離散事件模擬器應用於砲兵泊地攻擊火力效益分析

孟昭字*劉達生**段伴虬*** 鄧世剛****

*開南管理學院資訊管理系
**國防大學中正理工學院國防科學研究所
***南開技術學院資訊工程系
****國防大學中正理工學院兵器工程系

摘 要

砲兵向來爲地面火力之骨幹,以地面部隊爲探討主體的反登陸作戰的泊地攻擊想定中,作戰程序區分爲泊地攻擊(包含反舟波攻擊)、灘岸戰鬥及反擊作戰。在泊地攻擊階段如何有效運用砲兵火力,一方面削弱登灘敵軍兵力,一方面保留部分砲兵兵力以遂行後續作戰,實爲值得探討的重要課題。爲解決此一作戰議題,採用的研究方法綜合了作業研究中的離散事件模擬、實驗設計與迴歸分析,深入探討構成砲兵火力的四個要素與四項作戰效能之間的關連性。以十六種火力要素策略組合爲例進行分析,獲致此十六種策略組合中,採用具有泊地攻擊能力的砲兵編裝,投入 1/3 ,採用最大射速與混合彈藥配比可獲得較佳的殲敵成果,且可保存 2/3 的砲兵遂行後續攤岸及反擊作戰。最後以假設性的問題說明前述研究方法之綜合應用能有效提升對實際軍事問題的分析、決策,甚至最佳化的處理能力。

關鍵字:砲兵,反登陸作戰,離散事件模擬,迴歸

Analysis on Artillery Fire Power, a Discrete Time Simulator Application

Jau-Yeu Menq*, Ta-Sheng Liu**, Pan-Chio Tuan***, and Shi-Gan Deng****

*****Dept. of Information Management, Kainan University

**Graduate Institute of Defense Sciences, Chung Cheng Institute of Technology, National Defense University

***Dept. of Computer Science & Information Engineering, Nan Kai Institute of Technology

****Dept. of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University

ABSTRACT

It is critical to neutralize as much as possible the landing forces as well as to reserve certain portion of artillery fire power for follow-on fire support missions in counter amphibious landing operation. To solve the contradictory proposition a composite methodology of operations research applications is adopted and it integrates discrete time simulation, regression and experimental design. Through the proposed methodology the relationships among four fire power elements—TO&E, active ratio, fire rate and shells mix ratio— and four outcome attributes are clarified. An example of sixteen alternatives is discussed and quantitative information is revealed to support combat decision making.

Keywords: artillery, anti-amphibious-landing operation, discrete-time simulation, regression

文稿收件日期 94.09.28; 文稿修正後接受日期 95.05.29. Manuscript received September 28, 2005; revised May 29, 2006.

一、前言

睽度戰史,登陸戰是跨越海洋屏障投注武力開啓戰場必須採取的作戰手段。上個世紀發生了至少十次具有規模的登陸作戰,包含了一次大戰英法對加利波利半島(Gallipoli)登陸、二戰盟軍對北非(North Africa)、西西里(Sicily)及諾曼地(Normandy)登陸、美軍在太平洋戰場的瓜達爾卡納爾島(Guadalcanal)、硫磺島(Iwo Jima)及沖繩島(Okinawa)登陸、1950年韓戰美軍的仁川(Inchon)登陸及1982年英軍福克蘭島(Falkland 或 Mal Vinas)登陸[1]。

在登陸作戰中,攻擊方的目的是在佔領灘頭堡、展開兵力進行地面作戰[2]。依據過去的演訓想定[3],正規登陸作戰基本上區分爲五個階段:準備階段、集結與裝載、海上航渡、突擊上陸及鞏固登陸場。在突擊上陸階段,攻擊方的作業又可區分四個步驟:卸載換乘、登陸艇編波、海上舟波及突擊舟波。

在整個登陸作戰中,登陸方一般會區分多 梯次登陸,通常第一梯次是以制式輸具在火力 掩護下運送部分兵力進行掃障、登岸,搶佔、 建立、擴大並鞏固灘頭堡。在確保灘頭堡穩固 之後,後續梯隊則視潮汐,以制式輸具或非正 規登陸方式上岸,在集結整備後遂行陸上戰 鬥。

防禦方的作戰主要有三個階段,分別是制空、制海及反登陸。防禦方必須有效運用地面、海面及空中武力以削弱登陸方登陸武力、遲滯登陸行動、擊潰上陸兵力。從防禦方的戰術觀點來看,反登陸階段可區分爲三個步驟: 泊地(含舟波)攻擊、灘岸戰鬥,最後是反擊作戰;能否抵擋第一梯次的登岸行動,是防禦方能否阻止侵略的重要契機,而反擊作戰則是反登陸勝敗的決勝關鍵。 為了降低登陸作戰的傷亡及確保登陸作業遂行,攻擊方在登陸前會奪取制空及制海權,進行火力準備,並為登陸提供必要的火力掩護及支援。在此情況下,砲兵可能是防禦方僅存的遠程火力。因此在反登陸作戰中,砲兵的運用顯得格外關鍵。更明確的說,問題在於如何有效的運用砲兵在泊地攻擊時盡可能削弱攻擊方的登岸戰力,同時保留最大的火力以備後續難岸戰鬥與反擊作戰決勝之用。攻擊及防禦雙方各階段及步驟之間的互動關係顯示如表1。

本文的重點在於泊地攻擊階段,該階段包含了反舟波攻擊,即表 1 灰色部分。整體來看, 泊地攻擊涉及了多兵種,如步兵、裝甲兵及砲兵等,本文則聚焦在探討砲兵在泊地攻擊及舟波攻擊的角色,試圖找出相關火力因子與雙方戰損(戰果)之間的關連性。

基於過去演訓經驗認為砲兵在反登陸作戰可以提供充分火力。然而如何運用砲兵火力,需要模式的驗證與數據的支持。或許是因為問題的複雜性,登陸作戰鮮少在軍事模式模擬中探討,更缺乏泊地攻擊中砲兵運用最佳化的研究。在過去的研究中,僅 T. N. Dupuy 所提出的定量判定法 (Quantified Judgment Method of Analysis, QJMA) 以水岸易損因子(Shoreline Vulnerability Factor) 修正渡水一方的作戰潛力 (Combat Power) [4] ,屬較明確的論述。

爲了探討泊地攻擊砲兵火力運用最佳化的問題,綜合了作業研究領域中模擬、實驗設計與迴歸分析的方法。首先以離散事件模擬方法撰寫砲兵泊地攻擊模擬器,作爲模擬數據蒐集工具,並以十六組策略組合爲例,進行模擬及數據蒐集;依據獲得的數據進行迴歸,再以迴歸模式作爲討論砲兵泊地攻擊火力運用最佳化的決策參考。

一般而言,建立作戰模式有四個途徑[5]: 以經驗爲基礎的解析模型:藍撤斯特模型是其中的典型。其次是定量的經驗模式:定量判定 法(Quantified Judgment Model, QJM)是其中的 典範。接著是實驗統計模式,以統計方法對歷 史或實驗數據進行分析。最後是理論模型,如 對局論。

藍徹斯特模型與定量判定法屬於聚合式 模式適合大規模地面作戰的描述,與登陸作戰 間存在差異性。且對國軍而言,前者有關登陸 戰殺傷率參數尚待研究。而對局論的應用則受 限於損益表在現實中取得不易;因此採取實驗 統計模式探討研究主題。

此外,登陸艇的速度是固定的,與防禦方的火力無關,除非被擊沈或動力受損,這與地面作戰中的戰鬥前緣線(Forward Edge of Battle Area, FEBA 線)推移的特性不同。疏散因子與地面作戰也大異其趣,登陸艇散佈海面,但艇內的人員與裝備卻非常集中,一枚落彈可能摧毀所有艇內的酬載。而多對多離散事件模擬正適合用來描述這類型的交戰細節。

當代電腦與模擬程式取得容易,有了高效能的計算能力,建構複雜系統的模型是可行的也成了主要的途徑與趨勢[6]。當整個作戰的模型被建立起來,作戰的實景被重現,可以修改系統參數(如武器特性或交戰準則)並觀察系統行為,進而可以分析甚至設計作戰系統。

X 1. 豆住兴风豆住下秋住//									
防禦方				反登陸					
作戰程序 攻擊方 登陸階段	制空	制海	泊地 攻撃	灘岸 戰鬥	反擊 作戰				
準備階段	1	√							
集結與裝載	1	√							
海上航渡	√	√							
突擊上陸	V	√	√	√					
鞏固登陸場	1	1			√				

表 1. 登陸與反登陸作戰程序

二、研究內容與方法:

2.1 想定:

由於討論重點在登陸第一梯隊於泊地換 乘作業開始到突擊上陸這段時間,探討的主題 則是防禦方砲兵的運用。配合研究主體作戰想 定如下:

攻防雙方均無空中火力投入。

防禦方無海軍火力投入,攻擊方則有火力 艦支援。

防禦方只有陸軍砲兵營實施泊地及反舟 波射擊,不考慮步兵、裝甲兵、攻擊直昇機及 岸基飛彈等兵種火力。

防禦方確知登陸正面,並可偵知登陸作業 的進程。

假設攻方第一登陸梯隊規模為:人員約一 萬四千餘人、坦克約八十輛、火砲約八十門、 車輛約三百五十輛、各型登陸艦約四十五艘、 各式登陸艇約二百艘、火力支援艦包含驅逐艦 及護衛艦共約四十艘。

2.2 討論節圍:

爲了描述整個想定及攻守雙方的互動關 係,模擬程序涵蓋了下列幾個部分。

模擬實體(Entities)包含了砲兵營、砲兵連或火箭排、單一火砲或火箭、登陸艦、登陸艇、火力支援艦、砲彈(火箭彈)及子母彈中的子彈。其中登陸艇依據裝載表賦予所裝載的人員與裝備;其他與模擬相關之屬性(如射程、射速、彈幕範圍、殺傷範圍、目標尺寸等)也同時賦予各模擬實體。

在登陸程序中,諸如海軍艦砲火力準備射擊、登陸艦卸載、人員換乘、登陸艇運動、登陸艇編波及上陸等程序也逐一循序描述;攻擊方登陸程序如圖1所示。另一方面,防禦方砲

兵部署與責任區帶劃分如圖2所示。

若防禦方砲兵射程可達泊地,則於登陸艦 卸載時開始對泊地區登陸艦射擊,並於登陸艇 波進入責任範圍時,對艇波射擊。登陸一方的 火力準備與對砲兵陣地射擊則依照中共艦砲 使用手冊[7]之規範進行模擬。

模擬過程中蒐集數據包含:登陸艦、登陸 艇、火力艦與砲兵武器之戰損及彈藥消耗量。

在掌握攻擊方的登陸程序與防禦方砲兵 運用的基本原則後,首先將砲兵火力區分爲四 個組成要素:編裝、投入比、射速及彈藥配比; 並以此四個要素構成決策空間。

編裝:綜合了砲兵武器的性能與數量,藉 以比較編裝差異對作戰結果的影響。在後續的 範例討論中,將比較兩種編裝;除了武器數量 不同外,其兩種編裝的主要差異在於射程是否 可以涵蓋泊地區域。

投入比的主要目的在於比較不同投入的 比例(是否保存部分砲兵兵力)對作戰雙方的 戰損影響程度如何。在問題討論中區分爲三分 之一及全數投入二個選項。

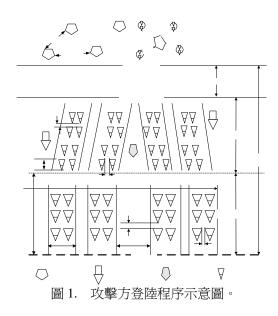
射速則區分為持續射速與最大射速進行 比較。最後彈藥配比則用於釐清不同彈種的搭配有何影響;範例中以全數採用瞬發引信高爆彈(HE)或高爆彈與子母彈各半的彈藥配比兩種配比進行比較。

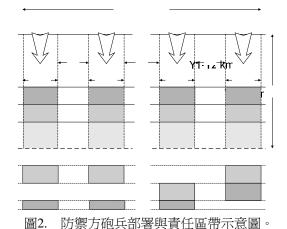
2.3 假設:

對於火砲殺傷效果的估算所要考慮的因素很多,即使不考慮射擊精度的問題(影響精度的因素又可區分爲初速誤差、起始擾動、氣象、測量與彈道模型等幾部分[8]),影響砲彈最終殺傷效果的因素則包含了毀傷機制(爆震波、碎片、動能、溫度等)、彈道參數(如彈著角度(瞬發引信)或炸高(時間引信)、威力參數(如砲彈碎片的數量、大小、分佈型態

或子母彈數量及佈灑範圍)等[9];另一方面還 要考慮所針對目標的類型(步兵、掩體、兵器 或建築物)與姿態(立姿、臥姿或掩蔽)等。

爲了使複雜的砲彈殺傷效果估算能在作戰中簡易快速的運用,對不同類型目標的火砲殺傷效果多由大量實彈射擊所獲得參數,以數值方式來呈現,如美軍未公開的聯合彈藥效果手冊(JMEM, Joint Munitions Effectiveness Manuals [10])及中共已公開的數據表[11]。

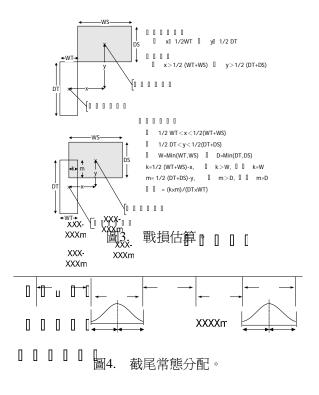

在國軍相關參數欠缺的情況下,參照國軍實務上運用砲兵時對砲彈殺傷及彈幕分佈範圍均以矩形描述的方式,在模擬器中以平面座標系統表示實體相對位置,並令艦艇火砲、彈幕及砲彈殺傷範圍爲矩形。準此,戰損估算方式如圖3。


整個作戰過程中充滿了隨機性,例如泊地前沿距離攤岸約X₁-X₂海浬、登陸艦之間距離約Y₁-Y₂公里、艇波距離Z₁-Z₂公尺、航道寬P₁-P₂公尺、航道間隔Q₁-Q₂公尺、彈幕中心點在目標區內的位置或彈著點在彈幕內的分佈都有其分佈的樣態。模擬器中除了彈幕內的砲彈落點假設爲均等分配外,其餘均採截尾常態分配,截尾常態分配示意如圖4。

2.4 研究方法:

從系統角度來看,離散事件模擬著重在系統中實體(entity)、屬性(attribute)、關連性(relationship)、決策變數與輸出(output)之間的互動關係。在事件(event)的發生時觀察系統特性的變化,作爲研究、分析甚至於設計系統的工具。

爲了獲得可靠有效的實驗(模擬)數據, 運用離散事件模擬的觀念以SimScript II.5模擬 語言在個人電腦上依據登陸與防禦砲兵運用 程序,建立砲兵泊地及反舟波攻擊的作戰模擬 程式,作爲實驗數據蒐集的工具。 在進行模擬之前,先以DesignExpert套裝軟體輔助實驗設計,並作為模擬數據蒐集的依據。當模擬數據蒐集完整後,對模擬結果進行迴歸分析,產生迴歸模式藉以描述作戰系統輸入與輸出的關係。進一步提供砲兵泊地攻擊火力運用的決策輔助資訊。研究流程如圖5所示。


XXXX-XXXXm

2.5 SimScript II.5簡介[12]:

計者專注於對作戰程序的描述。

爲了獲得可靠有效的實驗(模擬)數據, 運用離散事件模擬的觀念以SimScript II.5模擬 語言在PC電腦上依據登陸與防禦砲兵運用程 序,建立砲兵泊地及反舟波攻擊的作戰模擬程 式,作爲實驗數據蒐集的工具。

在進行模擬之前,先以DesignExpert套裝軟體輔助實驗設計,並作爲模擬數據蒐集的依據。當模擬數據蒐集完整後,對模擬結果進行迴歸分析,產生迴歸模式藉以描述作戰系統輸入與輸出的關係。進一步提供砲兵泊地攻擊火力運用的決策輔助資訊。研究流程如圖5所示。

X Km

2.6 模擬程式說明:

0 0 0 0 0

模擬程式功能流程如圖6,其中防禦方對 X1-X2 泊地及舟波的火砲射擊以同一程序(process)權 述,功能方塊編號均爲5。

X Km

5-21-22 m

XXXX-XXXXm XXXXm XXXXm CKm

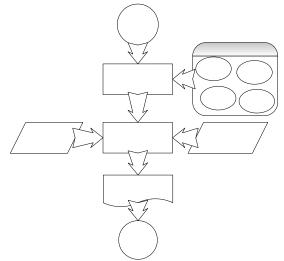


圖5. 研究流程圖。

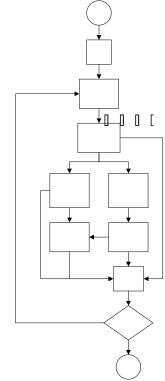


圖6. 功能流程圖

(1) 輸入:

由使用者選擇編裝、投入比例、射速及彈藥配比等策略組合。此外,登陸方火力準備開始時間及模擬次數也由使用者輸入。所有相關的砲兵編裝、火砲、彈藥、登陸艦艇及火力艦的相關性能均以資料檔方式儲存與維護,完成

選項輸入後,在「初始化」功能中相關屬性即 被讀入模擬程式中備用。

(2) 初始化:

此功能賦予系統初始狀態,包含泊地及艇波會合區的產生、建立永久實體、讀入實體的性能諸元及艦艇裝載表,將裝載表賦予各艘登陸艦艇。將火力支援艦區分爲十個單位,分屬四個水力支援艦群。砲兵武器則區分爲投入與預備兩個部分,並編組爲作戰單位;將責任區帶賦予所有投入任務的砲兵營。之後即產生登陸艦、火力支援艦、砲兵武器的初始座標。

(4) 登陸艦卸載:

登陸作業開始時由登陸艦釋出登陸艇,人 員**進行**登艇換乘。依照登陸程序,所有登陸艇 必須在指定時間內由登陸艦內駛入海面,同時 修訂登陸艦的裝載量,並賦予登陸艇初始座 標,修訂相關屬性並啟動人員換乘程序。

□ 由證陸艦卸載的登陸艇若裝載表內包含需要換乘的人員,則運動到艦舷開始人員換乘,需要換乘的時間依各艇人數而異。

換乘完畢或不需換乘的登陸艇會繞行登 陸艦,等待進入會合區編波。所有卸載及換乘 作業結束後,登陸艇朝向會合區內預定的編波 位置運動,完成編波後即朝向灘岸運動。登陸 艇於會合區進行編波時,區分四航道,每航道 八個舟波。

(5) 防禦方砲兵射擊:

守方砲兵的火力射擊共有三個部分:對泊

地射擊、對責任區帶內的艇波射擊、遭攻方反 砲擊時的對火力支援艦反擊。

對泊地區域攻擊:當守方砲兵武器射程可 達泊地時,在卸載及換乘作業開始時以砲兵連 或火箭排爲單位以給定的射速對射程內登陸 艦擇一射擊,火砲單位射擊時間持續若干分 鐘,火箭單位則在指定時間內將架上火箭射完 後裝填。每次射擊都會計算彈幕區內目標的戰 損。完成射擊後進行次一射擊任務。

艇波攻擊:當艇波進入責任區帶內且砲兵 單位已完成前一射擊任務並完成再裝填時,則 對責任區帶內進行預置彈幕射擊。

對火力艦反擊:當砲兵營所屬的某一單位 陣地遭到火力支援艦反砲擊時,該砲兵營由所 屬火力單位中擇一對該火力艦單位進行反 擊。但一個砲兵營最多只能有一個火力單位執 行反擊任務。

(6) 登陸方火力艦反砲擊:

攻方火力艦的反砲擊是由守方砲兵對泊 地或艇波攻擊所觸發。當登陸艦或艇波被攻擊 時,守方砲兵陣地同時暴露,火力艦群即由所 屬火力艦單位擇一對該陣地射擊。首先依砲兵 陣地面積大小及艦砲對岸射擊彈藥消耗量ⁱ計 算所需發射的砲彈發數,當射擊發數足夠時則 恢復原先的火力準備射擊或等候新的射擊任 務。

(7) 戰損估算:

所有火砲射擊均會進入戰損估算。首先在 目標區域依火力單位的特性產生彈幕區,若是 子母彈則還要再產生子母彈的子彈佈灑範 圍,接著在彈幕或子母彈灑佈範圍內產生砲彈 或子彈的彈著點。依目標的狀態取得座標,再 依彈頭或子彈的殺傷範圍與目標物的相對位 置計算戰損。 三、問題:

目前反登陸作戰中砲兵火力支援任務以「泊地攻擊」爲最優先,目前作法中四個火力要素分別爲:編裝一(如表2)、全數投入、持續射速與全部使用高爆彈。但基於作戰考量,擬提高灘岸戰鬥及反擊作戰兩階段的火力支援優先。參謀作業提出四個方案以解決提高灘岸戰鬥與反擊作戰火力支援優先後的火力支援需求:

- O1. 引入新式砲兵武器(以表2之編裝二提 高整體火力,滿足各階段火力需求)。
- O3. 於泊地攻擊階段改用最大射速(以提高對敵火力艦、登陸艇及登陸人員殺傷,降低我方火砲損失並減少後續階段的火力需求)。
- O4. 採用子母彈,修改彈藥配比為高爆彈 與子母彈各半(以提高對敵火力艦、 登陸艇及登陸部隊殺傷,降低我方火 砲損失並減少後續階段的火力需 求)。

	表 2. 他共編装選項									
編碼	火砲型式	營數	每營 單位數	每單位 武器數	總數	備考				
Α-	155H,SP 8"H,SP Rocket 1	X X X	X X X	X X X	xx					
編裝一	105H 155H	x x	x x	x x	xx					
A+	155H, SP Rocket 2	x x	x x	x x	xx	混合 砲兵營				
編裝二	155H, SP	x	х	x	xx					
武器數量	武器數量已被「x」取代。									

表 2. 砲兵編裝選項

砲兵指揮官基於前述四項參謀建議,提出 下列問題:

Q1. 改變編裝的投資成本高,能獲得多大 作戰效益?

i 同參考文獻[7]。

- Q2. 泊地攻擊爲反登陸作戰的第一階段, 若保留2/3火力留作灘岸戰鬥與反擊 作戰之用,提高射速與改變彈藥配比 能否彌補火力缺口?
- Q3. 火砲長時間採用最大射速射擊,容易造成火砲損壞,是否值得?
- Q4. 採用殺傷效益較高的子母彈能增加多 少作戰效益?
- Q5. 能否從四個方案中組合出最佳方案?
- Q6. 若投入1/2時,結果如何?

四、研究程序:

爲解決前述砲兵指揮官的決策問題,採用 前述第二節的研究方法進行研究。

4.1 實驗前實驗設計:

依據 3.1 節的四個方案(O1~O4)與目前作 法將四個火力要素依資料特性整理如表 3,由 於四個火力要素均各有兩個選項。其中投入比 (B)可視爲定量(quantitative),在實務上,因砲 兵武器投入最小單位爲 1 門,因此投入比應爲 不連續的分數,如 1/6, 1/3, 1/2, 2/3, 5/6 及 1,但在本問題中僅有 1/3(B-)及 1(B+)兩個選項。 其餘三項火力要素均爲定性(qualitative)(以「高低」或「有無」的描述,以+1 及-1 表示)。適合採用 2^k factorial design 的實驗設計[13]。將四個火力要素組合成 16 個待執行的實驗,並隨機排序出實驗順序如表 4.。

將表3火力要素視爲實驗的投入(factor), 作戰中敵我雙方相關的作戰能力則可定義爲 產出(response),如下:

> 1. Artillery: 為我方砲兵武器存活百分比 (100 × 火砲存活數量/編裝內火砲 總數),代表我方砲兵可用於後續灘岸

戰鬥與反擊作戰的火力支援能力。

- 2. Fighter: 敵方火力支援艦損失百分比 (100 × 火力支援艦損失數/初始火 力支援艦總數),代表敵方後續對我方 砲兵造成損傷的能力。
- 3. Craft: 敵方登陸艇損失百分比(100 × 登陸艇損失數/初始登陸艇總數),代表敵方後續運輸登陸部隊登岸的能力。
- 4. Troops: 敵方登陸人員損失百分比(100 x 登陸人員損失數/初始登陸人員總數),代表此一泊地攻擊階段後,敵於 灘岸所建立的作戰能力。

表 3. 火力要素編碼

等級(level)	L	Н	備考
投入(factor)	-1	1	轉換後的 coded factor level
編裝 (A)	— (A-)	 (A+)	兩種編裝分別代表泊地 攻擊能力的有無(前者 無,後者有)
投入比 (B)	1/3 (B-)	1 (B+)	可以是數值, 兩個選項:投入 1/3 或 全部投入
射速 (C)	持續 (C-)	最大 (C+)	各型武器射速不同 整體區分爲持續與最大 兩種
彈藥配比 (D)	高爆彈 (D-)	高爆及 子母彈 (D+)	只採用高爆彈或採用高 爆彈與子母彈各 50%

表 4. 實驗排序

實驗序	編裝	投入比	射速	彈藥配比
1	編裝一	1	持續	僅高爆彈
2	編裝一	1	持續	高爆、子母彈各半
3	編裝一	1/3	持續	僅高爆彈
4	編裝二	1	最大	高爆、子母彈各半
5	編裝二	1/3	最大	高爆、子母彈各半
6	編裝二	1/3	持續	高爆、子母彈各半
7	編裝一	1	最大	高爆、子母彈各半
8	編裝一	1	最大	僅高爆彈
9	編裝二	1/3	持續	僅高爆彈
10	編裝一	1/3	最大	高爆、子母彈各半
11	編裝二	1	持續	高爆、子母彈各半
12	編裝二	1	持續	僅高爆彈
13	編裝一	1/3	持續	高爆、子母彈各半
14	編裝二	1/3	最大	僅高爆彈
15	編裝二	1	最大	僅高爆彈
16	編裝一	1/3	最大	僅高爆彈

4.2 實驗數據蒐集:

在確定採用2^k factorial design的實驗設計方法及投入(factor)及產出(response)後,以2.6 節所撰寫之模擬程式依表4.的實驗順序進行實驗數據蒐集。首先必須決定各實驗的初始暫態 (initial transient state),並捨棄初始暫態區間內的實驗數據,以便取得穩定的實驗數據,提高可信度。初次採樣時,各實驗採樣500次(500 replications),以移動平均法[14]經繪圖判讀後決定初始暫態長度(採樣次數,replication)如表5.,其中最大的初始暫態長度爲300;因此,僅蒐集各實驗第301個採樣之後的100個採樣數據作爲分析之用。

表 5. 移動平均間隔與初始暫態長度

產出	Arti	Artillery Fig		hter	er Craft		Troops		初始暫態
實驗序	w	l	w	l	w	l	w	l	長度
1	30	150	60	150	50	100	50	150	150
2	60	80	60	100	60	80	30	60	100
3	50	120	100	170	60	100	90	120	170
4	60	120	50	100	60	120	60	100	120
5	60	250	60	300	60	280	60	260	300
6	100	250	100	170	60	250	60	100	250
7	60	180	60	180	80	150	60	100	180
8	60	220	50	120	60	120	60	100	220
9	60	150	60	100	80	220	60	150	220
10	60	120	60	240	60	260	60	180	260
11	100	150	60	90	60	150	60	120	150
12	60	150	80	250	60	120	60	120	250
13	60	180	60	100	60	120	60	140	180
14	60	120	60	170	60	150	60	100	170
15	60	120	60	190	60	120	60	180	190
16	60	100	60	100	80	180	100	150	180

w: 各產出之移動平均間隔。

1: 各產出之初始暫態長度。

4.3 實驗數據分析與迴歸結果:

研究的最終目的在:依據實驗數據獲得自 然且直觀的數學描述,而迴歸模式正適合這樣 的目的ⁱⁱ。在迴歸模式的選用上,以不對產出作函數轉換(transform)為原則,取得具有足夠解釋力的迴歸式。將1600個實驗數據(16組實驗,每組實驗採樣100次)輸入DesignExpert作為分析樣本,並依據前述之選用原則獲得各產出(如4.1節之定義)的迴歸式如第(1)-(4)式,迴歸式涵蓋了對各產出作用顯著(significant)的投入項及高階交互項。

$$Artillery = 49.41 + 0.42A - 19.72B + 2.08C + 0.49D + 0.43AB + 1.61AC + 1.93BC + 0.3BD + 1.52ABC - 0.5ACD - 0.69ABCD$$
 (1)

$$Fighter = 14.08 + 10.68A + 3.74B + 4.42C + 4.04D + 3.5AB + 3.24AC + 2.37AD + 1.82BC - 0.84BD + 1.52ABC - 0.97ABD - 0.91ACD - 1.61BCD - 1.97ABCD$$

$$(2)$$

$$Craft = 56.25 + 15.12A + 14.13B + 11.32C + 11.13D$$

 $+ 0.47AB - 2.16AC - 3.53AD + 0.74CD$ (3)
 $-1.31ABC - 2.01ABD - 1.75ACD$
 $-3.68BCD - 0.88ABCD$

$$Troops = 64.65 + 15.98A + 12.85B + 9.45C + 9.97D$$

$$-3.1AC - 4.02AD$$

$$-0.96BC - 0.97BD + 3.03CD$$

$$-1.62ABC - 2.01ABD - 1.13ACD$$

$$-2.12BCD$$

$$(4)$$

各產出的不顯著項如表6.。各迴歸式的適用性指標比較如表7.,顯示第(1)-(4)式的迴歸模式對投入及產出關係之描述具有相當高的解釋力ⁱⁱⁱ。如此高的解釋力可能是因爲模擬的假設造成的,當較實際之參數與影響加入時,解釋力可能會降低一些。

ii 參考文獻[13],Ch.6, p.223。

iii 参考文獻[13],Ch. 3,pp.105-106 及 Ch. 10, pp.411-419。

表6. 不顯著項列表

產出	不顯著項
Artillery	AD, CD, ABD, BCD
Fighter	CD
Craft	BC, BD
Troops	AB, ABCD
顯著性(sig	nificance level, P-value 或 Prob.(P>F)) > 0.05
則判斷爲「	不顯著」。

表7. 各迴歸式適用性指標

產出	R^2	R^2_{adj}	R^2_{pred}	$Prec_{adeq}$
Artillery	0.9300	0.9295	0.9288	96.928
Fighter	0.8977	0.8968	0.8956	85.876
Craft	0.9650	0.9647	0.9643	173.148
Troops	0.9632	0.9629	0.9625	171.000

五、討論:

5.1 投入與產出:

火力要素的綜合作用以立方圖及交互作用圖表示如圖7至10。立方圖之數據爲各迴歸模式求出的計算值。X軸爲射速(C-代表持續射速、C+代表最大射速),Y軸爲投入比(B-代表投入1/3、B+代表全數投入),Z軸則爲彈藥配比(D-代表只採用高爆彈、D+則高爆及子母彈各半)。交互作用圖中雙箭頭線段爲採樣值的的分佈區間,而虛線代表投入比爲1/3(B-)的變化方向,實線則是投入比爲1(B+)的變化方向。

由圖7可以看出投入1/3(B-)時砲兵存活比約70%,亦即投入的砲兵幾乎全數被殲滅,而全數投入(B+)時,砲兵存活比約30%,表示約2/3的砲兵被殲滅。此外,編裝(A)與彈藥配比(D)對防禦方的火砲存活比的影響並不如投入比(B)與射速(C)顯著。就現有編裝(A-)而言,射速(C)對砲兵存活比並沒有顯著的作用;在新編裝(A+)中以最大射速(C+)可以期望獲得較高的砲兵存活比。

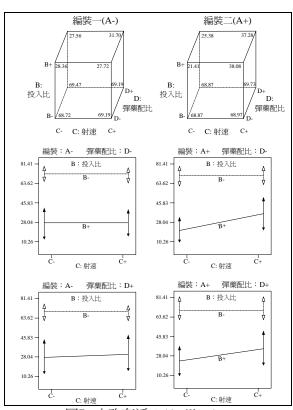
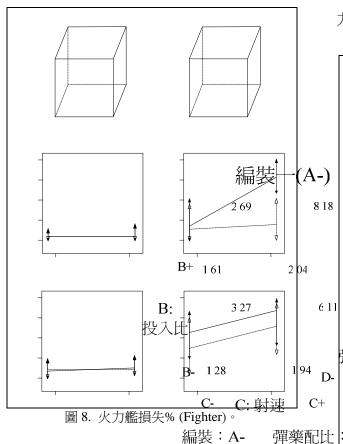



圖7. 火砲存活% (Artillery)。

由交互作用圖中可比較出全數投入(B+)時 砲兵存活比的變異範圍明顯較投入1/3(B-)時爲 大;若同爲投入1/3(B-),新編裝(A+)時的變異 較舊編裝(A-)爲大。其主要原因判斷爲:

- 1. 投入 1/3(B-) 時 砲 兵 的 損失 上 限 爲 33%,不論其他的投入項爲何,被摧毀 的砲兵已接近上限,因此變異較全數投入(B+)時爲小。
- 2. 新編裝(A+)較舊編裝(A-)能擊毀更多的 火力艦,使被摧毀的砲兵的變異增大。

力過剩形成浪費的可能性。

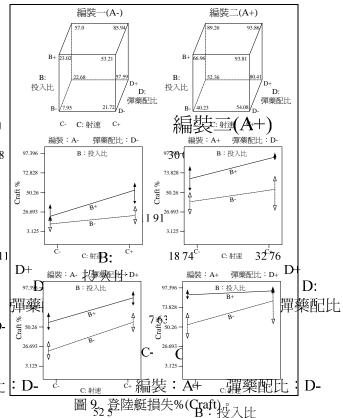


圖8顯示不論投入多少或採用何種射速於分 與彈藥配比(D),現有編裝(A-)幾乎對登陸方的 火力艦不造成威養,39位仍有機會擊毀若干艘火 力艦。採用新編裝(A+)且僅使用高爆彈(D-) 時,若將砲兵全數投入(B+),則可明顯提升對 火力艦的損失;若新編裝(A+)搭配50%的子母 彈(D+), 平均而言全數投入(B+)比投入1/3(B-) 增加約10%的火力艦損失。

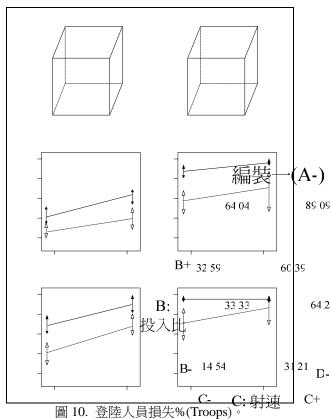
在對登陸艇殺傷效果方面,圖9顯示現有 編裝(A-)若採用混和彈藥(D+)且以最大射速射 擊(C+)登陸艇殺傷成果可以獲得較明顯的提及 (Toops) 日本海區 (Toops) 升;在相同條件下,將砲兵全數投入(B+),也 能獲致明顯提升;尤其在採用混和彈種(D+)、 最大射速(C+)並全數投入(B+)時,可以期望獲 得與新編裝(A+)產相同條件下(D+, C+, B+)接 近的殺傷成果。在新編裝(A+)中,有三個情形 登陸艇損失接近 三限,且變異範圍非常小(D-, C+, B+、D+, C-, B+與D+, C+, B+),顯示有火 B+ B-

0

圖10與圖9的的趨勢相當接近,從迴歸式 (第(3)及(4)式)也可以看出兩者近似;且相同 條件下圖的學的值(立方圖)則略高於圖9。 其原因是由於登陸人員(Troops)大部分時間位 於登陸艇內,致使兩者關連性高;此外,登陸 艇的戰損必須累積至一定標準方被判定爲「擊 毀」方計入登陸艇損失(Craft)內,而人員只要 位於砲彈殺傷範圍內即被判定為發陸人員損+ 失(Troops),因此圖10中立方圖的值略高於圖

52 5

C-C: 射速 -11-


C+

C-

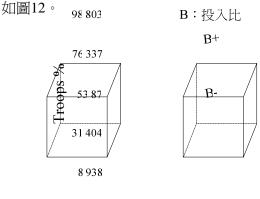
C: 射速

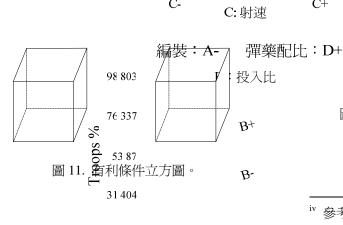
B:投入比

C+

 ${\rm coded\ factor\ level} = \underbrace{{\rm natural\ factor\ level} - ({\rm natural\ level}_{LOW} + {\rm natural\ level}_{HIGH})/2}_{} \text{ (5)}$ (natural levelHIGH - natural leveLOW)/2

表8. 投入比=1/2時的產出估計


項		Coded f	actor le	vel	產出估計值(%)					
次	編裝 A	投入比 B	射速 C	彈藥配比 D	Artillery	Fighter	Craft	Troops		
1	-1	-0.5	-1	-1	58.62	1.38	11.71	21.78		
2	-1	-0.5	-1	+1	58.99	313_	_31.24	38.28		
3	-1	-0.5	+1	-1	58.8种	主%—	-20.58	35.78		
4	-1	-0.5	+1	+1	59.83	6.65	64.67	73.16		
5	+1	-0.5	-1	-1	579026	3 8.72	46.929	629 .09		
6	+1	-0.5	-1	+1	58.01	21.59	61.59	71.05		
7	+1	-0.5	+1	-1	61.26	18.94	64.01	71.45		
8	+1	-0.5	+1	+1	61.63	35.33	83.76	92.25		


B+ 83 78 97.25

此外,第(1)-(4)式的迴歸模式可以協助估 6421計不同投入比例的產出,66由於迴歸式營幣投 運輸製中若想瞭解投入比1/2(natural facior等配比 level)的產出時,可將投入比(1/2)依第(5)式iv標 準化爲B(coded factor level)的射速得B=+0.5,

彈藥配比代內第(1)-(4)式得產編製的估計值如產藥配的一個 編裝: A-

圖7至圖10說明了旅據四種解決方案以第 三節O1~O4)組合出的十六組投入組合與實驗 產出之間的關係。從防禦方立場來看,希望保 留最大的砲兵火力以支應後續攤岸戰鬥與反 擊作戰,也希望將登陸方的後續火力 (Fighter)、運輸能力(Graft)與灘岸作戰能力 (Troops)儘可能降低。基於前述概念,可以繪 出有利立方圖(Desirability Cube Graph)協助較 佳方案組合的選擇,如圖11。

8 9 3 8

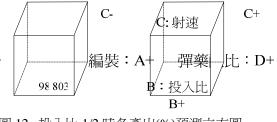


圖 12. 梭丸比 1/2 時各產出(%)預測立方圖。 B 53 87 參考文獻[13], p.224。 8 938

-12-

C+

C-C+C: 射速

C-C: 射速 C+

5.2 問題探討:

經由前述的研究過程所蒐集的資料及分析結果,應可解答第三節中指揮官提出的六個 問題。

- A.1 編裝改變對守方砲兵存活比的作用不 大,而對火力艦、登陸艇及登陸人員 的作用較明顯,前提是需配合適當的 投入比、射速與彈藥配比。例如,採 用新編裝(A+)、高爆彈(D-)時,若僅 投入1/3(B-),對火力艦的殺傷(Fighter) 並沒有提昇的效果(如圖8)。此外, 即使維持現有編裝(A-),若能妥善運 用砲兵火力,亦能使作戰效果大幅提 昇。例如,在現有編裝下(A-),若採 用混和彈種(D+),配合最大射速(C+) 也能大幅提昇對登陸艇(Craft)及登陸 人員(Troops)的殺傷效果(如圖9及 10)。因此,並不一定要採用新編裝, 妥善運用現有編裝也能提昇作戰效 能。
- A.2 在現有編裝(A-)並保留2/3(B-)的前提下,同時採用最大射速(C+)與混和彈種(D+),對登陸艇及登陸人員的殺傷而言,不僅能彌補火力缺口的,更可期望提昇約20%的成果(圖9及10)。對火力艦的殺傷而言,是否保留砲兵火力,沒有顯著影響(圖8)。
- A.3 從圖7觀察,當投入1/3時(B-),幾乎投入的砲兵全數被殲滅(總共存活約70%);而全數投入時(B+),也僅約存活20-40%,其餘大部分被火力艦摧毀。這種情況下,與其被敵火摧毀,不如在被摧毀前以最大射速發揮最大火力攻擊登陸敵人。
- A.4 在大部分的情況下(以現有編裝(A-)

對火力艦殺傷效果例外),混和彈藥配比(D+)需與最大射速(C+)搭配運用,可以發揮較大的功效。例如圖9中以現有編裝(A-)、投入1/3(B-),採用最大射速(C+)及混和彈藥(D+),對登陸艇的殺傷效果可期望提高約30%(相對於持續射速(C-)與只採用高爆彈(D-))。

- A5. 由圖11可以看出,在不改變編裝的情況下(A-),不論投入比爲1/3(B-)或全部(B+),最大射速(C+)配合混和彈藥(D+)可獲得較佳的戰果(有利條件值0.44)。若採用新編裝(A+),則有三種方案組合的作戰結果接近(有利條件值分別爲0.74,0.74與0.78)。較佳方案組合如表9.。
- A6. 在迴歸模式的輔助下,將投入比值依 第(5)式標準化後代入第(1)-(4)式可預 測當投入比爲1/2時的各項產出,如表 8及圖12。

就現有編裝來看(表9,項次1及2),兩者對火力艦(Fighter)的殺傷能力不足,仍使守方砲兵面臨較強的火力威脅。項次1方案組合以較低的砲兵存活比(Artillery)(砲兵損失較大)換取灘岸部隊(Troops)及運輸能力(Craft)大幅降低,減低了後續階段的火力需求。而項次2則保留了較高的砲兵火力,因應後續較大的威脅。兩者似乎難分軒輊。表9中項次3,4,5均可望大幅減低登陸部隊後續登陸運輸能力(Craft)及敵方灘岸兵力(Troops),並可將登陸方的攻擊火力(Fighter)削弱至30-40%。而項次3則可望保留近70%的砲兵火力,可視為三者中較佳的方案組合。

-	方案組	合(投入)		產				
項次	編裝	投入 比	射速	彈藥 配比	Artillery	Fighter	Craft	Troops		
1	A-	B+	C+	D+	31.70	8.18	85.94	89.10		
2	A-	B-	C+	D+	69.19	6.11	57.59	64.21		
3	A+	B-	C+	D+	69.73	32.76	80.41	86.94		
4	A+	B+	C+	D+	37.28	43.11	93.86	97.29		
5	A+	B+	C+	D-	38.08	42.89	93.81	97.25		

表9. 較佳方案組合與產出

六、結論:

基於決策輔助的需求,在已知作戰想定的情況下,綜合運用作業研究方法,以離散事件模擬器詳盡描述砲兵泊地攻擊中攻防雙方的互動過程,再輔以實驗設計及迴歸分析工具,比定性的戰術探討提供了更深入且詳盡作戰內涵;也進一步提供可作爲決策參考的作戰特性,經過問題解答演示,證實所提出的研究方法與程序可有效解決此一作戰類型的決策問題。

依據本研究的方法與程序,針對所列舉方 案組合,重要結論摘述如下:

- 1. 泊地攻擊時若妥善運用砲兵武器(投入 比、射速及彈藥配比)可以將現有編裝 內的武器效能作更大的發揮,並不一定 要更新武器系統。
- 2. 在現有編裝下,選擇投入三分之一的砲兵時,若配合最大射速與高爆彈及子母彈各半的彈藥配比,不僅能彌補火力缺口,更可望提昇20%的效益。
- 3. 不論編裝與投入比如何,採用最大射速 及混合彈藥配比,一般而言可以獲得較 佳的作戰結果。
- 4. 防禦方砲兵的存活比與編裝、射速及彈藥配比關係非常不明顯,但與投入比相關性極高,投入三分之一損失約30%(投入部分幾乎全被摧毀),全數投入則損失約70%。
- 5. 十六個方案組合中列出五項較佳方

- 案,可提供不同作戰考量下的決策參 考。
- 6. 透過迴歸式可對定量性質的投入比(B) 進行產出的估計。

雖然本研究提出了有效的砲兵泊地攻擊問題的研究架構,但仍有許多實際參數並未納入,因此以簡單的假設進行模擬。尚有諸多基礎研究及參數數據待深入探討,如建立國軍砲兵殺傷效果參數資料可以改進彈幕範圍的描述及戰損估算的機制。此外,討論範圍可擴及陸基反艦飛彈及戰車砲等直射武器,均是未來在此一問題上可以深入探討的研究方向。最後,中共近年大力開發大型氣墊船及翼地效應載具[15],未來若大量部署,將改變登陸作戰的樣態,值得國軍注意。

參考文獻

- [1]李杰,<u>登陸戰—特殊條件下的進攻</u>,中國北京,海洋出版社,pp.4-132,1998。
- [2]中共海軍水面艦艇學院編,<u>海軍戰術下冊</u>, p. 114, 1984。
- [3]陸軍砲兵飛彈學校, "漢光十一號演習檢討 本軍砲兵執行聯合泊地攻擊之研究", pp.5-6,1994。
- [4] Dupuy, T. N., <u>Numbers, Predictions and War</u>, Revised Ed., Fairfax, Virginia, HERO Books , Ch. 3, p.37 & App. A, p.231, 1985.
- [5]中共編,<u>高科技在軍事領域的應用及對作戰</u> <u>的影響</u>,中國北京,八一出版社,第十章, pp.209-210,1993。
- [6] Taylor, J. G., Force-on-Force Attrition Modelling, Monterey, California, Naval Postgraduate School, Ch. 3, p.13, 1980.
- [7]中共海軍司令部編,艦砲戰鬥使用手冊,第

- 三章,pp. 252-254,1988。
- [8]郭錫福,<u>遠程火砲射擊精度分析</u>,中國北京,國防工業出版社,第二章,p.26,2003。
- [9]張廷良,陳立新,<u>地地彈道式戰術導彈效能</u> <u>分析</u>,中國北京,國防工業出版社, pp.202-203, 2001。
- [10]Martin, J. A., "A Model for Optimizing Field Artillery Fire", Ms. Thesis, Monterey, California, Naval Postgraduate School, p.34, 1989.
- [11]張野鵬,<u>作戰模擬基礎</u>,中國北京,高等 教育出版社,第六章,pp.162-165,2004。
- [12] Russell, E. C., <u>Building Simulation Models</u> with <u>SIMSCRIPT II.5</u>, La Jolla, California, Inc. CACI, 1999.
- [13] Montgomery, D. C., <u>Design and Analysis of</u>
 <u>Experiments</u>, 5th Ed., New York, John
 Wiley & Sons, Ch.6, p.218, 2001.
- [14] Law, A. M. and Kelton, W. D., <u>Simulation</u> <u>Modeling and Analysis</u>, 3rd Ed., McGraw-Hill Book Co., Ch.9, pp.518-527, 2000.
- [15]林長盛, "中共台海戰爭兩棲登陸軍力",林中斌主編,<u>廟算台海—新世紀海</u><u>峽戰略態勢</u>,台北,台灣學生書局,第八章,pp. 385-392,2002。