

作者 陸軍通信電子資訊學校中校主任教官 陳高智

要】】

- 一、「網狀化作戰」(Network Centric Warfare)之目標在於獲取正確而且一致 之「戰場覺知」(Situation Awareness, SA),以增進指揮速度,加快作戰 節奏,增強殺傷力,強化存活力,並降低風險與成本。其中最重要的憑藉 就是「共同作戰圖像」(COP)的建立。
- 二、本文將先說明「共同作戰圖像」之設計及運作架構,並建議本軍在建立地 面指管共同圖像時,有關通資基礎作業環境之各項應精進之處,提出建立 地面共同作戰圖像時所應有之基礎作業環境架構,冀可作為本軍爾後之參 考。

關鍵詞:共同作戰圖像、地面共同作戰圖像、陸軍共同作戰圖像、通資基礎架 構

前

一、研究動機

由於通資科技的進步,軍事武器投射 距離愈打愈遠、愈打愈準, 武器穿透與殺 傷威力愈來愈隨心所欲,加上各種監偵裝 備可蒐集的情資範圍愈來愈廣、數量及種

類愈來愈多,指揮官面對戰場複雜度與時 間的挑戰,也愈來愈嚴峻。

戰場各級指揮官所面對的不僅是當前 區域性戰場場景,並且亦須能正確且一 致的掌握全般戰場狀況。也就是必須建 立正確且一致的「戰場覺知」(Situation Awareness, SA);達成正確且一致的戰 場覺知,最重要的憑藉就是「共同作戰圖 像」(COP)的建立。

「共同作戰圖像」乃倚靠通信及資訊 科技,同步各級作戰指揮管制、整合不 同來源之作戰情資、統一運用各種武器載 臺,並利用「圖像」展現「一致的戰場覺 知」,進而有效及快速的提供指揮官決心 所需資訊,以加快作戰節奏、獲取資訊優 勢,達成克敵勝敵之目標。

本軍目前作戰情資傳遞多倚靠語音及 譯電通信。面對「共同作戰圖像」之需求 及有限之國防預算,如何有效規劃並投資 所需之通資軟、硬體建設,以構建「共同 作戰圖像」所需之基礎通資作業環境,實 應建立整體架構觀念,以作為未來投資與 採購之參考。

二、背景

本軍為達成單一的作戰需求,分別採 購與建置了多項武器與指管系統。但由 於建置時並未整體考量與其他武器及指管 系統整合,所以無法正確且有效的分享情 資,肇至形成多個「各自獨立無法同步分 享情資之指管或武器系統」。

本文以建立「共同作戰圖像」通資架構為根基,考量陸戰環境之特殊需要與限制因素,試圖建議地面共同作戰圖像基礎作業環境之參考架構,以作為本軍未來投資與精進C⁴ISR建設之基礎。

共同作戰圖像之運作方式

一、數據鏈路

數據鏈路為「共同作戰圖像」網路設計之基礎,也可以說「共同作戰圖像」通 資架構網路是依據數據網路運作之方式而 設計。所以若要瞭解共同作戰圖像之運作,首先就必須先瞭解數據鏈路。

作戰首重通信,但是通信並非僅有通 與不通,而是具有多個「通」的層次。

若只是通信機彼此間「訊號相通」 (如陸區網路「IMSE」),則僅是通信 的最基本層次。能「有效交換」彼此的 情報及訊息,將此情資傳遞給需要的作 戰單位或作戰載臺,「共享」友軍間之情 報及判斷,藉由彼此間之判斷,使戰場指 揮官及作戰載臺間達到「共同戰場覺知」 (Situation Awareness, SA),才是作戰通 信「通」之目標。

數據鏈路就是為此一作戰通信「通」 之目標而設計,其組成不僅是通信部分 (如無線電機之射頻),亦包含了既可為 足作戰所需,並可「有效交換」訊息之 整訊息格式定義。各作戰中心、監偵系統 及武器載臺之資訊系統,處理數據鏈路所 需傳遞及接收之訊息,「共享」彼此之情 資,建立一致之「共同戰場覺知」,進而 增進作戰之效能。

數據鏈路種類非常多,其中「Link-16」為美海軍、聯合軍種及北大西洋公約組織(NATO)所屬部隊採用之新一代鏈路,1994年已正式服役於美海軍。在戰術鏈路資訊交換的基本概念下,「Link-16」與使用多年的「Link-11」及「Link-4A」並無顯著地不同,比現行使用的戰術資料鏈路提供更多技術及作戰上的功能①。

以下以「Link-16」設計及運作原理,分別說明數據鏈路之「通信連線」、「信息交換」、「情資共享」及「共同戰

註❶:王淇,《認識Link-16》,1998年,頁3-1。

場覺知」之運作方式。

一通信連線

使用UHF之Lx頻段(960~ 1215MHz),也就是表示是使用直線波 之視距通信(Line of Sight, LOS),雖其 通信範圍有標準模式300浬/nm(556公里 /km) 或延伸距離模式500浬/nm (926公 里/km),但是此為空對空之通信範圍。 在地面作戰時,受天線高度、地球曲度及 地形影響,實際上地面通信距離約40公里 **2** °

除使用51個不同的頻率跳頻 (Frequency Hopping, 每秒達「76,923」 跳)及展頻技術(Spread Spectrum,產生 與環境背景波相近之脈波)外,另配合 傳輸加密技術 (T-SEC)、訊息加密技術 (M-SEC) 及相同訊息波二次傳送等技 術,被干擾及被偵知困難,通信安全性及 可靠性高。

採分時多工(Time Division Multiple Access, TDMA)的技術,將定 義每「12.8分鐘」為一大週期(稱之為 「Epoch」),每一週期再區分為64個 時間框(Frame),每一個時間框再細 分為1536個時槽(Time Slot, TS),以 時槽為單位,「預先設計」每部載臺之 「Link-16」通信機何時可傳送及接收資 訊,整個數據鏈路網路有如一「整體同 步」之通信系統。

相較於「Link-11」有一網路控制 中心 (Net Control Station, NCS) 統一控 制與分送鏈路資料。「Link-16」採無節 點設計,也就是不會因任何節點(Joint Unit, JU)被破壞,即造成部分或全部數 據鏈路癱瘓或無法使用。

仁信息交換

為對抗惡劣之作戰環境,就必須摒 除不必要傳送的多餘資訊(如重複之表 頭),將珍貴頻寬應用來傳遞關鍵之情 資,用最少之頻寬有效傳遞作戰所需之訊 息。

「 L i n k - 1 6 」 頻 寬 約 為 「54kbps」,便是使用統一之訊息標準來 達到有效交換訊息之目標,不論是航跡資 訊、作戰命令及電戰資訊等均可以應用此 一標準傳遞。例如「Mil-6016B」,也稱 為「J訊息」,這些格式經過了多次戰爭 之印證,應可滿足大部分之作戰需求。

(三)情資共享

「Link-16」情資共享之方式類似 本軍各式共波網運作之方式,也就是利用 無線電廣播之特性,使各作戰中心間使用 相同波段來接收或傳送情資。

但不同的是,本軍使用之各式共波 網均以語音或譯電為主。且依使用目的 不同,區分為多個網路,如「對上指揮官 網」、「對下指揮官網」、「對上戰情 網」、「對下戰情網」及接收空軍情資之 「防情臺」等。而「Link-16」網路傳送 及接收均為數據型態之資訊,這些數據資 訊使用「J訊息」格式傳遞包含語音及資 訊等作戰情資及指管命令。

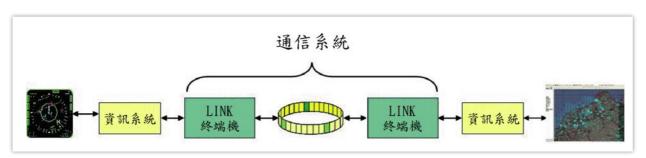
另外「Link-16」數據系統本身 即具備週期性自動回報及傳送情資之能 力,這些情資包含作戰中心或載臺本身 方位(精確位置識別, Precise Participant Location and Identifier, PPLI)、基本戰力 (人、裝、油、彈)及所負責蒐集之敵

註2:同註①,頁3-21。

我航跡資訊(Responsibility Report, RR)等。

不論是作戰指管中心(Command Center, C²)、監偵系統(Sensor),或是武器載臺(Shooter),在「預先規劃」的時槽(Time Slot, TS)內傳送數據資訊,其他只要在視距通信範圍內(LOS)的「Link-16」載臺或作戰中心,均可「同步」分享其傳送之情資。而在視距通信範圍外(Beyond Line of Sight, BLOS)的「Link-16」載臺或作戰中心,亦可藉由「中繼」(Relay)之設計,達成「同步」分享情資之目的。

四共同戰場覺知


達成各作戰單位間的「共同 戰場覺知」(SA),才是作戰通信 「通」之目標。要達到各作戰單位間 的「共同戰場覺知」,除倚靠通信系統 (Telecommunication System)為傳遞手 段外,以先進的資訊系統(Information System)處理通信系統所傳遞的情資訊 息,並據以控制武器或監偵系統,並將 「共同作戰圖像」(COP)展現給指揮官 及相關作戰人員,才是數據鏈路完成「共 同戰場覺知」之完整系統(如圖一)。

依作戰載臺的特性,使用資訊系 統及展現共同圖像之方式可以依據需要 而有所不同。例如空軍「F-16」戰機使用「任務電腦」(Mission Computer)、「紀德艦」使用「艦用戰鬥指揮系統」(Combat Direction System, CDS)、作戰中心使用指管系統(Interoperable C⁴I Services, ICS)。雖然使用之資訊系統不同,但藉由「共同信息格式」,仍能達成各作戰單位間的「共同戰場覺知」之目的。

二、「共同作戰圖像」網路架構

「共同作戰圖像」通資架構網路是依據數據網路運作之方式而設計,數據網路運作之方式而設計,數據獨方重要之目標,這個目標是必須要書。如此,其個學學者(Joint Unit, JU)在「近即時」(Near Real Time)的時間內能收到友軍所傳遞之情資。所謂同時,便收到方式實力,便收到了訊息,以「同步」,便收到了訊息,以「同步」,便收到了訊息,與放之方式,讓友軍儘速收到情資。

「Link-16」載臺依據預先規劃之時槽(TS),以「廣播」之方式傳送各自之情資信息。但首先便有二個問題要克服,一是「Link-16」載臺間之通信限制,另一則是非「Link-16」載臺(地面各指管中心「 C^2 」,及非指管中心「Non

圖一 「共同戰場覺知」之完整系統

資料來源:陸軍司令部,陸軍「共同作戰圖像」巡迴講習簡報,民國96年8月,頁2-37。

C²」)網路之構連。

(一)「Link-16」載臺間之通信限制

「Link-16」載臺間的通信距離雖 然最大可達500浬/nm(926公里/km), 但若考量臺海整體防衛作戰海、空區域, 「Link-16」載臺間的通信仍可能超過此 一通信範圍。另外,此一通信是指「空對 空」通信,事實上,作戰指管中心均在陸 面上、各式監偵及武器載臺也並非盡在空 中,所以「Link-16」載臺間之通信,必 須考量包含空對地、地對地等通信距離及 通信視距之限制因素。另外,針對地面通 信之通信死角,則可利用移動地面中繼車 (Ground Mobile Relay, GMR) 做為解決 方案。

仁)非「Link-16」載臺間之通信

並非所有的作戰單位(JU)均配 備「Link-16」,例如指管中心(C^2 , 如作戰中心)及非指管中心(Non C², 如雷達站)。這些單位有一些位在地 形掩蔽處(如深山內)、另一些則在海 邊。應用「視距通信」之「Link-16」 數據鏈路,必然會有顯著之困難。對於 未配備「Link-16」的單位,則是利用 「有線電傳輸」之「IP群播網路」(IP Multicasting Network) 技術替代「Link-16 無線電傳輸」之方式,使這些單位也可 以傳送及接收「Link-16」數據鏈路之信 息。

陸軍建立共同作戰圖像之 考量因素

當前「網狀化戰爭」(Network

Centric Warfare)之環境下,要建立陸軍 共同作戰圖像要考量之因素很多,以下依 據上一章節討論共同圖像之運作架構,分 別以「通信連線」、「信息交換」、「情 資共享 , 及「共同戰場覺知」之面向, 討 論本軍建立共同作戰圖像之考量因素。

一、通信連線

(一)陸軍裝備多元數量大

本軍現有旅、營、連各級之「通資 傳輸系統平臺」包含戰術區域通信系統 (IMSE)、衛星系統、多波道系統、光 纖系統、有線電系統、高頻及特高頻跳頻 無線電機系統、國軍六碼直撥系統等❸。 裝備種類多,其中摻雜純語音介面、低速 數據介面、高速數據介面等,其介面介接 規格複雜,整合困難。

另一方面,因為陸軍作戰單位多, 數量龐大,若想要更新裝備,特別是制 式軍用通信系統,預算便是最大之限制因 素,進而影響本軍新一代通信平臺之更 新。

二缺乏輕便有效數據傳輸裝備

本軍現有較完整可傳送數據資料之 作戰通信網路 — 「陸區系統」, 架設時 間長且易被偵知。針對陸軍地面機動之環 境需要,通裝系統便於攜行與啟用便是重 要之考量。另外一方面,「陸區系統」僅 建置到旅級指揮部及部分營級單位(如砲 兵營),現有營、連級之通信系統,多以 語音為主,並無可有效傳遞數據之通信裝 備。

(三)缺乏預先規劃「戰術訊號之擷取 點」

註❸:林安雄,〈精進本軍通資平臺之研究〉,陸軍通資電兵96年度戰法研討會論文集,民國96年10月11 日,頁11。

臺澎防衛作戰態勢為「島嶼防衛作戰」,在預劃作戰區域內執行「固安作戰計畫」內之各種戰術作為。既然是預先規劃,作戰中心之選定必然也是預劃之地點,針對這些地點,應可預先建置「戰術訊號之擷取點」(Signal Entry Point, SEP),特別是「有線訊號」,不但頻寬大亦具有較「無線信號」保密之特性。但是基於成本或技術之考量,本軍大部分單位之預劃戰術位置,並未規劃「有線訊號擷取點」。

二、信息交换

在「網狀化作戰」的環境中,統一信息格式化主要之目標有二:一是格式化 息格式化主要之目標有二:一是格式化 意不需傳送不必要之資訊,如表格與 等,以有效利用有限之頻寬;二是統 格式類似於傳遞情資的使用共同溝通 言,可大幅降低友軍各單位交換信息之 雜度,有利共同圖像之達成。但是本軍現 行之作戰計畫、命令及情報資訊等信息傳 遞格式,並未有統一標準。

三、情資共享

(一)作戰資料未結構化

地面作戰需要資料種類多、量大, 且資料作戰時效長。現行作戰相關資料大 部分均以檔案(Files)的形式存在於資訊 儲存媒體,甚或以紙張的形式儲放。不但 尋找特定之資訊不易且容易遺失,更無法 使用先進之資訊技術(例如資訊探勘)輔 助指揮官決策。

(二)情資分享未數據化

本軍目前情資分享之機制,如「指揮官網」、「戰情網」,及接收空軍情資之「防情臺」等,分享之方式仍多以「語音」為主,將無法肆應作戰節奏快速的戰爭型態。例如在「空中密支作戰」時,地面部隊無法將地面情資,以即時數據之方

式傳遞給在空機,極可能導致無效之空中 火力支援,其或發生誤擊友軍之慘事。

(三)軍事網路未有效規劃及統合

四、共同戰場覺知

(一)缺乏自動化之情資傳送及接收系統 本軍各作戰載臺或單位,普遍缺乏 自動化之情資傳送及接收系統。就是指 可自動回報各作戰載臺或單位之情資回 報之系統,回報情資包含作戰載臺或單 位本身之方位、行進速度、行進方向、戰 力(人、裝、油、彈)等,這些均是形成 「共同戰場覺知」(共同作戰圖像)之基 本組成單位。

二指管流程複雜

陸軍之指管流程遠較海、空軍指管 流程冗長且複雜。從各特業參謀之參謀 判斷、作戰計畫頒布,再到作戰命令生效 執行,這過程包含人事、情報、作戰(火 協)、後勤、通信,其中均為「人」之參 與及執行,多變且複雜。這和多數武器均 自動化與數位化之海、空軍,其遂行快速 且明確的指管流程迥然不同。

我們可以觀察美國陸軍為達成 戰場共同覺知所設計的多個系統,如 「全球指揮管制系統——陸軍次系統」 (GCCS-A)、「先進野戰砲兵戰術數位

系統/火協系統」(AFATDS)、「空中 與飛彈防禦工作站」(AMDWS)、「多 重情資分研系統」(ASAS)、「戰鬥勤 務支援系統」(CSSCS)、「旅營級暨以 下部隊戰鬥指揮系統」(FBCB2)等, 這些系統各有不同之應用場景與目的,系 統間相互支援與相互影響,可以一窺陸軍 數位化指管系統之複雜性。

(三)缺乏統一程式存取物件(介面) 軟 體標準

本軍自強調資訊作戰以來,開發了 大大小小的「作戰應用」相關程式,但 除了初期建置的成果宣傳外,大半均無下 文,或是無法繼續發展下去。究其原因, 除部分程式僅注重表面效果外,未考量與 其他相關應用介接,沒有先建立統一程式 存取物件(介面)軟體標準,是造成彼此 無法相容,無法繼續開發下去之主因。

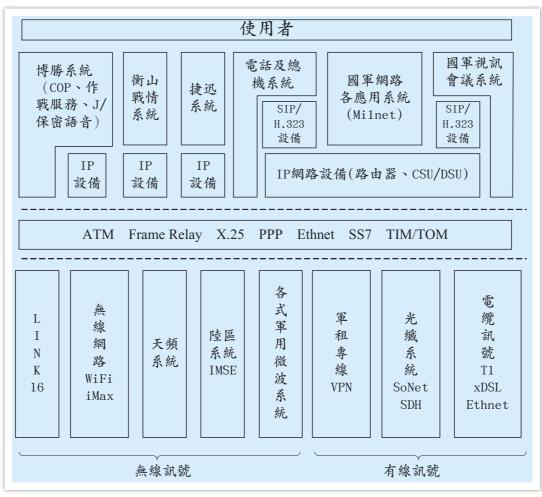
陸軍共同作戰圖像基礎作業環 境架構參考建議

面對各式各樣不同的科技及設備,如 何構建共同作戰圖像,已不再是個別討論 單一科技或特定設備應用之問題,而是在 於如何組合及應用所需之科技與設備,並 結合國軍聯合作戰網路架構,以建構本軍 所需之共同作戰圖像之作業環境。

這是一個大且長期之工程,特別就本 軍之需求與限制而言,更是尚有諸多通 資基礎作業環境架構要整合與建設。雖然 目前本軍使用之通資設備種類眾多,且目 前通資技術應用複雜。但若參考本文說明 之「共同作戰圖像」通資架構系統運作架 構,則臺澎防衛作戰所需共同作戰圖像之 通資基礎作業環境架構幾已成形。

所以,以下段落將依據現有之科技技 術,並參照系統之運作架構,試圖就建立 陸軍共同作戰圖像所需之通資基礎觀念、 作業環境,及整體網路運作架構提出建 議,希可作為後續發展之參考基礎,以避 免投資目標模糊或是重複投資,造成無謂 之人力、時間與金錢之浪費。

一、通信連線


(一)建立通資基本概念

近年來由於資訊科技的引進,有 關資訊「IP網路」之應用亦與日遽增, 加上近年來語音壓縮技術的進步,可將 傳統語音單一對話頻道所需之頻寬,由 原本64Kbps (G.711 PCM),降至僅需 8Kbps (G.729)。「IP網路」更有可能 將傳統語音整合,如「VOIP」(Voice Over IP),形成「全IP網路」(All IP Network) •

所以,「通資整合」已經不再是 一個議題,而是一個事實。「通為體、 資為用」,「通」為包含「IP網路」在內 之通信平臺 — 「Telecommunication」, 「資」為使用者各式應用程式 — [□] Information | °

我陸軍之通信裝備種類很多,傳統 上以語音應用為主。面對各式新、舊型通 信系統、「IP網路」及應用程式,對於其 間之關係常產生混淆。事實上,以本軍使 用之通資系統為例,可將這些系統間之關 係定位如圖二。

例如我們在日常辦公使用各應 用服務系統,如「國軍網頁郵件」 (WebMail),是由「國軍網路」 (MilNet)提供傳輸平臺,「國軍網 路」是由多個IP網路設備(如路由器、 DSU等) 所組成,其所使用之電路主要 是由國軍資通系統 (MICS) 所提供,所 倚靠之傳輸媒介主要為光纖網路、或是 「xDSL」電纜等有線訊號,但亦可能為

圖二 陸軍通資應用架構圖 資料來源:作者繪製

「天頻系統」或是「陸區系統」等無線 訊號。再觀察我們使用之軍用電話,是 相各電話總機提供服務,電話總機間所 開之「IP網路」之「主幹閘道 器」(Trunk Gateway)提供「IP模擬專 線電路」(H.323/SIP),或者直接使用 電路(T1/E&M),所倚靠之傳輸媒介 要同樣為光纖網路、「xDSL」電纜,或 是「軍租電路」等有線訊號,但亦可能為 是「軍租電路」等有線訊號,但亦等無線訊 號。 所以縱使本軍使用之通資設備種類 眾多,但若能清楚本軍使用之通資設備 在本架構圖中之運作方式,則這些通資 系統之整合介接,對目前科技而言已不 是「技術」的問題,而是選用何種設備如 何「組合」及「可不可以」之「策略」問 題。

以陸區系統(IMSE)介接為例, 根據應用方式之不同而有不同之介接 「組合」方式,在電路上可以直接以光 纖「ATM OC3」方式或是四線「T1」 方式介接,在資訊上除「ATM OC3」

或「T1」方式外,亦可直接以雙絞線 (UTP)之「區域網路」方式介接。在 「技術」上介接並非是問題,但是因語 音使用之「ATM」電路型態(AAL)不 同,另外加上對無線電使用之保密等級 (加密方式)亦不同,這兩個因素就會大 大影響其聯合部署應用之方式。

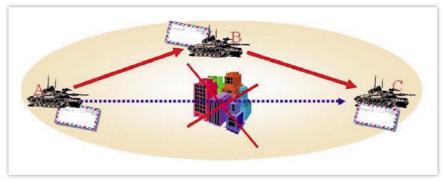
對通資應用基本觀念建立基礎架構 之認識,方可避免在面對目前多樣之通資 設備時產生混淆,進而建立發展本軍「共 同作戰圖像 | 之討論基礎。

仁建構輕便有效之數據傳輸裝備

基於地面之通信易受地形及地物之 影響,且地面作戰須經常機動之特性,數 據傳輸網路連線需要能隨部隊運動而快速 變化(Transforming),並且必須輕便易 於攜行。

直線無線電波通信會受地形地 物之影響,例如適用於高速數據傳輸 之「UHF」直線波,就是受視距通信 (LOS) 之限制。如何能將數據情資快速 有效的傳遞給指管中心及友軍單位,便 是一個大挑戰。以目前網路技術而言,

「隨意網路」(Ad-hoc Network) 是可有效滿足此 一需求之技術。「隨意網 路」之特色是可以自動的 藉由第三者友軍載臺之通 信設備, 傳輸給原本受地 障阻礙之指管中心或友軍 單位(如圖三)。


以美軍建構其「近 距離數據無線網路」 (Near Term Data Radio, NTDR)為例,其網路設計就是依據「移 動式隨意網路」(Mobile Ad-hoc Network, MANET)協定,所發展出之雛形網路系 統(Prototype)。此系統後續發展成為實 戰之產品,如「United Kingdom」公司之 「HCDR」 (High Capacity Data Radio) 4 .

「衛星通信」亦是符合陸戰機動 需要之通信技術。例如美國發展新一 代之數據網路「聯戰節點網路」(Joint Node Network, JNN),此網路乃是被設 計來取代「MSE」(Mobil Subscribers Equipments),通信手段就是「衛星通 信」。

針對本軍陸戰需求而言,另一項重 要的考量便是「架設輕便,易於攜行」。 針對此點,以目前通信裝備製造技術而 言, 並非是太大之問題。

(三)預先規劃建置「戰術訊號之擷取 點 |

我國作戰型態主要為「島內防禦作 戰」,在通信整備上除利用機動用通信 手段外,應要充分先期建置各式「戰術

圖三 AD-HOC網路應用

資料來源:「機動部隊管制系統之行動隨意網路規劃」簡報,中山科學研究院資 訊通信研究所,2002年11月6日,頁6。

註4: http://en.wikipedia.org/wiki/NTDR

訊號之擷取點」,以擷取聯戰戰術情資訊號,如此不但可有效降低投資成本,並可大幅提升戰場通信之「可用度」(Availability)。

本觀念類似「訊號擷取點」 (Signal Entry Point, SEP)之設計概念, 在此類網路設計下不論是何種機動載臺, 或是機動指管中心,只要連接到任一預先 規劃之「訊號擷取點」,在不需改變任一 方之設定組態下,即可擷取聯戰戰術情資 訊號,類似電腦之「插即用」(Plug and Play, PnP)之功能。

所謂「戰術訊號之擷取點」可以是 一型態,例如可能是國軍某一轉報子一型態,例如可能是國軍某本軍某人 與然、天頻系統,甚或是本軍某人 是此對上連線之單位賦號之擷取點」場 是此一戰術,以連接不同戰場 是此形成「網路」以連接不同戰場 之精密規劃及設定後,實戰時僅需 受力 對時不知如何設定之窘境(架構示意 四)。

二、信息交換

將作戰需要傳遞之信息,統一使用預 先規劃之信息格式來傳遞,不但可有效 降低傳輸頻寬之需求,並且可將樽節之頻 寬用來降低被干擾之風險。所以,數據鏈路系統即是使用固定訊息格式標準來傳遞訊息,例如「Link-16」使用「J訊息」、「Link-11」使用「M訊息」等。

另外一方面,本軍發展指管系統時使 用統一之信息格式,將有利未來之整合, 藉由規範指管系統之情資交換格式,可避 免未來整合時訊息格式轉換之困難。

三、情資共享

一建置作戰資料庫

本軍目前儲存作戰資料,例如作 戰命令等,仍採「檔案」(File)形式儲 存,不但不利於以「標準信息格式」傳 輸,亦不利於使用便捷之資訊技術(例如 資訊探勘)輔助指揮官決策。

事實上作戰資料之儲存,必須以「結構化」之方式,儲存在「資料庫管理系統」(Data Base Management System, DBMS)內,也就是所謂「作戰資料庫」。特別是地面作戰,情資時效較長,需要有效之儲存與整理,以利於作戰資長,需要有效之儲存與整理,以利於作戰資料。其他如「人員、裝備、油料、時之應用。其他如「人員、裝備、消費,更是倚靠經常戰備時期之整理與蒐集。所以「作戰資料庫」之規劃與建置對本軍作戰而言,重要性不言可喻。

另外一方面,由於本軍單位層級

圖四 戰術訊號之擷取點架構示意圖

資料來源:作者繪製

多,加上各有不同之作戰範圍與屬性,預 先規劃各單位所需作戰資料庫之「資料分 儲」及「資料備份」,亦是重要之工作。 「資料分儲」就是資料分散儲存,不但可 降低單位儲存資料維護成本、降低被竊奪 之風險,亦可避免在作戰通信中斷時,無 法使用作戰資料庫。「資料備份」則是降 低「單點損壞」風險之有效手段。

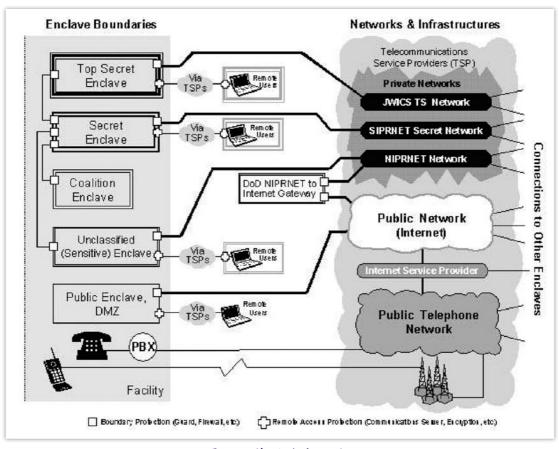
(二)情資分享數據化

縱使在作戰節奏快速的戰爭型態 下,地面部隊對「語音」及「影像」之需 求,仍會佔重要之地位。但是由於現代 戰爭是一場高科技之作戰,在偵搜系統及 武器系統越來越精良的環境下,僅靠「語 音」及「影像」是無法肆應這場數位化之 戰爭。例如敵軍或友軍之目標座標傳遞不 精準,很容易就發生誤擊事件。

本軍目前不論在偵搜及回報工具 上,仍多倚靠「語音」通信。為肆應「網 狀化作戰」型態,積極在偵搜及回報工具 上精進,將情資分享數據化,是本軍必須 努力之目標。

(三)有效統合軍事網路

國軍目前使用之軍事用途網路, 如「國軍網路」(MilNet)、「戰情網 路」、「捷訊網路」等,雖然均是「IP網 路」,但是基於「安全」考量,彼此間是 完全無法通連的。不但造成維護人力及設 備之投資重複,更重要的是造成彼此情資 無法直接分享,而須經「人力轉送」,因 而大幅降低情資傳遞之時效。


以美國政府網路為例(如圖 五),美將指揮所或辦公室依機密等級 不同,區分為若干區域(Enclave): 「公開區域」(Public Enclave/DMZ)、 「非保密區域」(Unclassified/Sensitive Enclave)、「同盟作戰區域」(Coalition Enclave)、「保密區域」(Secret Enclave)及「最高保密區域」(Top Secret Enclave) •

「公開區域」放置對外開放之網 站、「非保密區域」處理一般工作(類 似我國「國軍網路」)、「保密區域」 處理具「機密」級之工作、「最高保 密區域」處理具「最高機密」等級之工 作。其中連結「非保密區域」之網路稱 為「NIPRNET」 (Non-Secret Internet Protocol Router Network)、連結「保密 區域」之網路稱為「SIPRNET」(Secret Internet Protocol Router Network) > 連接「最高保密區域」之網路稱為 「JWICS」 (Joint Worldwide Intelligence Communications System)。值得注意的 是,「NIPRNET」可經由國防部的特 定閘道(Gateway)連接「網際網路」 (InterNet),而在「公開區域」、「非 保密區域」、「同盟作戰區域」、「保 密區域」及「最高保密區域」間,又可 藉由特定之「保護設備」(如防火牆) 互相連接。例如由「NIPRNET」僅可傳 不附加任何附檔電子及加密手段之資訊給 「SIPRNET」、「SIPRNET」則可藉由 「虛擬安全通道」(Tunneling/VPN)之 方式,藉由「NIPRNET」互相連接。

美政府之「NIPRNET」網路在連 接「網際網路」部分,亦對該國資安產生 極大之威脅,我國在思考網路架構上可不 用參考。但在其他區域互相連結部分應 值得我借鏡,因為只要經由特定的資安手 段,不但可以有效降低投資及維運成本, 更可有效分享資訊,進而大幅提升情資傳 遞之時效。

四、共同戰場覺知

(一)建立自動化之情資傳送及接收系統

圖五 美國政府網路

資料來源: Introduction IATF, U.S., National Security Agency, Release 3.1, September 2002, pp.2~4.

本軍各單位及機動載臺,如戰車及各下級指揮中心,在位置及戰力回報上,多仍採語音逐級回報,並未如美國陸軍早在20年前(1987年)即建立陸軍戰場上之位置及戰力自動回報系統(Enhanced Position Location Reporting System, EPLRS)⑤,該系統具跳、展頻等高安全及抗干擾之功能,可將載臺或單位之方位、行進速度、戰力自動回報給陸軍戰術指管系統(Army Tactical Command and Control System, ATCCS)。我軍應儘速建

置此一功能之系統,進而幫助本軍各級指揮官掌握友軍動態、提升戰場覺知,進而提升指管能力。

仁建立地面自動化指管流程

建立符合「網狀化作戰」觀念之新一代地面作戰指管流程,這是比國內任何大型民間企業的「企業流程再造工程」(Enterprise Process Reengineering)難度更高,對軍方而言就是「現代化之軍事轉型工程」。本部分非常複雜,牽涉到多本教範、準則及作業規定,且亦與組織文化

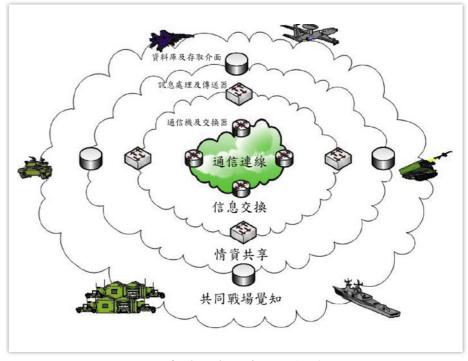
註**5**: http://en.wikipedia.org/wiki/EPLRS

教育訓練

建立地面指管共同作戰圖像 基礎作業環境架構之研究

有關。所幸,本部分工 作早已啟動,只是後因 預算限制,本軍自動化 指管部分僅實踐少數部 行為對仍待未來 努力落實。

(三)建立程式存取共 同物件(介面)


式開發、避免重複投資及疊床架屋,更重要的是避免「各自獨立無法同步分享情資 之指管或武器系統」之出現。

四建立一致之使用者介面

一致之使用者介面,如統一之軍 隊符號、程式顯示介面與操作方式,有 利於使用者之教育訓練及經驗累積。另 外一方面,傳統手繪之軍隊符號所能標 示之資料含量,已不能滿足「網狀化作 戰」所需,根據「國軍聯合作戰符號 學」,未來國軍將統一採用與美軍及北約 國家一致之軍隊符號標準——「Mil-STD 2525B」。

結 論

在網狀化的作戰中,國軍必須能充分 展現「C⁴ISR」優勢,而其中最重要的就 是建立共同的作戰圖像。建立共同作戰圖

圖六 基礎通資作業環境架構觀念

資料來源:作者繪製

像不能僅依靠單一建案,而是未來建置之 所有監偵、武器及指管系統,均必須能有 效的整合及同步。