± 0.9	48.1 ± 0.9	51.3 ± 0.9	57.5 ± 0.9^{ab}
BMI95 (kg/m ²)	18.1 ± 0.4	19.0 ± 0.3	21.4 ± 0.3	25.6 ± 0.3^{ab}	18.4 ± 0.3	19.8 ± 0.3	20.7 ± 0.3	23.3 ± 0.3^{ab}
BH00(cm)	173.2 ± 0.8	171.9 ± 0.7	171.6 ± 0.7	173.2 ± 0.7	160.0 ± 0.7	160.1 ± 0.6	161.0 ± 0.7	160.9 ± 0.7
BW00(kg)	58.7 ± 1.2	59.8 ± 1.0	65.4 ± 1.1	74.2 ± 1.1^{ab}	49.2 ± 1.0	51.2 ± 0.9	52.4 ± 0.9	57.0 ± 0.9^{ab}
BMI00 (kg/m^2)	19.6 ± 0.4	20.2 ± 0.3	22.2 ± 0.3	24.7 ± 0.3^{ab}	19.2 ± 0.3	20.0 ± 0.3	20.2 ± 0.3	22.0 ± 0.3^{ab}
BH (cm)	11.2 ± 0.6	11.5 ± 0.5	10.0 ± 0.6	10.8 ± 0.6	4.8 ± 0.3	4.2 ± 0.3	3.7 ± 0.3	4.1 ± 0.3^{ab}
BW (kg)	11.1 ± 0.9	10.7 ± 0.8	9.1 ± 0.8	6.4 ± 0.8^{ab}	4.6 ± 0.6	3.1 ± 0.6	1.1 ± 0.6	-0.5 ± 0.6^{ab}
BMI (kg/m ²)	1.5 ± 0.3	1.3 ± 0.2	0.8 ± 0.3	-0.9 ± 0.3^{ab}	0.8 ± 0.2	0.2 ± 0.2	-0.6 ± 0.2	-1.3 ± 0.2^{ab}

BH95, body height at 1995; BW 95, body weight at 1995; BMI95, body mass index at 1995; BH00, body height at 2000; BW 00, body weight at 2000; BMI00, body mass index at 2000; BH, BH00-BH95; BW, BW00-BW95; BMI, BMI00-BMI95.

five-year weight gain than boys with normal plasma leptin level, though the difference was not significant (6.4 \pm 0.8 kg vs. 11.1 \pm 0.9 kg). Boys with the highest leptin levels had a significant decline in BMI over five years when compared with boys with normal leptin level (-0.9 \pm 0.3 vs. 1.5 \pm 0.3, p < 0.001). Girls with the highest plasma leptin levels had even lower five-year weight and BMI gain than girls with relatively normal leptin level (-0.5 \pm 0.6 vs. 4.6 \pm 0.6, and -1.3 \pm 0.2 vs. 0.8 \pm 0.2 respectively, p < 0.001).

DISCUSSION

The etiology of obesity in humans is complex and multifactorial. Factors such as dietary composition, physical activity and genetics play an important role in the development of obesity. However, positive energy balance over time is believed to be its primary cause ^{16,17}. Several variables may predict obesity, such as low basal metabolic rate ¹⁷; parents who are overweight ¹⁸; insulin secretion ¹⁹; and insulin sensitivity ²⁰. Adipocytes and their products have recently been found to have a significant role in energy and body weight regulation. Adipocytokines such as leptin and adiponectin may also influence the sequence of weight change.

In an animal experimental model, leptin was found to reduce food intake, increase energy expenditure, and cause loss of body weight²¹. However, there are limited data in adolescents concerning whether baseline serum

leptin levels predicts future weight gain. We found that lower baseline serum leptin levels predict changes in body weight and BMI among boys, but only among normal-weight girls. Similar results were reported in another study but only in non-obese, pre-pubertal girls, and not in boys²². In a one-year study, a cohort of pre-pubertal, normal-weight adolescents also yielded similar results²³. It seems likely that lower baseline plasma leptin levels predict further changes in weight or adiposity among adolescents. However, Savoye et al. showed that high basal leptin levels were positively associated with much greater BMI gain in girls than in boys²⁴. Subjects in that study were younger, had higher baseline weight, and higher baseline plasma leptin levels than ours.

Adiponectin is believed to decrease body weight via central effects on energy homeostasis²⁵. Data regarding plasma adiponectin levels after weight reduction are conflicting. Plasma adiponectin levels have been found to increase after medically²⁶ or surgically²⁷ induced weight loss. However, in some studies, serum adiponectin levels did not change after weight reduction^{28,29}. The discrepancy may be due to the degree of weight loss. Baseline serum adiponectin levels may also be predictive of the extent of weight loss²⁷. However, few studies address whether baseline serum adiponectin levels predict weight change. In a study of Pima adults without diabetes, Vizarova et al. observed that baseline adiponectin levels did not predict weight gain³⁰. Similar results were seen in another study in adolescents¹². This finding is consistent

^ap < 0.001 when Q4 subgroup compared with Q1 after adjustment for age, smoking, drinking and Tanner's stage.

^bp < 0.001 for trend. The Q1 to Q4 of leptin levels were based on their baseline plasma leptin levels by quartile in both gender.

with our study, which found that baseline plasma adiponectin level was not associated with changes in weight and BMI over time, after adjusting for potential confounders.

It is interesting that we found that plasma leptin level had a stronger association with changes in weight than did adiponectin in adolescents. Leptin levels are higher in obese subjects than in non-obese subjects and the association has been found to be independent of measures of insulin sensitivity³¹. However, the negative correlation between adiponectin and BMI has been found to be attenuated after adjusting for insulin sensitivity in some studies, suggesting that obesity per se may not influence the level of plasma adiponectin³². This suggests that low serum adiponectin levels are most likely a consequence rather than a cause of obesity.

However, there are some potential bias and limitations in our study. First, plasma leptin and adiponectin levels were measured only once at baseline, which may be influenced by fasting status, timing of sample, and stress at time of sampling. Moreover, it has been shown that leptin production is influenced by some factors, such as nutritional state, puberty stage and diurnal rhythm of secretion. These also remind us to interpret our results with caution. However, the leptin levels were compared after adjustment of age, smoking, and Tanner's stage; and the samples were drawn universally in the morning after fasting, which may ameliorate the bias of the analysis. Second, the follow-up rate was relatively low in our study. However, the baseline anthropometric characteristics were similar between response and non-response adolescents (table not shown). No or minimal selection bias was considered in the condition. Third, underreporting of BW among overweight and obese adolescents should be considered in such recall measurement, especially in girls. Girls at this age paid more attention to their body weight, which may be associated with decrease in BMI over the five-year follow-up period. However, the degree of changes in BW/or BMI between normal- or overweight adolescents were similar. Therefore, this limitation was minimized. Finally, lifestyle factors, such as energy intake and physical activity, and parent's factors (education level and body weight) were not evaluated accurately in our study, and they may play a central role on the development of obesity.

In conclusion, we have demonstrated that baseline plasma leptin, but not adiponectin, levels were associated with changes in five-year body weight and BMI among Taiwanese adolescents. Plasma leptin levels appeared to be a negative marker of body weight gain over time. It is possible that interventions to prevent obesity in individuals could be initiated according to this observation, but further studies are needed to clarify our observation.

ACKNOWLEDGEMENTS

The study was partially supported by a grant from the Tri-Service General Hospital (TSGH-C94-75 and TSGH-C96-57)

REFERENCES

- 1. Gidding SS. A perspective on obesity. Am J Med Sci 1995;310:S68-S71.
- 2. Bray GA. Health hazards of obesity. Endocrinol Metab Clin North Am 1996;25: 907-919.
- Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among adolescents and adolescentss: the Bogalusa Heart Study. Pediastrics 1999;103:1175-1182.
- Dabelea D, Hanson RL, Bennett PH, Roumain J, Knowler WC, Pettitt DJ. Increasing prevalence of type II diabetes in American Indian adolescents. Diabetologia 1998;41:904-910.
- 5. Auwerx J, Staels B. Leptin. Lancet 1998;351:737-742.
- Haynes WG, Morgan DA, Walsh SA, Sivitz WI, Mark AL. Cardiovascular consequences of obesity: role of leptin. Clin Exp Pharmacol Physiol 1998;25:65-69.
- 7. Giacobino JP. Uncoupling proteins, leptin, and obesity: an update review. Annals of New York Academy of Sciences 2002;9667:398-402.
- 8. Hassink SG, Sheslow DV, de Lancey E, Opentanova I, Considine RV, Caro JF. Serum leptin in adolescents with obesity: relationship to gender and development. Pediastrics 1996;98:201-203.
- 9. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995;270:26746-26749.
- 10. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83.
- 11. Asayama K, Hayashibe H, Dobashi K, Uchida N, Nakane T, Kodera K, Shirahata A, Taniyama M. Decrease in serum adiponectin level due to obesity and visceral fat accumulation in adolescents. Obes Res

- 2003;11:1072-1079.
- Stefan N, Bunt JC, Salbe AD, Funahashi T, Matsuzawa Y, Tataranni PA. Plasma adiponectin concentrations in adolescents: relationships with obesity and insulinemia. J Clin Endocrinol Metab 2002;87:4652-4656.
- 13. Chu NF, Rimm EB, Wang DJ, Liou HS, Shieh SM. Clustering of cardiovascular disease risk factors among obese school adolescents: the Taipei Adolescents Heart Study. Am J Clin Nutr 1998;67:1141-1146.
- 14. Chu NF, Rimm EB, Wang DJ, Liou HS, Shieh SM. Relationship between anthropometric variables and lipid levels among school adolescents: the Taipei Adolescents Heart Study. Inter Obes Relat Metab Disord 1998;22:66-72.
- 15. Troiano RP, Flegal KM, Kuczmarski RJ, Campbell SM, Hohnson CL. Overweight prevalence and trends for children and adolescents. The National Health and Nutritional Examination Survey, 1963-1991. Arch Pediatr Adolesc Med 1995;149:1085-1091.
- 16. Grundy SM. Multifactorial causation of obesity: implications for prevention. Am J Clin Nutr 1998;67:563S-572S.
- 17. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, Boyce V, Howard BV, Bogardus C. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1998;318:467-472.
- Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997;337:869-873.
- Schwartz MW, Boyko EJ, Kahn SE, Ravussin E, Bogardus C. Reduced insulin secretion: an independent predictor of body weight gain. J Clin Endocrinol Metab 1995;80:1571-1576.
- Swinburn BA, Nyomba BL, Saad MF, Zurlo F, Raz I, Knowler WC, Lillioja S, Bogardus C, Ravussin E. Insulin resistance associated with lower rates of weight gain in Pima Indians. J Clin Invest 1991;88:168-173.
- 21. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543-546.
- 22. Ahmed ML, Ong KK, Morrell DJ, Cox L, Drayer N, Perry L, Preece MA, Dunger DB. Longitudinal study of leptin concentrations during puberty: sex differences and relationship to changes in body composition. J Clin Endocrinol Metab 1999;84:899-905.
- 23. Byrnes SE, Baur LA, Bermingham M, Brock K,

- Steinbeck K. Leptin and total cholesterol are predictors of weight gain in pre-pubertal adolescents. Int J Obes Relat Metab Disord 1999;23:146-150.
- 24. Savoye M, Dziura J, Castle J, DiPietro L, Tamborlane WV, Caprio S. Importance of plasma leptin in predicting future weight gain in obese adolescents: a twoand-a-half-year longitudinal study. Int J Obes Relat Metab Disord 2002;26:942-946.
- 25. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE, Ahima RS. Adiponectin acts in the brain to decrease body weight. Nat Med 2004;10:524-529.
- 26. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 2003;289:1799-1804.
- 27. Faraj M, Havel PJ, Phelis S, Blank D, Sniderman AD, Cianflone K. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 2003;88:1594-602.
- 28. Ryan AS, Nicklas BJ, Berman DM, Elahi D. Adiponectin levels do not change with moderate dietary induced weight loss and exercise in obese postmenopausal women. Int J Obes Relat Metab Disord 2003;27:1066-1071.
- Abbasi F, Lamendola C, McLaughlin T, Hayden J, Reaven GM, Reaven PD. Plasma adiponectin concentrations do not increase in association with moderate weight loss in insulin-resistant, obese women. Metabolism 2004;53:280-283.
- 30. Vozarova B, Stefan N, Lindsay RS, Krakoff J, Knowler WC, Funahashi T, Matsuzawa Y, Stumvoll M, Weyer C, Tataranni PA. Low plasma adiponectin concentrations do not predict weight gain in humans. Diabetes 2002;51:2964-2967.
- 31. Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol 2003;149:331-335.
- 32. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn. SE Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003;46:459-469.