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Using Empirical Mode Decomposition for
Underwater Acoustic Signals Recognition
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ABSTRACT

Due to the non-linear and time-varying properties, to process and analyze underwater acoustic
signals becomes very difficult and complicated. Fourier transform is only suitable for analyzing
stationary signals, but not appropriate for the detection of short time and transient signals embedded in
the underwater acoustic signals. Based on the property of multi-scale and multi-translation, wavelet
transform can be used for analyzing transient signals. Although the scale and translation parameters in
the wavelet basis functions can be adjusted for different signals, the basis functions are fixed, same as
the basis functions of Fourier transform. Hence, the requirements of analyzing time-vary underwater
acoustic signals are not satisfied. The algorithm of empirical mode decomposition provides a useful
analysis scheme for non-linear and non-stationary nature signals. In this work, empirical mode
decomposition method is design to extract the features from underwater acoustic signals for
recognition. In the experiments, we utilize the data set of different ship classes recorded by the
hydrophone to test the proposed scheme. Experimental results demonstrate the robustness of the
proposed method.
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I. INTRODUCTION

Recently, the classification problem of
underwater  targets from  the  acoustic
backscattered signals has attracted a lot of
attention. These signals consist of passive sonar
signals radiated from various vessels as well as
underwater transients such as whale clicks,
porpoise whistles and ice crackles, etc. Each type
of signals has distinct characteristics, and is
conventionally identified by human experts either
by listening to or by looking at the spectrograms
of the proposed sonar signals. The work [1] on the
modeling of the underwater signals radiated from
ships has led to the conclusion that the signal
sources can be divided into three captions:
machinery signals, propeller signals, and
hydrodynamic signals. Machinery signals are
produced from the diverse parts of a moving ship,
such as pumps, pipes, and motor armature, etc.
Propeller signals create tonal components in
addition to the continuous spectrum of cavitation
signals. Hydrodynamic signals consist of
Gaussian signals generated from the hull of the
vessel and flow signals similar to the ambient
signals in the ocean. Hence, the spectrum of the
radiated signals consists of two types. First one is
the narrow band with a discontinuous spectrum
containing line components occurring at discrete
frequencies. The other one is the broad band with
a continuous spectrum. Radiated signals from
ships include a mixture of these two types of
signals. The tone is an important feature for ships ,
so to extract tonal features from mixed spectra is
effectively a key task for the recognition of
acoustic signals.

Various schemes of signal processing [2-10]
have been proposed to extract signatures of
submerged targets from the narrow band of sonar
data mainly for detection purposes. Fourier
transform is used to analyze and detect the sound
signals in many approaches. Although this
transform is extremely useful and well established,
it does have principal difficulties in analyzing
short-time transient sound behaviors. Assorted
short-time Fourier transforms (STFT), using a
variety of “windows” with different relative
advantages, have been developed to address this
problem [2]. Furthermore, alternatives to the
STFT with better time-frequency localization
have been also suggested. Cohen [3] devised a

time frequency distribution by composing
spectrums at different time intervals, which has
been studied as the characterization using the
Wigner-Ville distribution [4] and its variants.
Such distribution describes the energy or intensity
of a signal simultaneously in time and frequency,
and is also a powerful tool for the analysis of
non-stationary signals. Those time-frequency
approaches have been extensively reviewed [5,6].

The potential uses of applying the wavelet
transform for statistical problems have been
discussed and developed [7,8]. They have
demonstrated the appropriate threshold values on
the coefficients resulting from the wavelet
decomposition and a function of unknown
smoothness can be recovered from sampled data
contaminated with white noise. Subsequently,
their idea has been used by various researchers to
uncover useful structural information from
complex noisy datasets. Such thresholding
techniques are essentially concerned with the
recovery of “smooth” features against a
background that is often assumed to be “white” or
“colored” noise. Similar to those methods, the
approach [9] is applied to data from an entirely
different arena for different purposes. The wavelet
transform is used and then the kernel smoothing is
applied to the coefficients in each resolution level
to produce useful results from the data set. Apart
from those approaches using the wavelet
transform, Johnstone and Silverman [10] have
developed a “level-dependent” thresholding
approach for data with correlated noise.

To recognize passive tonal signals radiated
from ships and propagated through an ocean
environment at various speeds is crucial for the
processing stages. Traditionally, basis
decomposition techniques such as Fourier
decomposition or wavelet decomposition are
selected to analyze real world signals as
mentioned in the previous paragraph. Also,
Fourier and wavelet descriptors have long been
used as powerful tools for feature extraction.
However, the main drawback of those approaches
is that the basis functions are fixed and do not
necessarily match the varying nature of signals.
The empirical mode decomposition (EMD) was
firstly proposed by Huang et al. [11], with which
any complicated data set can be decomposed into
a finite and often small number of intrinsic mode
function (IMF) components, which become the



basis representing the data. Those extracted
components can match the signals themselves
very well. Motivated by that EMD provides a
decomposition method to analyze the signals
locally and separate the component holding
locally the highest frequency from the rest into a
separate IMF, in this paper, we adopt the EMD
technique to extract the feature of the underwater
targets. The first advantage of this technique is
that EMD is a fully data driven method, and does
not use any predetermined filter as Fourier basis
or wavelet function does. The second one is that it
can be easily implemented and the speed of
matching time can be improved. Therefore, here
the EMD approach is design to extract residual
components of the underwater targets as the
discriminative features for recognition.

1. PREPROCESSING OF
ACOUSTIC SIGNALS

The selection of a suitable database is critical
to verify the robustness of a classification
methodology. It was recognized that the acoustic
database, as it stands, is limited in its applications
for developing and comparing specific
classification algorithms. However, as will be
discussed next, these limitations can be mitigated
by 1. removing certain artifacts; 2. appropriate
signals scaling; and 3. normalization. These
modifications create an effective database that can
be used to investigate challenging classification
problems. The entire preprocessing procedure
consists of the following steps that are
implemented in order:

1. Artifact removing: The length of the data set is
recorded for 60 seconds and the sampling rate
is 11025 Hz. Hence, the signal size is 661500
points. Artifact removing is done by extracting
the middle part of 40 seconds from data.

. Resampling: The original sampling rate is
significantly higher than the signal bandwidth.
This step is to reduce the sampling rate to 1000
Hz and make the signal size down to 40000
points. The data is denoted by X for further
uses.

. Normalization: the linear rescaling [12] is
applied to each vector to adjust the average of
each data set to zero and to normalize the
standard deviation to unity before using the
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acoustic signal vector. By calculating the mean
X and variance o with respect to the spatial
template, the linear rescaled version of X is
represented by X" given by

X -X
XN = ={><1N,X2N,-~-XP1""X:I} (1)
n
where the mean X=X /n and
j=1
the variance o7 =" (x, - x)* /n-1
j=1
Figure 1 shows the results of the
preprocessing procedure using the same sample
from one class. Figure 2 displays the

preprocessing results for different samples of the
same class, and Figure 3 reveals the preprocessing
results of different classes.

1. FEATURE EXTRACTION
USING EMPIRICAL MODE
DECOMPOSITION

Joint space-spatial frequency representations
have received special attention in the fields of
image and signal processing, feature extraction
and pattern recognition. Huang et al. [11]
introduced a multi-resolution decomposition
technique: the empirical mode decomposition
(EMD), which is adaptive and appears to be
suitable for non-linear, non-stationary data
analysis.

Different applications as medical and seismic
signals have shown the effectiveness of this
method. The most attractive one among the facts
is that EMD acts as dyadic filter banks [13]. The
principle is to adaptively decompose a given
signal into components called intrinsic mode
functions (IMFs) by satisfying two properties.
One is that the numbers of extrema and
zero-crossing must equal. Another property of
IMF is that the mean value of the envelope
defined by the local maxima and the local minima,
respectively, is locally symmetric around the
envelope mean. Those IMF components are
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obtained from the signals by means of an
algorithm called sifting process. This algorithm
extracts locally for each mode the highest
frequency oscillations out of the original signals.

3.1 Sifting Procedure

Given a one-dimensional signal X , the
sifting process to find the IMFs is summarized as
follows [11]:

(1) Initialization:
Set r,=X (the residue) and set i=1
( index number of IMF).

(2) Extracting the ith IMF component:
(a) Initialize h,=r_, and j=1.

(b) Find all the points of local maxima, and all
the points of local minima in h, .

(c) From the input signal hH, create the
upper envelope of local maxima, denoted
by max; , , and the lower envelope of
local minima, denoted by miniH, by

interpolation.
(d) Calculate the mean of the upper and the
lower envelopes by

m;_,= (max;_;+min, ;) /2 (2)

(e) Update: hy =h,, —m;, ,then j=j+1,

(f) Calculate the stopping criterion (standard
deviation SD;; as defined hereinafter)

(9) Repeat step (b) to (f) until SD; <SD,,y
where the SD,,, is usually set between
0.2 and 0.3, and then set ¢ =h, (¢
means the ith IMF)
(3) Update the residue 1, =r,_, —¢C,
(4) Repeat steps (2) to (3) with i =i+1 until the
number of extrema in T, is less than 2.
Note that the interpolation method usually
used is the cubic spline interpolation [11, 13].

3.2 Finding all the IMFs
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Once the first set of ‘sifting’ results in an
IMF, defined by (:l:hlj , this first IMF

component contains the finest spatial scale in the
signal. Then the first residue, I, of the signal can

be generated by subtracting out c, r,=r,—C.

The residue now contains information about large
scales. The other IMFs can be computed by
performing the resifting to find additional

components r, =1, —C, ,..., I, =I,,—C, . The
original signal can then be reconstructed, using
the following equation

X =3 (c)+, @

To stop the sifting process, a criterion needs to be
determined. This can be accomplished by limiting
the standard deviation (SD), computed from two
consecutive sifting results given by

<Ry () =y (0
SD. =
P TN “

Figure 4 shows a simulated example of an
iteration of sifting process by EMD
decomposition, where the analyzed signal on
Figure 4(c) is composed of two sinusoidal waves
with two frequencies. Low frequency is shown in
Figure 4(a) and high frequency is shown in Figure
4(b). Figure 4(d) displays the lower envelope and
Figure 4(e) shows the upper envelope. The mean
envelope is demonstrated in Figure 4(f) which is
computed from Equation (2). Figure 4(g) shows
the integration of the upper envelope, the lower
envelope and the mean envelope. Finally, the first
IMF is obtained and shown in Figure 4(h) and the
first residue is shown in Figure 4(i).

From Figure 4, the EMD algorithm extracts
the oscillatory mode that exhibits the highest local
information from the data (“detail” in the wavelet
context), leaving the remainder as a “residue”
(“approximation” in wavelet analysis). According
to the major advantage of EMD that the process of
deriving the basis functions is empirical, the basis
functions are derived dynamically from the signal
itself. As shown in Figure 4, the EMD approach is
used to denoise the noisy acoustic backscattered
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signals and greatly improve the SNR. Therefore, it
is reasonable to consider that the residue presents
the basic characteristics of the signal and the
detail denotes the variation of the noise
represented by the highest local information. That
is, we use the EMD as a low-pass filter and only
the distinct signal characteristics (the residue of
EMD) are utilized as discriminating features for
accurate signals recognition.

3.3 Feature Vector

For the normalized acoustic signal, the
sequences are formed to the 1-D vector
represented by

VAR

J 'V

V={v, v,, 3

()
where v, defines the position of the vector V,

and N is the number of total components, herein,
N=40000. Features from the EMD residue of

the 1-D vector V" can be obtained by

R"={R", R, --R", -, R"} (6)



where R™ represents the mth residue of the
EMD results and ij denotes the feature from

the jth position of the R™. In our experiments,
the feature vector consists of 40000 components.

IV. MATCHING AND
RECOGNITION

The main goal of acoustic signals recognition
is to match the unknown acoustic feature with
those known acoustic feature classes in the
database and determine whether the unknown
feature comes from the authentic one or the
imposter. The matching process is to be made
with the unknown feature, which will be
calculated depending on different metrics. The
different similarity measures used as the matching
criterion are
1. The mean of the Euclidean distance (MED)

measure:

d,(p, q):l—\/&Z(p,—qi)z (M

where M is the dimension of the feature
vector, p, is the ith component of sample

feature vector, and @ is the ith component
of unknown sample feature vector.

2. The cosine similarity measure:
P_d
d,(p, O) =7 (®)
2 [l ol

where p and q are two different feature
vector, and ||0|| indicates the Euclidean norm.

P

q

o ——
[l Jal
similar the two vectors are, the bigger the

d,(p, ) valueis.
3. The correlation coefficient (CC) measure:

The range of is [0, 1]. The more
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Z(pi B E)(qi _q)

2 (e P2 (a-a)
(9)
where P and @ are the mean values of the
database sample feature vector and the
unknown sample feature vector, respectively.
The peak correlation coefficient value equals
one when the two signals are completely
identical.

CC

V. EXPERIMENTAL RESULTS

This section describes the experimental
results obtained from the experiments performed
at the proposed approach. Before the results are
presented, we will introduce the adopted database
and the verification (identification) scheme for an
acoustic signal recognition system. Our available
data relate to underwater sounds of the different
speed of the different vessels. They consist of
selected extracts from lengthy recordings taken in
real life conditions in the ocean, using the
hydrophone placed several meters beneath sea
level. The recording apparatus sampled the sound
at the 11025 Hz with 16-bit resolution, and thus
the volume of raw data is considerable. The
sampling rate is over twice the highest frequency
of the signals that we potentially wish to identify,
so there are few aliasing problems. The
experiments conducted below are running on the
computing environment of 1.8 GHz PC with 736
MB RAM using Matlab 6.5.

Figure 5 shows the results of seven times
EMD decomposition, computed from Equation
(3), for two samples of the same acoustic signal.
Figure 6 shows the same for two samples of the
different acoustic signals. The top upper part, X,
is the normalized original signal, and the

bottom part, r,, is the seventh residue. In this

work, we choose the three different residues as
feature sequences. Herein, two sets of feature
sequences with their original length that are the
first residue displayed in Figure 7(a) and 7(b).
For easy comparison, Figure 7(c) and 7(d) show
only the first 1024 components of Figure 7(a)
and 7(b), respectively. Figure 7(e) and 7(f)
show only the first 128 components of their
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Fig.5. EMD decomposition results, obtaining IMFs and
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the normalized original signal and I, is the 7™

residue.

corresponding EMD results for the first 1024 and
128 components of Figure 8(a) and 8(b),
respectively. To demonstrate the similarity of two
acoustic signals from the same class captured at
different time, it is easily proved by checking
those corresponding circles marked in Figure 7(e)
and 7(f). Also, those circles marked in Figure 8(e)

from two different acoustic signals. Same as
Figure 7, Figure 8(c)- 8(f) present the

and 8(f) point out the differences of two samples
from two classes.

Furthermore, we use the data to test the
recognition performance. Figure 9 shows the
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Fig.6.

recognition results using the first residue as the
feature, Figure 10 displays the recognition results
using the second residue as the feature, and Figure
11 demonstrates the results using the third residue
as the feature. Note that they all use three



similarity measures from Equation (7) to (9). As

shown in Figure 9, Figure 10, and Figure 11, the

same class demonstrates the highest peak, and the

different class shows the lowest values. However,
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as shown in Figure 11, while using the third
residue as the feature and the MED metric as the
similarity measure, the achieved recognition
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Fig.7.EMD decomposition results of two samples from the same class, (a) and (b) are two sets of
feature sequences with their original length, (c) and (d) show the first 1024 components of
the original features, (e) and (f) show the first 128 components of the original features.
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performance is not good. Hence, the MED metric
is not suitable for measuring the similarity of the
EMD feature. The other metrics demonstrate
promising performance in the recognition results.
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the original features, (e) and (f) show the first 128 components of the original features.
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The Results of Three Metrics

In this paper, an effective method for
acoustic signals recognition is presented, which
operates the Empirical Mode Decomposition
(EMD) technique. The performance of signals
recognition achieved by the EMD approach
associated with three different similarity measures
has been evaluated. Experimental results have
shown eminent performance. The cosine
similarity measure and the correlation metric have
achieved similar performance. Therefore, the
proposed method has demonstrated to be
promising for acoustic signals recognition and
EMD is suitable for feature extraction. In the
future, we will conduct more experiments on
intraclass and interclass comparison to evaluate
the proposed algorithm. We are also working at
increasing the database in order to further verify
the performance.

1 Recognition Results of EMD method by the 1% residue
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Fig.9. Experimental results using the first residue of
EMD as the feature and three similarity metrics.
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Fig.10. Experimental results using the second residue
of EMD as the feature and three similarity
metrics.

. Recognition Results of EMD method by the 3" residue

The Results of Three Metrics

Class Mumber

Fig.11. Experimental results using the third residue of
EMD as the feature and three similarity metrics.
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