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ABSTRACT

Advanced processors can simultaneously execute multiple instructions in parallel to achieve
better performance. Branches introduce control dependence between instructions. Branch prediction
therefore is important for modern processors. Most present predictors use branch history to predict
branch outcomes. Using branch history alone results in delay for identifying mispredictions. In this
paper, a context-based branch predictor is proposed to resolve branch condition for conditional
branches. Simulation results of SimWattch from SPECint95 and MediaBench programs reveal that
using our method, on average, the CPI can be improved by 2.12%, the IPC can be improved by 2.19%,
and power consumption can be improved by 2.12%.
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I. INTRODUCTION

Superscalar processors can simultaneously
execute multiple instructions in parallel. They
dominate modern processor market. The key
factor to keep high performance for these
processors is sustaining high degree of
instruction level parallelism (ILP). Branch
instructions,  however, introduce control
dependence between instructions and therefore
reduce ILP. Whenever executing branch
instructions, the pipeline has to stall and wait for
the branch outcomes. Branch prediction predicts
possible branch outcomes and keeps fetching
instructions from target address.

Branches can be divided into conditional
and unconditional branches. Evidence shows
that the majority of the branches are conditional
[1]. The predictions of branches include the
branch outcomes and the target address. Once
mispredicted, the instructions fetched after the
branch have to be squashed. This situation
results in waste of cycles and power
consumption.  Therefore great efforts in
literatures [1] are devoted to improve the branch
prediction accuracy. In general, most predictors
use branch history to predict the branch
outcomes. Through experiments, we observe
that using branch history alone in prediction for
conditional branches, the mispredictions are
identified late till the branch conditions are
resolved. Identifying  mispredictions late
degrades the performance and consumes
unnecessary power. To solve this problem, we
propose a context-based branch prediction for
conditional branches. Using our approach,
experiments show that the performance can be

improved and the power consumption can be
reduced.

In Section 2 we propose the observation
from a motivating example and discuss related
work in branch prediction. In Section 3 we
propose a Context-based Branch Predictor for
conditional branches. Section 4 presents the
experimental results. Section 5 concludes the

paper.

Il. BACKGROUND AND
RELATED WORK

Branch predictions have been studied
extensively. Evers [1] summarizes current
branch predictors including Always Predict
Taken [1], Backward Taken [1], Forward Not
Taken (BTFN) [1], Simple Profiling (profile) [2],
Last-Time [3], Two-Bit Counter (2bc) [3] and
Two-Level Adaptive Branch Predictors [4, 5].
These predictors use the branch address to
access the prediction history. Predictions are
made according to branch history. Using branch
history alone in predictions could result the high
misprediction rate. According to Evers [1], the
misprediction rates of this type vary from over
40% for the worst static predictors to less than
4% for the best and costliest.

Consider a five-stage pipelined RISC
machine using the Two-Level Adaptive Branch
Predictor of Alpha [5] that can simultaneously
fetch and decode four instructions per cycle. We
use IF, DA, EX, WB and CT to imply instruction
fetch, decode, execution, write back and commit
pipeline stages. According to the branch
prediction results, instructions in the predicted
direction are fetched into pipeline. When



predicting correctly, the performance gains from
the
mispredicted, the instructions prefetched after

prefetching of instructions.  Once
the branch have to be squashed. For example, to
illustrate this, in Figure 1,
SPECIint95/go is

assembly. Figures 1 and 2 demonstrate two

test program
compiled into Alpha
snapshots of pipeline executing program
SPECIint95/go in and 82,
respectively. In cycle 76, the conditional branch

cycle 76

ap is predicted not-taken according to branch
history from its PC address. Three consecutive

aq,...
instruction ap are fetched into pipeline. In cycle

instructions ,as  following  branch
82, the conditional branch instruction ap is
evaluated to be taken and mispredicted. The
instructions ag,...,ba entering the EXE/ WB
pipeline stages have to be squashed, which
causes the flushing of 11 instructions.

This kind of misprediction penalties is very
common. There are two important issues in the
above misprediction penalties. First, branch
history is retrieved by PC address during
fetch

conditional branch instruction is fetched into the

instruction stage. Whenever newly
pipeline, there is no sufficient past information
of this branch. Therefore the misprediction rate
for the newly conditional branch instruction
could be high. Secondly, branch results will not
be available until the branch conditions being
resolved in the execution pipeline stage.
Therefore the correct branch results will not be
fed into the branch prediction unit the write back
pipeline stage. The time delay in updating the
result

branch prediction unit can in high

misprediction penalties. As we can see in
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Figures 1 and 2, from cycle 76 to cycle 82, there

are 11 additional instructions coming into

pipeline after the conditional branch instruction
ap.

@cycle =76

ap =bne rl1,0xFFFFFFFFFFFFFFFS
aq=bis r31,r31,r31

ar=»1dq r27,-32720(r29)

as=stl rl16,-16680(r29)

[IF]  [DA] [EX] [wB] [CT]
ap

aq

ar

as

Fig.1. Pipeline status of program SPECint95/go.

@cycle =82
[IF]  [DA] [EX] [wB] [CT]
at ap//mispredict

aq am
ar an
as ao
au
av
aw
ax
ay
az
ba
Fig.2. Pipeline dump of program SPECint95/go

to demonstrate misprediction penalties.

Several researches have been proposed to
improve history based branch predictions. In

general, there are two techniques being
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introduced to improve predictions. First, Hybrid
Branch  Predictions combine conventional
history based prediction with other prediction
techniques to improve misprediction rate.
McFarling [6] proposed hybrid branch
predictors which composed of two component
predictors and a selector that decides which one
is used to predict each branch. Lon and Henry [7]
improved the hybrid prediction accuracy by
replacing the selection mechanism with a fusion
mechanism.  Falcon [8] introduced the
prophet/critic hybrid predictors. The prophet
uses the branch history to predict its direction.
The critic gives a critique of the prophet’s
prediction. Secondly, dynamic data dependence
tracking was implemented to alleviate the late
resolve of branch conditions. Chen [9] proposed
a hardware method, data dependence chain, to
implement dynamic data dependence tracking
and a value-based branch prediction. However,
his method required a long latency to make a
prediction and also required a complex structure
to implement the dynamic data tracking.

The misprediction penalties and branch
prediction rate in Figures 1 and 2 can be
improved if we can provide more information to
predict the possible outcomes of conditional
branches between the retrieving and updating of
branch prediction. In this paper, we propose a
new hardware solution so that the branch results
are predicted according to branch instruction
context. Data dependence of branch in the same
instruction window is checked on the fly. The
result of data dependence checking is combined
with the prediction result from conventional

predictors. Branch prediction results are updated

in instruction decode stage, which is between the
retrieving and updating of branch predictions.
Using our method, branch prediction rate and
misprediction penalties can be improved.

I11. CONTEXT-BASED BRANCH
PREDICTION FOR
CONDICTIONAL
BRANCHES

In this section we propose a hardware
technique to improve the branch prediction
accuracy and misprediction penalties. There are
two contributions in our methods. First, different
from other branch prediction methods, our
prediction is made according to data dependence
of branch instructions. Secondly, our prediction
is conducted in the instruction decode stage.
Using our predictor, once conditional branches
are detected to be mispredicted, instructions in
the wrong path will not proceed to reduce
branch misprediction penalties. The details of
our branch prediction are discussed as follows.

The instruction format of the conditional
branches is shown in Figure 3. The source
register Ra is defined as decision register.
During instruction execution stage, the decision
register is tested for specified relationship. For
example, instruction bne tests decision register
for not equal to zero. For these conditional
branches, the instruction context that has data

Opcode Ra Branch_disp

Fig.3. Instruction Format of the Conditional

Branch.
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Fig.4. The Implementation of Context-base Hybrid Predictor.

dependence on these decision registers could
influence on branch conditions. Therefore in
instruction decode stage, we add a 32-bit flag
register FLAG to record the writing of these
decision registers. In an instruction window, any
instruction that will write into registers will set
the related flag register.

In the instruction decode stage, once we
detect the execution of conditional branch
instructions, the related flag register FLAG is
checked. If the FLAG is set, it implies that in the
same instruction window, there exist other
instructions that are data dependent with the
decision registers of conditional branches. We
claim these instructions as coupling instructions.
Since branch condition can not be resolved until
these coupling instructions finish execution. On
the other hand, if the FLAG is clear, it implies
that there exists no instruction that is data
with  the

instructions. We claim these

dependent conditional  branch
instructions as
isolated, since conditional branch do not have to
wait for other instructions to finish execution.

Therefore, for these isolated instructions, we

will test the decision register for its specified
relationship.

Take Figures 1 and 2 as examples. In Figure
1, in cycle 76, conditional branch ap has no data
dependence with other instructions in the same
instruction window. Therefore, conditional
branch ap is eligible for our prediction. The
algorithm of our method is shown in Fig. 4.

The implementation of our approach is
shown in Fig. 5. Conventional history based
prediction is implemented in IF stage. In DA
stage, dynamic data dependence tracking is
implemented for instructions in the same
instruction window. The writing of decision
registers is recorded in the FLAG register. For
each conditional branch, the FLAG register is
checked to test if the decision register is data
with The
dependence tracking result is recorded in
CONDITION flag. If there is no other data
dependence with the decision
CONDITION flag
condition can be resolved. Oppositely, the

CONDITION flag

dependent other instructions.

register, the

is set and the branch

is clear if the decision
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register is data dependent with other instructions
in the instruction window.

Algorithm: Context-based Branch Predictor

W Instruction window;
LOAD/COMP Load/arithmetic

instructions;
COND_BRANCH Conditional branch inst;
Flag(i) Flag to record the writing
of destination register;
Function resolving the
branch condition;

RESOLVE_COND

Condition Boolean variable recording
the outcome of
RESOLVE_COND;

PAST HIST The branch history;

Branch_Pred Boolean variable for
branch prediction;
Function that updates the

prediction status;

UPDATE_PREDICT

Begin

* Initialization */

/* Set the flag to record the writing of the destination
register */

(1) For(each inst I; in IW) do

{
(2 If((l; ==LOAD)]|( I; ==COMP))
3) Flag(Dest_Reg of I;) € 1;
4) else if(l; ==COND_BRACH)

{

(5) If(Flag(Decision_Reg of 1;)==0)
/* For conditional branch, if the decision reg is not
written, then we resolve branch condition */
(6) Condition€RESOLVE_COND(I;,Decision_Reg);
/* The Condition and the PAST_HIST are OR’d, and the
result is deposited into Branch_Pred */
@) Branch_Pred €(Condition||PAST_HIST);
/* Renew the predictor status */
(8) UPDATE_PREDICT(Branch_Pred);
9) } #end of (4)

} #end of (1)
end

demonstrated in Table 1. Once the CONDITION
flag is set, there is no data dependence with the
decision register, the branch condition can be
resolved. So we take prediction from
context-based predictor. Oppositely, if the
CONDITION flag is clear, the decision register
is data dependent with other instructions and we
rather take predictions from original history
based predictions. In our method, the history
based prediction used in IF stage can be any
predictors mentioned in Section Il. In this paper,
we choose Comb predictor as our history based
predictor, which is also the combination of
Two-Level Adaptive [4, 5] and Bimod [10, 11].

Fig.5. Context-based Branch Prediction Algorithm.

The relationship between conventional
history based predictors and our context-based
predictor follows. In DA stage, the prediction
results of conventional predictor in IF stage and
the CONDITION flag are OR’d and are updated
into the branch history. The combination of

Comb/Context-based  prediction  results is

Table 1. Prediction Result Combination of
Comb/Context-based Predictors
Comb Context Meanings
Predictor | Predictor
Result Result

0 1 Data dependence
resolved, take
prediction from data
dependence.

1 0 Data dependence not
resolved, take original
prediction.

1 1 Data dependence
resolved, take
prediction from data
dependence.

0 0 Data dependence not
resolved, take
prediction from data
dependence.

IV. EXPERIMENTAL RESULTS

In this section, we compare the
performance of two branch predictors, comb and
context-based. The former is the combination of

Two-Level Adaptive [4, 5] and Bimod [10,11],



which are used in most literatures and certain
machines [5]. We use Wattch in our simulation.
Wattch is developed by DBrooks [14] using
SimpleScalar's sim-outorder [15] cycle-accurate
model. We configure Wattch to use Alpha as the
target machine. Test programs are compiled and
statically linked for the Alpha instruction set
using the Compag Alpha C compiler. The
instruction execution of Wattch is divided into
five pipeline stages: fetch (IF), decode (DA),
execution (EX), write back (WB) and commit
(CT). The configuration of processor core and
the branch predictor is shown in Table 2.

Table 2. Configuration of Simulated Processor

Processor Core

Instruction 16-RUU, 8-LSQ
Windows
Issue Width 4 instructions per cycle

Function Units | 4 IntALU, 1 IntMul/Div
4 FPALU, 1 FPMul/Div

2 MemPorts

Base Branch Predictor

Branch Predictor | 1k-entry comb

Branch Target 512-entry, 4-way
Buffer

Return Address | 8-entry
Stack

Figure 1 demonstrates snapshot of pipeline
executing program SPECInt95/go. In Figure
1, instruction ap is defined as isolated
conditional branch. There is no other instruction
writing into the decision register r1. Figure 6

and 7 show the pipeline snapshots using comb
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and context-based predictors, respectively. In
Figure 6, instructions following conditional
branch ap are still fetched into pipeline. These
instructions are finally flushed till ap is resolved
to be taken. In Figure 7, there is no other

instruction being fetched into pipeline.

@cycle =77
[IF]  [DA] [EX] [wB] [CT]
av ap ao am
aw aq an
ax ar
ay as
at
au

Fig.6. Pipeline status of program SPECint95/go
using comb Predictor.

@cycle =77
[IF]  [DA] [EX] [wB] [CT]
aq ap ao am
ar an
as

Fig.7. Pipeline status of program SPECint95/go
using context-based Predictor.

Figure 8 demonstrates the branch prediction
rate of two predictors. In general, the prediction
rate for branch outcomes can be improved from
0.3% to 0.35%. Figure 9 demonstrates the
improvement in instruction per cycle (IPC). IPC
can be improved by 5.55% at best and 2.19% on
average. Figure 10 shows the improvement in
cycle per instruction (CPI). CPI can be improved
by 5.25% at best and 2.12% on average. Table 3
shows the comparison of power consumption for

these two branch predictors. Power can be saved



Dah-Lih Jeng, et al.
Context-based Branch Prediction for High-Performance and Low-Power Computing

by 5.26% at best and 2.12% on average.

Experimental Results of Instruction per Cycle (IPC)

V. CONCLUSION 3

Conditional branches introduce control B CombModel

B ContextModel

dependence between instructions, which degrade

performance. Branch predictions are used to

cope with the control dependence. However, o .
g0 gcc li  ipeg perl hanoi g721

most branch predictors use only branch history Bench Programs

to make prediction, which results in

mispredictions  for  branches.  Conditional Fig.9. The improvement of instruction per cycle.

branches make a decision according to value of

decision regiSterS- In this paper, a context-base Experimental Results of Cycle per Instruction (CPI)

branch predictor is proposed to improve the

branch prediction rate for conditional branches.
Experimental results on SPECint95 [12] and
MediaBench [13] programs reveal that the

B CombModel
B ContextModel

overall prediction rate can be improved by 0.3%
to 0.35%. On the other hand, due to the

go gec i ipeg perl hanoi 721
reduction of mispredictions, the performance Bench Programs

and the power consumption can both be

improved. On average, the IPC can be improved Fig.10. The improvement of cycle per instruction.

by 2.19%, the CPI can be improved by 2.12%. .
Table 3. Power consumption results of two

The power consumption can be improved by predictors. (Unit: mW)
2.12% on average. Comb Context Power
Model Model Saved
go 0.2771 0.2726 | 1.65%
Branch Direction Prediction Rate gCC 180.4177 178.6750 0.97%
0.95 li 512.7205 | 490.9900 | 4.24%
e ijpeg 11.2617 | 111668 | 0.84%
ggf B CombModel perl 1310.8531 | 1303.8629 | 0.53%
o S Conextode hanoi 0.8936 |  0.8466 | 5.26%
823 g721 117.1175 | 115.5685 | 1.32%

go gee L ijpeg perl hanoi g721
Bench Programs

Fig.8. The branch prediction rate improvement.
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