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ABSTRACT 

Advanced processors can simultaneously execute multiple instructions in parallel to achieve 
better performance. Branches introduce control dependence between instructions. Branch prediction 
therefore is important for modern processors. Most present predictors use branch history to predict 
branch outcomes. Using branch history alone results in delay for identifying mispredictions. In this 
paper, a  context-based branch predictor is proposed to resolve branch condition for conditional 
branches. Simulation results of SimWattch from SPECint95 and MediaBench programs reveal that 
using our method, on average, the CPI can be improved by 2.12%, the IPC can be improved by 2.19%, 
and power consumption can be improved by 2.12%. 
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摘   要 

目前處理器大多同時執行數條指令以提升指令階層平行度。然而，平行執行的指令間，分

支指令將使指令間產生控制相依性，降低指令間的平行度，進而降低效能。因此目前處理器大

都使用分支預測器來處理分支指令所產生之控制相依性。目前分支預測普遍使用分支歷史作為

分支預測基礎。以上述分支歷史為基礎，本論文進一步提出以分支指令之資料相依性預測可能

分支結果，稱為 Context-based Branch Predictor。我們使用 SPECint95 及 MediaBench 為測試程式，

以 SimWattch 進行模擬，結果顯示，由於較早預測分支失誤，在效能方面，每指令時脈數(CPI)
平均有 2.12%改善，每時脈指令數(IPC)平均有 2.19%改善，耗電方面有平均 2.12%之改善。 

關鍵詞：分支預測、失誤率 
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I.  INTRODUCTION 

Superscalar processors can simultaneously 
execute multiple instructions in parallel. They 
dominate modern processor market. The key 
factor to keep high performance for these 
processors is sustaining high degree of 
instruction level parallelism (ILP). Branch 
instructions, however, introduce control 
dependence between instructions and therefore 
reduce ILP. Whenever executing branch 
instructions, the pipeline has to stall and wait for 
the branch outcomes. Branch prediction predicts 
possible branch outcomes and keeps fetching 
instructions from target address. 

Branches can be divided into conditional 
and unconditional branches. Evidence shows 
that the majority of the branches are conditional 
[1]. The predictions of branches include the 
branch outcomes and the target address. Once 
mispredicted, the instructions fetched after the 
branch have to be squashed. This situation 
results in waste of cycles and power 
consumption. Therefore great efforts in 
literatures [1] are devoted to improve the branch 
prediction accuracy. In general, most predictors 
use branch history to predict the branch 
outcomes. Through experiments, we observe 
that using branch history alone in prediction for 
conditional branches, the mispredictions are 
identified late till the branch conditions are 
resolved. Identifying mispredictions late 
degrades the performance and consumes 
unnecessary power. To solve this problem, we 
propose a context-based branch prediction for 
conditional branches. Using our approach, 
experiments show that the performance can be 

improved and the power consumption can be 
reduced. 

In Section 2 we propose the observation 
from a motivating example and discuss related 
work in branch prediction. In Section 3 we 
propose a Context-based Branch Predictor for 
conditional branches. Section 4 presents the 
experimental results. Section 5 concludes the 
paper. 

II.  BACKGROUND AND 
RELATED WORK 

Branch predictions have been studied 
extensively. Evers [1] summarizes current 
branch predictors including Always Predict 
Taken [1], Backward Taken [1], Forward Not 
Taken (BTFN) [1], Simple Profiling (profile) [2], 
Last-Time [3], Two-Bit Counter (2bc) [3] and 
Two-Level Adaptive Branch Predictors [4, 5]. 
These predictors use the branch address to 
access the prediction history. Predictions are 
made according to branch history. Using branch 
history alone in predictions could result the high 
misprediction rate. According to Evers [1], the 
misprediction rates of this type vary from over 
40% for the worst static predictors to less than 
4% for the best and costliest.  

Consider a five-stage pipelined RISC 
machine using the Two-Level Adaptive Branch 
Predictor of Alpha [5] that can simultaneously 
fetch and decode four instructions per cycle. We 
use IF, DA, EX, WB and CT to imply instruction 
fetch, decode, execution, write back and commit 
pipeline stages. According to the branch 
prediction results, instructions in the predicted 
direction are fetched into pipeline. When 
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predicting correctly, the performance gains from 
the prefetching of instructions. Once 
mispredicted, the instructions prefetched after 
the branch have to be squashed. For example, to 
illustrate this, in Figure 1, test program 
SPECint95/go is compiled into Alpha 

assembly. Figures 1 and 2 demonstrate two 
snapshots of pipeline executing program 
SPECint95/go in cycle 76 and 82, 

respectively. In cycle 76, the conditional branch 
ap is predicted not-taken according to branch 

history from its PC address. Three consecutive 
instructions aq,…,as following branch 
instruction ap are fetched into pipeline. In cycle 
82, the conditional branch instruction ap is 

evaluated to be taken and mispredicted. The 
instructions aq,…,ba entering the EXE/ WB 

pipeline stages have to be squashed, which 
causes the flushing of 11 instructions. 

This kind of misprediction penalties is very 
common. There are two important issues in the 
above misprediction penalties. First, branch 
history is retrieved by PC address during 
instruction fetch stage. Whenever newly 
conditional branch instruction is fetched into the 
pipeline, there is no sufficient past information 
of this branch. Therefore the misprediction rate 
for the newly conditional branch instruction 
could be high. Secondly, branch results will not 
be available until the branch conditions being 
resolved in the execution pipeline stage. 
Therefore the correct branch results will not be 
fed into the branch prediction unit the write back 
pipeline stage. The time delay in updating the 
branch prediction unit can result in high 
misprediction penalties. As we can see in 

Figures 1 and 2, from cycle 76 to cycle 82, there 
are 11 additional instructions coming into 
pipeline after the conditional branch instruction 
ap. 

 

@cycle = 76 
ap = bne r1,0xfffffffffffffff8
aq = bis r31,r31,r31 
ar = ldq  r27,-32720(r29) 
as = stl  r16,-16680(r29) 

[IF] [DA] [EX] [WB] [CT] 
ap     
aq     
ar     
as     

Fig.1. Pipeline status of program SPECint95/go. 

 
@cycle = 82 

[IF] [DA] [EX] [WB] [CT] 
  at ap//mispredict
   aq am 
   ar an 
   as ao 
   au  
   av  
   aw  
    ax  
    ay  
   az  
   ba  

Fig.2. Pipeline dump of program SPECint95/go 

to demonstrate misprediction penalties. 

 
Several researches have been proposed to 

improve history based branch predictions. In 
general, there are two techniques being 
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introduced to improve predictions. First, Hybrid 
Branch Predictions combine conventional 
history based prediction with other prediction 
techniques to improve misprediction rate. 
McFarling [6] proposed hybrid branch 
predictors which composed of two component 
predictors and a selector that decides which one 
is used to predict each branch. Lon and Henry [7] 
improved the hybrid prediction accuracy by 
replacing the selection mechanism with a fusion 
mechanism. Falcon [8] introduced the 
prophet/critic hybrid predictors. The prophet 
uses the branch history to predict its direction. 
The critic gives a critique of the prophet’s 
prediction. Secondly, dynamic data dependence 
tracking was implemented to alleviate the late 
resolve of branch conditions. Chen [9] proposed 
a hardware method, data dependence chain, to 
implement dynamic data dependence tracking 
and a value-based branch prediction. However, 
his method required a long latency to make a 
prediction and also required a complex structure 
to implement the dynamic data tracking.  

The misprediction penalties and branch 
prediction rate in Figures 1 and 2 can be 
improved if we can provide more information to 
predict the possible outcomes of conditional 
branches between the retrieving and updating of 
branch prediction. In this paper, we propose a 
new hardware solution so that the branch results 
are predicted according to branch instruction 
context. Data dependence of branch in the same 
instruction window is checked on the fly. The 
result of data dependence checking is combined 
with the prediction result from conventional 
predictors. Branch prediction results are updated 

in instruction decode stage, which is between the 
retrieving and updating of branch predictions. 
Using our method, branch prediction rate and 
misprediction penalties can be improved. 

III. CONTEXT-BASED BRANCH 
PREDICTION FOR 
CONDICTIONAL 
BRANCHES 

In this section we propose a hardware 
technique to improve the branch prediction 
accuracy and misprediction penalties. There are 
two contributions in our methods. First, different 
from other branch prediction methods, our 
prediction is made according to data dependence 
of branch instructions. Secondly, our prediction 
is conducted in the instruction decode stage. 
Using our predictor, once conditional branches 
are detected to be mispredicted, instructions in 
the wrong path will not proceed to reduce 
branch misprediction penalties. The details of 
our branch prediction are discussed as follows. 

The instruction format of the conditional 
branches is shown in Figure 3. The source 
register Ra is defined as decision register. 

During instruction execution stage, the decision 
register is tested for specified relationship. For 
example, instruction bne tests decision register 

for not equal to zero. For these conditional 
branches, the instruction context that has data 

Fig.3. Instruction Format of the Conditional 

Branch. 
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dependence on these decision registers could 
influence on branch conditions. Therefore in 
instruction decode stage, we add a 32-bit flag 
register FLAG to record the writing of these 
decision registers. In an instruction window, any 
instruction that will write into registers will set 
the related flag register. 

In the instruction decode stage, once we 
detect the execution of conditional branch 
instructions, the related flag register FLAG is 
checked. If the FLAG is set, it implies that in the 
same instruction window, there exist other 
instructions that are data dependent with the 
decision registers of conditional branches. We 
claim these instructions as coupling instructions. 
Since branch condition can not be resolved until 
these coupling instructions finish execution. On 
the other hand, if the FLAG is clear, it implies 
that there exists no instruction that is data 
dependent with the conditional branch 
instructions. We claim these instructions as 
isolated, since conditional branch do not have to 
wait for other instructions to finish execution. 
Therefore, for these isolated instructions, we 

will test the decision register for its specified 
relationship. 

Take Figures 1 and 2 as examples. In Figure 
1, in cycle 76, conditional branch ap has no data 

dependence with other instructions in the same 
instruction window. Therefore, conditional 
branch ap is eligible for our prediction. The 

algorithm of our method is shown in Fig. 4.  
The implementation of our approach is 

shown in Fig. 5. Conventional history based 
prediction is implemented in IF stage. In DA 
stage, dynamic data dependence tracking is 
implemented for instructions in the same 
instruction window. The writing of decision 
registers is recorded in the FLAG register. For 
each conditional branch, the FLAG register is 
checked to test if the decision register is data 
dependent with other instructions. The 
dependence tracking result is recorded in 
CONDITION flag. If there is no other data 
dependence with the decision register, the 
CONDITION flag is set and the branch 
condition can be resolved. Oppositely, the 
CONDITION flag is clear if the decision 

C o m b / C o n t e x t - b a s e d  H y b r i d  P r e d i c t o r :  D y n a m i c  
D a t a  D e p e n d e n c e  C h e c k i n g  i s  d o n e  i n  D A  S t a g e

W B  
S t a g e

R e t r i e v e
C o m b

P r e d i c t o r

C h e c k
D a t a

D e p e n d e n c e

R e c o r d
D e c i s i o n

R e g i s t e r s

U p d a t e
P r e d i c t o r

H i s t o r y

R e t r i e v e
C o m b

P r e d i c t o r

U p d a t e
P r e d i c t o r

H i s t o r y

O RP r o g r a m
C o u n t e r

B r a n c h
H i s t o r y

C o n d i t i o n

I F  
S t a g e

D A  
S t a g e

E X E  
S t a g e

P r o g r a m
C o u n t e r

B r a n c h
H i s t o r y

C o n v e n t i o n a l  C o m b  P r e d i c t o r

Fig.4. The Implementation of Context-base Hybrid Predictor. 
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register is data dependent with other instructions 
in the instruction window.  

Algorithm: Context-based Branch Predictor 
IW Instruction window; 
LOAD/COMP Load/arithmetic 

instructions; 
COND_BRANCH Conditional branch inst; 
Flag(i) Flag to record the writing 

of destination register; 
RESOLVE_COND Function resolving the 

branch condition; 
Condition Boolean variable recording 

the outcome of 
RESOLVE_COND; 

PAST_HIST The branch history; 
Branch_Pred Boolean variable for 

branch prediction; 
UPDATE_PREDICT Function that updates the 

prediction status; 
Begin 
/* Initialization */ 
/* Set the flag to record the writing of the destination 
register */ 
(1) For(each inst Ii in IW) do  

 { 
(2)   If((Ii ==LOAD)||( Ii ==COMP)) 
(3)        Flag(Dest_Reg of Ii)  1; 
(4)   else if(Ii ==COND_BRACH) 

    { 
(5)         If(Flag(Decision_Reg of Ii)==0) 
/* For conditional branch, if the decision reg is not 
written, then we resolve branch condition */ 
(6) Condition RESOLVE_COND(Ii,Decision_Reg);
/* The Condition and the PAST_HIST are OR’d, and the 
result is deposited into Branch_Pred */ 
(7)       Branch_Pred (Condition||PAST_HIST); 
/* Renew the predictor status */ 
(8)       UPDATE_PREDICT(Branch_Pred); 
(9)    } # end of (4) 

 } # end of (1) 
end 

Fig.5. Context-based Branch Prediction Algorithm. 

 
The relationship between conventional 

history based predictors and our context-based 
predictor follows. In DA stage, the prediction 
results of conventional predictor in IF stage and 
the CONDITION flag are OR’d and are updated 
into the branch history. The combination of 
Comb/Context-based prediction results is 

demonstrated in Table 1. Once the CONDITION 
flag is set, there is no data dependence with the 
decision register, the branch condition can be 
resolved. So we take prediction from 
context-based predictor. Oppositely, if the 
CONDITION flag is clear, the decision register 
is data dependent with other instructions and we 
rather take predictions from original history 
based predictions. In our method, the history 
based prediction used in IF stage can be any 
predictors mentioned in Section II. In this paper, 
we choose Comb predictor as our history based 
predictor, which is also the combination of 
Two-Level Adaptive [4, 5] and Bimod [10, 11]. 

 
Table 1. Prediction Result Combination of 

Comb/Context-based Predictors 
Comb 

Predictor
Result 

Context
Predictor

Result 

Meanings 

0 1 Data dependence 
resolved, take 
prediction from data 
dependence. 

1 0 Data dependence not 
resolved, take original 
prediction. 

1 1 Data dependence 
resolved, take 
prediction from data 
dependence. 

0 0 Data dependence not 
resolved, take 
prediction from data 
dependence. 
 

IV. EXPERIMENTAL RESULTS 

In this section, we compare the 
performance of two branch predictors, comb and 
context-based. The former is the combination of 
Two-Level Adaptive [4, 5] and Bimod [10,11], 
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which are used in most literatures and certain 
machines [5]. We use Wattch in our simulation. 
Wattch is developed by DBrooks [14] using 
SimpleScalar's sim-outorder [15] cycle-accurate 
model. We configure Wattch to use Alpha as the 
target machine. Test programs are compiled and 
statically linked for the Alpha instruction set 
using the Compaq Alpha C compiler. The 
instruction execution of Wattch is divided into 
five pipeline stages: fetch (IF), decode (DA), 
execution (EX), write back (WB) and commit 
(CT). The configuration of processor core and 
the branch predictor is shown in Table 2. 

 

Table 2. Configuration of Simulated Processor 

Processor Core 

Instruction 
Windows 

16-RUU, 8-LSQ 

Issue Width 4 instructions per cycle 

4 IntALU, 1 IntMul/Div 

4 FPALU, 1 FPMul/Div 

Function Units 

2 MemPorts 

Base Branch Predictor 

Branch Predictor 1k-entry comb 

Branch Target 
Buffer 

512-entry, 4-way 

Return Address 
Stack 

8-entry 

 
Figure 1 demonstrates snapshot of pipeline 

executing program SPECint95/go. In Figure 
1, instruction ap is defined as isolated 

conditional branch. There is no other instruction 
writing into the decision register r1. Figure 6 

and 7 show the pipeline snapshots using comb 

and context-based predictors, respectively. In 
Figure 6, instructions following conditional 
branch ap are still fetched into pipeline. These 
instructions are finally flushed till ap is resolved 

to be taken. In Figure 7, there is no other 
instruction being fetched into pipeline. 

 

@cycle = 77 
[IF] [DA] [EX] [WB] [CT] 
av ap ao am  
aw aq  an  
ax ar    
ay as    
 at    
 au    

Fig.6. Pipeline status of program SPECint95/go 
using comb Predictor. 

 
@cycle = 77 

[IF] [DA] [EX] [WB] [CT] 
aq ap ao am  
ar    an  
as     
Fig.7. Pipeline status of program SPECint95/go  

using context-based Predictor. 
 

Figure 8 demonstrates the branch prediction 
rate of two predictors. In general, the prediction 
rate for branch outcomes can be improved from 
0.3% to 0.35%. Figure 9 demonstrates the 
improvement in instruction per cycle (IPC). IPC 
can be improved by 5.55% at best and 2.19% on 
average. Figure 10 shows the improvement in 
cycle per instruction (CPI). CPI can be improved 
by 5.25% at best and 2.12% on average. Table 3 
shows the comparison of power consumption for 
these two branch predictors. Power can be saved 
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by 5.26% at best and 2.12% on average. 

V.  CONCLUSION 

Conditional branches introduce control 
dependence between instructions, which degrade 
performance. Branch predictions are used to 
cope with the control dependence. However, 
most branch predictors use only branch history 
to make prediction, which results in 
mispredictions for branches. Conditional 
branches make a decision according to value of 
decision registers. In this paper, a context-base 
branch predictor is proposed to improve the 
branch prediction rate for conditional branches. 
Experimental results on SPECint95 [12] and 
MediaBench [13] programs reveal that the 
overall prediction rate can be improved by 0.3% 
to 0.35%. On the other hand, due to the 
reduction of mispredictions, the performance 
and the power consumption can both be 
improved. On average, the IPC can be improved 
by 2.19%, the CPI can be improved by 2.12%. 
The power consumption can be improved by 
2.12% on average. 

 

 
Fig.8. The branch prediction rate improvement. 

 

 
Fig.9. The improvement of instruction per cycle. 

 

 
Fig.10. The improvement of cycle per instruction. 

 
Table 3. Power consumption results of two 

predictors. (Unit: mW) 
 Comb 

Model 
Context 
Model 

Power 
Saved 

go 0.2771 0.2726 1.65% 

gcc 180.4177 178.6750 0.97% 

li 512.7205 490.9900 4.24% 

ijpeg 11.2617 11.1668 0.84% 

perl 1310.8531 1303.8629 0.53% 

hanoi 0.8936 0.8466 5.26% 

g721 117.1175 115.5685 1.32% 
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