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ABSTRACT 

 
Due to the non-linear and time-varying properties, to process and analyze underwater acoustic 

signals becomes very difficult and complicated. Fourier transform is only suitable for analyzing 
stationary signals, but not appropriate for the detection of short time and transient signals embedded in 
the underwater acoustic signals. Based on the property of multi-scale and multi-translation, wavelet 
transform can be used for analyzing transient signals. Although the scale and translation parameters in 
the wavelet basis functions can be adjusted for different signals, the basis functions are fixed, same as 
the basis functions of Fourier transform. Hence, the requirements of analyzing time-vary underwater 
acoustic signals are not satisfied. The algorithm of empirical mode decomposition provides a useful 
analysis scheme for non-linear and non-stationary nature signals. In this work, empirical mode 
decomposition method is design to extract the features from underwater acoustic signals for 
recognition. In the experiments, we utilize the data set of different ship classes recorded by the 
hydrophone to test the proposed scheme. Experimental results demonstrate the robustness of the 
proposed method. 
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摘 要 
 

由於水下音響信號具有非線性與時變的特性，使得它的處理與分析變得困難與複雜。雖然

傅立葉轉換能有效地分析穩態信號，但它無法偵測短時與暫態的信號；而小波轉換因具有多重

解析的特性，可以應用於短時與暫態信號的分析，但它的基底函數與傅立葉轉換一樣都是固定

的，對於不同的暫態信號其多重解析的參數必須做適度的調整，因此小波轉換無法滿足時變信

號的分析需求。針對傅立葉與小波轉換的局限性，經驗模態分解法是最近設計出來分析非線性

與非穩態信號的新方法；在本文中我們運用經驗模態分解法來萃取水下音響信號的特徵，尋求

最佳識別的模態分解階數。在實驗中我們將以真實的船艦水下音響信號來驗證，實驗結果證明

經驗模態分解法所萃取水下音響信號的特徵的確能夠提昇後續的判讀作業。 
 

關鍵詞：水下音響信號、經驗模態分解法、本質模態函數 
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I. INTRODUCTION 
 
Recently, the classification problem of 

underwater targets from the acoustic 
backscattered signals has attracted a lot of 
attention. These signals consist of passive sonar 
signals radiated from various vessels as well as 
underwater transients such as whale clicks, 
porpoise whistles and ice crackles, etc. Each type 
of signals has distinct characteristics, and is 
conventionally identified by human experts either 
by listening to or by looking at the spectrograms 
of the proposed sonar signals. The work [1] on the 
modeling of the underwater signals radiated from 
ships has led to the conclusion that the signal 
sources can be divided into three captions: 
machinery signals, propeller signals, and 
hydrodynamic signals. Machinery signals are 
produced from the diverse parts of a moving ship, 
such as pumps, pipes, and motor armature, etc. 
Propeller signals create tonal components in 
addition to the continuous spectrum of cavitation 
signals. Hydrodynamic signals consist of 
Gaussian signals generated from the hull of the 
vessel and flow signals similar to the ambient 
signals in the ocean. Hence, the spectrum of the 
radiated signals consists of two types. First one is 
the narrow band with a discontinuous spectrum 
containing line components occurring at discrete 
frequencies. The other one is the broad band with 
a continuous spectrum. Radiated signals from 
ships include a mixture of these two types of 
signals. The tone is an important feature for ships , 
so to extract tonal features from mixed spectra is 
effectively a key task for the recognition of 
acoustic signals. 

Various schemes of signal processing [2-10] 
have been proposed to extract signatures of 
submerged targets from the narrow band of sonar 
data mainly for detection purposes. Fourier 
transform is used to analyze and detect the sound 
signals in many approaches. Although this 
transform is extremely useful and well established, 
it does have principal difficulties in analyzing 
short-time transient sound behaviors. Assorted 
short-time Fourier transforms (STFT), using a 
variety of “windows” with different relative 
advantages, have been developed to address this 
problem [2]. Furthermore, alternatives to the 
STFT with better time-frequency localization 
have been also suggested. Cohen [3] devised a 

time frequency distribution by composing 
spectrums at different time intervals, which has 
been studied as the characterization using the 
Wigner-Ville distribution [4] and its variants. 
Such distribution describes the energy or intensity 
of a signal simultaneously in time and frequency, 
and is also a powerful tool for the analysis of 
non-stationary signals. Those time-frequency 
approaches have been extensively reviewed [5,6]. 

The potential uses of applying the wavelet 
transform for statistical problems have been 
discussed and developed [7,8]. They have 
demonstrated the appropriate threshold values on 
the coefficients resulting from the wavelet 
decomposition and a function of unknown 
smoothness can be recovered from sampled data 
contaminated with white noise. Subsequently, 
their idea has been used by various researchers to 
uncover useful structural information from 
complex noisy datasets. Such thresholding 
techniques are essentially concerned with the 
recovery of “smooth” features against a 
background that is often assumed to be “white” or 
“colored” noise. Similar to those methods, the 
approach [9] is applied to data from an entirely 
different arena for different purposes. The wavelet 
transform is used and then the kernel smoothing is 
applied to the coefficients in each resolution level 
to produce useful results from the data set. Apart 
from those approaches using the wavelet 
transform, Johnstone and Silverman [10] have 
developed a “level-dependent” thresholding 
approach for data with correlated noise. 

To recognize passive tonal signals radiated 
from ships and propagated through an ocean 
environment at various speeds is crucial for the 
processing stages. Traditionally, basis 
decomposition techniques such as Fourier 
decomposition or wavelet decomposition are 
selected to analyze real world signals as 
mentioned in the previous paragraph. Also, 
Fourier and wavelet descriptors have long been 
used as powerful tools for feature extraction. 
However, the main drawback of those approaches 
is that the basis functions are fixed and do not 
necessarily match the varying nature of signals. 
The empirical mode decomposition (EMD) was 
firstly proposed by Huang et al. [11], with which 
any complicated data set can be decomposed into 
a finite and often small number of intrinsic mode 
function (IMF) components, which become the 
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basis representing the data. Those extracted 
components can match the signals themselves 
very well. Motivated by that EMD provides a 
decomposition method to analyze the signals 
locally and separate the component holding 
locally the highest frequency from the rest into a 
separate IMF, in this paper, we adopt the EMD 
technique to extract the feature of the underwater 
targets. The first advantage of this technique is 
that EMD is a fully data driven method, and does 
not use any predetermined filter as Fourier basis 
or wavelet function does. The second one is that it 
can be easily implemented and the speed of 
matching time can be improved. Therefore, here 
the EMD approach is design to extract residual 
components of the underwater targets as the 
discriminative features for recognition.  
 

II. PREPROCESSING OF 
ACOUSTIC SIGNALS 

 
The selection of a suitable database is critical 

to verify the robustness of a classification 
methodology. It was recognized that the acoustic 
database, as it stands, is limited in its applications 
for developing and comparing specific 
classification algorithms. However, as will be 
discussed next, these limitations can be mitigated 
by 1. removing certain artifacts; 2. appropriate 
signals scaling; and 3. normalization. These 
modifications create an effective database that can 
be used to investigate challenging classification 
problems. The entire preprocessing procedure 
consists of the following steps that are 
implemented in order: 
1. Artifact removing: The length of the data set is 

recorded for 60 seconds and the sampling rate 
is 11025 Hz. Hence, the signal size is 661500 
points. Artifact removing is done by extracting 
the middle part of 40 seconds from data. 

2. Resampling: The original sampling rate is 
significantly higher than the signal bandwidth. 
This step is to reduce the sampling rate to 1000 
Hz and make the signal size down to 40000 
points. The data is denoted by X  for further 
uses.  

3. Normalization: the linear rescaling [12] is 
applied to each vector to adjust the average of 
each data set to zero and to normalize the 
standard deviation to unity before using the 

acoustic signal vector. By calculating the mean 
x and variance 2σ x  with respect to the spatial 
template, the linear rescaled version of X  is 
represented by NX  given by 

 

1 2{ , , , , }
σ
−

= =N N N N
j n

x

X x NX x x x xL L    (1) 

 

where the mean 
1

n

j
j

x x n
=

=∑  and  
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1
( )

n

x j
j

1x x nσ
=

= − −∑  

 
Figure 1 shows the results of the 

preprocessing procedure using the same sample 
from one class. Figure 2 displays the 
preprocessing results for different samples of the 
same class, and Figure 3 reveals the preprocessing 
results of different classes.  
 

III. FEATURE EXTRACTION 
USING EMPIRICAL MODE 

DECOMPOSITION 
 
Joint space-spatial frequency representations 

have received special attention in the fields of 
image and signal processing, feature extraction 
and pattern recognition. Huang et al. [11] 
introduced a multi-resolution decomposition 
technique: the empirical mode decomposition 
(EMD), which is adaptive and appears to be 
suitable for non-linear, non-stationary data 
analysis. 

Different applications as medical and seismic 
signals have shown the effectiveness of this 
method. The most attractive one among the facts 
is that EMD acts as dyadic filter banks [13]. The 
principle is to adaptively decompose a given 
signal into components called intrinsic mode 
functions (IMFs) by satisfying two properties. 
One is that the numbers of extrema and 
zero-crossing must equal. Another property of 
IMF is that the mean value of the envelope 
defined by the local maxima and the local minima, 
respectively, is locally symmetric around the 
envelope  mean .  Those  IMF components are   
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Fig.1. The results of the preprocessing procedure (a) 
Original signal, (b) Artifact removing, (c)  
Resampling, (d) Normalization. 
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Fig.2. The preprocessing results of the same class (a) 
The 6th sample of the 3rd class, (b) The 3rd sample 
of the 3rd class. 

 

 

( a )( a )

The 6th sample of the 3rd class

Second
(a)

N
or

m
al

iz
ed

 A
m

pl
itu

de

( b )( b )

The 3rd sample of the 4th class

Second
(b)

N
or

m
al

iz
ed

 A
m

pl
itu

de

 
Fig.3. The preprocessing results of different classes (a)    

The 6th sample of the 3rd class, (b) The 3rd sample 
of the 4th class. 
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obtained from the signals by means of an 
algorithm called sifting process. This algorithm 
extracts locally for each mode the highest 
frequency oscillations out of the original signals.  
 
3.1 Sifting Procedure
 

Given a one-dimensional signal X , the 
sifting process to find the IMFs is summarized as 
follows [11]:  
(1) Initialization: 
   Set  (the residue) and set 0r X= 1i =   

( index number of IMF). 
(2) Extracting the  IMF component: thi

(a) Initialize . 0 1  and   1−= =i ih r j
(b) Find all the points of local maxima, and all 

the points of local minima in .  1−ijh
(c) From the input signal , create the 

upper envelope of local maxima, denoted 
by , and the lower envelope of 

local minima, denoted by 

1−ijh

1max −ij

1min −ij , by 
interpolation. 

(d) Calculate the mean of the upper and the 
lower envelopes by 

 
1 1 1(max min ) 2− − −= +ij ij ijm          (2) 

 
(e) Update:  , then 1−= −ij ij ijh h m 1− 1j j= + ,  
(f) Calculate the stopping criterion (standard 

deviation  as defined hereinafter) SDij

(g) Repeat step (b) to (f) until MAXSD SDij ≤ , 

where the  is usually set between 
0.2 and 0.3, and then set 

MAXSD
=ic hij

i

1

 (  

means the IMF) 
ic

thi

Once the first set of ‘sifting’ results in an 
IMF, defined by , this first IMF 
component contains the finest spatial scale in the 
signal. Then the first residue, , of the signal can 
be generated by subtracting out , 

1 1= jc h

1r

1c 1 0= −r r c . 
The residue now contains information about large 
scales. The other IMFs can be computed by 
performing the resifting to find additional 
components 2 1 2= −r r c ,…, . The 
original signal can then be reconstructed, using 
the following equation  

1−= −n nr r cn

 

1
( )

=

= +∑
n

i
i

nX c r                    (3) 

 
To stop the sifting process, a criterion needs to be 
determined. This can be accomplished by limiting 
the standard deviation (SD), computed from two 
consecutive sifting results given by 

 
2

( 1)
2

1 ( 1)

( ) ( )
SD

( )
−

= −

⎡ ⎤−
⎢ ⎥=
⎢ ⎥
⎣ ⎦

∑
K

i j ij
ij

k i j

h k h k
h k

      (4) 

 
Figure 4 shows a simulated example of an 
iteration of sifting process by EMD 
decomposition, where the analyzed signal on 
Figure 4(c) is composed of two sinusoidal waves 
with two frequencies. Low frequency is shown in 
Figure 4(a) and high frequency is shown in Figure 
4(b). Figure 4(d) displays the lower envelope and 
Figure 4(e) shows the upper envelope. The mean 
envelope is demonstrated in Figure 4(f) which is 
computed from Equation (2). Figure 4(g) shows 
the integration of the upper envelope, the lower 
envelope and the mean envelope. Finally, the first 
IMF is obtained and shown in Figure 4(h) and the 
first residue is shown in Figure 4(i). (3) Update the residue , 1−= −i ir r c

From Figure 4, the EMD algorithm extracts 
the oscillatory mode that exhibits the highest local 
information from the data (“detail” in the wavelet 
context), leaving the remainder as a “residue” 
(“approximation” in wavelet analysis). According 
to the major advantage of EMD that the process of 
deriving the basis functions is empirical, the basis 
functions are derived dynamically from the signal 
itself. As shown in Figure 4, the EMD approach is 
used to denoise  the noisy acoustic backscattered  

(4) Repeat steps (2) to (3) with  until the 
number of extrema in  is less than 2. 

1i i= +
ir

Note that the interpolation method usually 
used is the cubic spline interpolation [11, 13]. 

 
 
3.2 Finding all the IMFs 
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Fig.4. A simulated example for an iteration of the sifting process by EMD decomposition (a) Low 
frequency of the analyzed signal on (c), (b) High frequency of the analyzed signal on (c), (c) 
The analyzed signal simulated, (d) The lower envelope, (e) The upper envelope, (f) The mean 
envelope, (g) The integration of the upper envelope, the lower envelope and the mean 
envelope, (h) The first IMF, (i) The first residue. 
ignals and greatly improve the SNR. Therefore, it 
s reasonable to consider that the residue presents 
he basic characteristics of the signal and the 
etail denotes the variation of the noise 
epresented by the highest local information. That 
s, we use the EMD as a low-pass filter and only 
he distinct signal characteristics (the residue of 
MD) are utilized as discriminating features for 
ccurate signals recognition. 

 
.3 Feature Vector 

 

For the normalized acoustic signal, the 
sequences are formed to the 1-D vector   
represented by 

 
 

 
1 2{ ,  ,  ,  ,  }= jV v v v vL L n           (5) 

  
where  defines the position of the vector , 
and  is the number of total components, herein, 

jv V
n

40000n = . Features from the EMD residue of 
the 1-D vector  can be obtained by NV
 

1 2{ ,  ,  ,  ,  }=m m m m m
j nR R R RR L L      (6) 
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where  represents the  residue of the 
EMD results and 

mR thm
m
jR  denotes the feature from 

the  position of the thj mR . In our experiments, 
the feature vector consists of 40000 components.  

 
IV. MATCHING AND 

RECOGNITION 
 

The main goal of acoustic signals recognition 
is to match the unknown acoustic feature with 
those known acoustic feature classes in the 
database and determine whether the unknown 
feature comes from the authentic one or the 
imposter. The matching process is to be made 
with the unknown feature, which will be 
calculated depending on different metrics. The 
different similarity measures used as the matching 
criterion are 
1. The mean of the Euclidean distance (MED) 

measure: 
 

2
1

1

1( ,  ) 1 ( )
=

= − −∑
M

i i
i

d p q p q
M      (7) 

        
where M  is the dimension of the feature 
vector, ip  is the  component of sample 
feature vector, and  is the  component 
of unknown sample feature vector. 

thi

iq thi

2. The cosine similarity measure: 
 

2 ( ,  ) = •
p qd p q
p q

                (8) 

 
where  and  are two different feature 

vector, and 

p q
•  indicates the Euclidean norm. 

The range of •
p q
p q

 is [0 . The more 

similar the two vectors are, the bigger the   
 value is. 

,  1]

2 ( ,  )d p q
3. The correlation coefficient (CC) measure: 

             

 
2 2

( )( )

( ) (

− −
=

− −
∑

∑ ∑
i i

i i

p p q q

)p p q q
CC     

(9)           
where p  and q  are the mean values of the 
database sample feature vector and the 
unknown sample feature vector, respectively. 
The peak correlation coefficient value equals 
one when the two signals are completely 
identical.  

 
V. EXPERIMENTAL RESULTS  

 
This section describes the experimental 

results obtained from the experiments performed 
at the proposed approach. Before the results are 
presented, we will introduce the adopted database 
and the verification (identification) scheme for an 
acoustic signal recognition system. Our available 
data relate to underwater sounds of the different 
speed of the different vessels. They consist of 
selected extracts from lengthy recordings taken in 
real life conditions in the ocean, using the 
hydrophone placed several meters beneath sea 
level. The recording apparatus sampled the sound 
at the 11025 Hz with 16-bit resolution, and thus 
the volume of raw data is considerable. The 
sampling rate is over twice the highest frequency 
of the signals that we potentially wish to identify, 
so there are few aliasing problems. The 
experiments conducted below are running on the 
computing environment of 1.8 GHz PC with 736 
MB RAM using Matlab 6.5.  

Figure 5 shows the results of seven times 
EMD decomposition, computed from Equation 
(3), for two samples of the same acoustic signal. 
Figure 6 shows the same for two samples of the 
different acoustic signals. The top upper part, X, 
is the normalized original signal, and the 
bottom part, , is the seventh residue. In this 
work, we choose the three different residues as 
feature sequences. Herein, two sets of feature 
sequences with their original length that are the 
first residue displayed in Figure 7(a) and 7(b). 
For easy comparison, Figure 7(c) and 7(d) show 
only the first 1024 components of Figure 7(a) 
and 7(b), respectively. Figure 7(e) and 7(f) 
show only the first 128 components of their 

7r
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original feature sequences. Figure 8 
demonstrates the EMD results of two samples 

from two different acoustic signals. Same as 
Figure 7 ,  Figure  8(c) -  8(f)  present  the   
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Fig.5. EMD decomposition results, obtaining IMFs and 
residue, of two samples from the same class,  
(a) and (b) are two sets of 7 times decomposition 
sequences with their original length where X is 
the normalized original signal and  is the 77r th 
residue. 

 
corresponding EMD results for the first 1024 and 
128 components of Figure 8(a)  and 8(b), 
respectively. To demonstrate the similarity of two 
acoustic signals from the same class captured at 
different time, it is easily proved by checking 
those corresponding circles marked in Figure 7(e) 
and 7(f). Also, those circles marked in Figure 8(e) 

and 8(f) point out the differences of two samples 
from two classes. 

Furthermore, we use the data to test the 
recognition performance.  Figure 9  shows  the 
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Fig.6. EMD decomposition results, obtaining IMFs and 
residue, of two samples from the different 
classes, (a) and (b) are two sets of 7 times 
decomposition sequences with their original 
length where X is the normalized original signal 
and  is the 77r th residue. 

 
recognition results using the first residue as the 
feature, Figure 10 displays the recognition results 
using the second residue as the feature, and Figure 
11 demonstrates the results using the third residue 
as the feature. Note that they all use three 
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similarity measures from Equation (7) to (9). As 
shown in Figure 9, Figure 10, and Figure 11, the 
same class demonstrates the highest peak, and the 
different class shows the lowest values. However, 

as shown in Figure 11, while using the third 
residue as the feature and the MED metric as the 
similarity  measure ,  the achieved  recognition  

(b)(b)(a)(a)

(c)(c) (d)(d)

(e)(e) (f)(f)

1  r

1  r

1  r

1  r

1  r

1  r

The 4th sample of the 20th class

The 4th sample of the 20th class

The 4th sample of the 20th class

The 7th sample of the 20th class

The 7th sample of the 20th class

The 7th sample of the 20th class

Sample serials n
(a)

Sample serials n
(f)

Sample serials n
(e)

Sample serials n
(d)

Sample serials n
(c)

Sample serials n
(b)

 
 Fig.7.EMD decomposition results of two samples from the same class, (a) and (b) are two sets of 

feature sequences with their original length, (c) and (d) show the first 1024 components of 
the original features, (e) and (f) show the first 128 components of the original features. 
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performance is not good. Hence, the MED metric 
is not suitable for measuring the similarity of the 
EMD feature. The other metrics demonstrate 
promising performance in the recognition results. 

 

 
VI. CONCLUSIONS 
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 Fig.8.EMD decomposition results of two samples from two classes, (a) and (b) are two sets of 

feature sequences with their original length, (c) and (d) show the first 1024 components of 
the original features, (e) and (f) show the first 128 components of the original features. 
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In this paper, an effective method for 
acoustic signals recognition is presented, which 
operates the Empirical Mode Decomposition 
(EMD) technique. The performance of signals 
recognition achieved by the EMD approach 
associated with three different similarity measures 
has been evaluated. Experimental results have 
shown eminent performance. The cosine 
similarity measure and the correlation metric have 
achieved similar performance. Therefore, the 
proposed method has demonstrated to be 
promising for acoustic signals recognition and 
EMD is suitable for feature extraction. In the 
future, we will conduct more experiments on 
intraclass and interclass comparison to evaluate 
the proposed algorithm. We are also working at 
increasing the database in order to further verify 
the performance. 
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Recognition Results of EMD method by the 1st residue

 

Fig.9. Experimental results using the first residue of 
EMD as the feature and three similarity metrics. 
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Recognition Results of EMD method by the 2nd residue

 

 
Fig.10. Experimental results using the second residue 

of EMD as the feature and three similarity 
metrics. 
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Recognition Results of EMD method by the 3rd residue

 
 
Fig.11. Experimental results using the third residue of 

EMD as the feature and three similarity metrics.  
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