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A Bayesian Expert System for Clinical Detecting Coronary Artery Disease
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Background: The purpose of this study was to use a data mining technique to develop an expert system of the Bayesian
model for detecting coronary artery disease (CAD). In addition, this study provides an evaluation of CAD detection
before an invasive cardiac angiography as well as a paradigm for implementing relevant expert systems in the future.
Methods: The study samples were drawn from all patients with cardiac angiography between August 1, 2005 and July
31, 2006, from the cardiac department in a medical center (Tri-Service General Hospital, TSGH), excluding samples with
acute myocardial infarction, dilated cardio myopathy and rheumatic heart disease. A total of 415 samples were studied.
All CAD-related risk factors were data-mined using a training set of randomly extracted 204 samples. All risk factors
were calculated for sensitivity and specificity for Bayesian modeling and the implementation of the localized rules of
a knowledge based. Furthermore, this study also quoted the epidemiological results of the knowledge based external
rules from the PROspective Cardiovascular Minster study (PROCAM). Two knowledge bases, the TSGH base and the
PROCAM base, were validated by a testing set of 211 samples. Results: The accuracy rates of the TSGH and PROCAM
bases were as high as 70%. For detecting CAD, the localized data mining of the TSGH-based AUC was more stable at
86.2%, outperforming the PROCAM-based AUC of 82.2%. Conclusions: In this study, an evidence-based clinical expert
system of the Bayesian model provides an evaluation for detecting CAD before an invasive cardiac angiography as well
as a paradigm for relevant expert systems.
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INTRODUCTION

An expert system is a computer system that can use
domain knowledge expertise in a specialized field and
can perform specific analysis like an expert. An expert

system could provide the following characters™™.
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Expertise consists of arranged rules and must be extracted
from evidence provided by experienced data. Expert
systems must verify and utilize domain knowledge from
evidence-based data.

Expert system contains three parts: inference engine,
knowledge base and user interface. Inference engines
lead static rules in knowledge bases to act as the
intellect of dynamic reasoning. Suitable rules can be
extracted from observed users or objective facts. These
rules include new facts or rules that produce results.
The domain knowledge base is the intelligent location
of an expert system. Data-mined facts and deducted
rules are formulated by experts interoperating with the
inference engine. User interface is convenient for users
communicating with expert systems. It contains the

187



Bayesian expert system detecting CAD

interfaces for acquiring expertise and catching evidence-
based facts of the data mining.

A knowledge base can be extracted from an amount
of real samples for evidence-based data mining and can,
hence, perform Bayesian probability theory"*°. This
approach can analyze experienced data and implement
an expert system for evaluating and detecting coronary
artery disease (CAD) before an invasive process of
cardiac angiography is conducted.

This study aims to establish an expert system for
assisting in the detection and evaluation of CAD
according to the analysis of CAD risk factors from (1) a
hospital-based data of local evidence-based samples and
(2) an existing epidemiological study.

METHODS

A rule-based expert system shell, EXSYS for
Windows of Albuquerque, NM, was used to establish
an expert system. The knowledge base implemented a
Bayesian model to detect CAD.

Evidence-based data mining
There were two evidence-based sources, one from

hospital-based data and another from existing epide-

miological data.

1. Evidence-based patient clinical records in a medical
center (Tri-Service General Hospital, TSGH), the
TSGH-based Bayesian model
This study designed a computerized sheet for

extracting patient clinical records including patient

demographic data, biomedical blood data, smoking and
alcohol use, personal and familial medical history and
cardiac angiographic results. The cardiac angiography
was the golden standard for diagnosing CAD in the
study. In this study, only selective patients received
detailed history taking, CAD stratification, and non-
invasive laboratory tests. However, this study did not
conduct any costly examinations such as treadmill EKG
and Thallium-201 myocardial perfusion imaging. There
were 415 samples drawn from the department of cardiac
angiography in TSGH of the National Defense Medical

Center, for August 1st 2005 and July 31st 2006. 204

samples were randomized samples for training of the

evidence-based knowledge rules and another 211 samples
were used to test the trained TSGH-based knowledge.

2. Epidemiological Results of PROCAM (PROspective
CArdiovascular Minster) Study (PROCAM), the
PROCAM-based Bayesian model
Meanwhile, the study also quoted the epidemiological

188

results of the PROCAM study™**® to construct PROCAM-
based knowledge. The PROCAM-based knowledge was
also validated by the above TSGH testing set of 211
samples.

The risk factors analysis and the expert system prototype
environment

The patients’ clinical records were retrieved using
Microsoft Access 2007. This study analyzed the relation-
ship between every variable and cardiac angiographic
results (indicating CAD morbidity) for odds ratios,
confidence intervals, sensitivities and specificities. SPSS
17 and Clementine for Windows were used to compute
Chi-square values and t-tests between every variable and
the cardiac angiographic results that statistically analyzed
significant risk factors associated with angiographic
diagnosis.

Bayesian theory was employed to calculate the posterior
CAD-morbid probability according to the CAD prevalence,
sensitivity and specificity of every identified risk factor in
the expert system of the evidence-based data mining****,
as shown in the algorithm below.

P (D+|R) =P (D+|R) Sen;/ (P (D+ R)) Sen,
+ (1-P (D4 Ry)) (1-Spey)), j= i+1

In the formula, Ri and Rj indicate the ith and jth
risk P (D+ | R+) is a posterior probability. According to
Bayesian theory, that means a probability of a disease
(D+) with a risk (R+). P (D) is a prior probability of
a disease that is often estimated by prevalence of the
disease. Sen and Spe indicate sensitivity and specificity
in a 2 by 2 cross table between a status of disease (D+
or D-) and risk (R+ or R-). An iteration algorithm can
perform the cumulative probabilities of a disease with
multiple risks, as the above formula.

RESULTS

The study drew 415 samples who previously had not
received any costly tests such as treadmill EKG and
Thallium-201 myocardial perfusion imaging from the
cardiac angiographic department in the TSGH of NDMC
that were collected for 6 factors in the clinical records,
1) Personal demographic data, 2) Biomedical blood data,
3) Smoking and alcohol use, 4) Personal medical history,
5) Familial medical history and 6) Cardiac angiographic
results. The cardiac angiographic results were the golden
standard of CAD diagnosis in the study. There were 238
(57.3%) patients with CAD of the 415 samples.



The samples were randomized as a half sets (204
samples). The first set trained the Bayesian model
construct a TSGH-based knowledge base and the other
half set (211 samples) compared, testedand verifyed the
trained TSGH-based and PROCAM-based Bayesian
models.

Evidence-based Risk Factors Analysis and Knowledge

Extraction
Table 1, the variables of sex, smoking, angina pectoris

(AP), hypertension, personal medical history of diabetes

mellitus (DM), familial medical history of hypertension,

CAD, cardio-vascular diseases (CVD) and DM were

significantly associated with CAD morbidity. The odds

ratios of male versus female, smoking versus non-
smoking were 3.97 and 2.71 times greater for CAD,
respectively. The odds ratios of patients with personal

medical history of AP, hypertension and DM were 9.47,

2.19 and 2.16, respectively. Moreover the odds ratios of

patients with familial medical history with hypertension,

CAD, CVD and DM were 2.97, 3.04, 2.72 and 2.62,

respectively.

Table 2 shows the difference between continuous
personal demographic data, biomedical blood data and
CAD. The variables of age, body height, first hospitalized
for DBP in the morning, glucose, total cholesterol,
triglyceride, creatinine and inorganic phosphate were
significantly associated with CAD.

Due to the fact that the Bayesian model requires
sensitivity and specificity between CAD and a risk
factor, particularly for a risk factor of a continuous
variable, thus, it is an issue to determine a cut-off point
to discriminate the risky threshold factor of CAD, e.g.
variables of age, body height, blood pressure, glucose,
cholesterol, triglyceride, creatinine and inorganic
phosphate. Similarly, as a categorical variable, we
proposed to examine the cross table between the CAD
morbid status (CAD versus non-CAD) and a risk factor
of continuous values at various cut-off points (risk
versus non-risk) that determined proper cut-off points
of significant odds ratio and narrow confidence interval.
The algorithm was used in the following steps.

1. To compute the odds ratio of every risk factor and its
confidence interval at each cut-off threshold from the
minimum to maximum value, as shown in below cross
table between cholesterol and CAD, which obtained
odds ratios at various cholesterol cut-off points, as in
Figure 1.
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Table 1 The Knowledge Extraction of Categorical Risk
factors for Detecting Coronary Artery Disease

(CAD)
CAD NonCAD  Odds
(n=124)  (n=80) Ratio BN C.

Sex***

Male 97 38 3.97 7.32-2.15

Female 27 42 1
Personal Lifestyle

Smoking**

Ever 75 25 3.37 6.11-1.86
Yes 58 24 2.71 5.00-1.47
Cessation 10 1 11.22  90.88-1.39
Social 7 0 n.a.

No 49 55 1

Alcohol

Ever 49 25 1.44 2.61-0.79
Yes 12 6 1.47 4.15-0.52
Cessation 34 19 131 2.54-0.68
Social 3 0 n.a.

No 75 55 1

Personal Medical History
Angina pectoris ***
Yes 118 54 9.47 24.35-3.68
No 6 26 1
Hypertension**
Yes 72 31 2.19 3.89-1.23
No 52 49 1
Diabetes mellitus*

Yes 39 14 2.16 4.31-1.08

No 85 66 1
Family Medical History
Hypertension**

Yes 45 13 2.97 5.97-1.47
No 77 66 1

Unknown 2 1

CAD**

Yes 43 12 3.04 6.23-1.48

No 79 67 1

Unknown 2 1

Cardio-vascular diseases*

Yes 40 12 2.72 5.60-1.32
No 82 67 1

Unknown 2 1

Diabetes mellitus*

Yes 39 12 2.62 5.40-1.27
No 83 67 1

Unknown 2 1

*** p<0.001; **, p<0.01; *, p<0.05; n.a., non available
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Table 2 The Risk Factors of Continuous Personal Demo-
graphic and Biomedical Data of CAD

CAD Non-CAD
mean S.D. Mean S.D. t P-value

Age* 62.2 892 59.4 1041 205 0.042
Body height (cm)** 1636  7.35 1605 866 275  0.007
Body weight (kg) 68.1 986 65.6 11.99 159 0.113
Body Mass Index (kg/m?) 255 356 255 440 -0.02  0.987
Hospitalized systolic
blood pressure at morning

First 130.6 20.66 129.1 1898 0.51 0.612

Second 128.7 1856 127.3 17.63 0.54 0.590

Last 126.1 17.84 1259 16,51 0.08 0.937

Average 1284 16.33 1275 1528 0.42 0.673
Hospitalized diastolic
blood pressure at morning

First * 80.7 995 776 1049 217 0.031

Second 79.5 960 786 9.65 0.66 0.511

Last 76.9 827 777 929 -0.59 0.553

Average 79.1 732 779 781 1.07 0.285
Hospitalized pulse at
morning

First 748 1153 745 13.80 0.19 0.850

Second 730 1098 747 1239 -1.03 0.306

Last 743 1063 738 937 0.35 0.725

Average 74.1 8.87 743 9.87 -0.20 0.842
Glucose* 121.0 55.68 1049 39.71 222 0.027
Total cholesterol*** 193.6  49.47 1676 40.10 3.80 0.001
triglycride* 185.7 116.32 151.4 9239 217 0.032
HDL-cholesterol 416 1290 471 1430 -1.46 0.150
LDL-cholesterol 1151 4727 99.1 30.00 1.34 0.186
Blood urea nitrogen 18.7 8.04 170 7.40 149 0.137
Creatinine** 13 0.85 1.0 030 263 0.009
Uric acid 7.1 2.22 76 456 -1.03 0.303
Total calcium 8.6 1.03 8.7 047 -0.86 0.390
Inorganic phosphorus** 3.4 0.81 3.7 076 -2.73 0.007
Aspartate transaminase 271 2129 284 2792 -0.38 0.704
Alanine aminotransferase 234 2073 23.6 26.38 -0.07 0.944
Alkaline phosphatase 119.6 4375 110.1 40.64 1.50 0.137
Total bilirubin 0.8 0.56 1.0 091 -1.66 0.099
Total protein 6.8 0.93 70 072 -171 0.090
Albumin 3.8 0.42 39 061 -0.97 0.333
Albumin/globulin ratio 1.3 0.26 1.2 021 0.89 0.372
Sodium 144.6 527 1452 358 -0.93 0.356
Potassium 4.0 1.02 38 129 1.05 0.294

**x p<0.001 ** p<0.01 *,p<0.05
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Cut-off value CAD Non CAD
Total cholesterol >=160mg/dl 88 42
<160mg/dI 27 32
OR=2.49, S.D. (OR)=0.31, X*=14.63
Cut-off value CAD Non CAD
Total cholesterol >=165mg/dI 83 39
<165mg/dl 32 35

OR=2.37, S.D. (OR)=0.31, X*=13.90

2. To choose an optimal cut-off point that suits two
criteria, one being an odds ratio that is as statistically
significant as possible. Such a ratio indicates
the cholesterol cut-off point more effectively to
discriminate CAD. The other criteria is that the
confidence interval of odds ratio is as narrow (stable)
as possible, in which case, the cholesterol cut-off point
is more reliable in discriminating CAD.

In Figure 1, the vertical axles indicated Chi-square

values on the left and log10 transposed odds ratios on

the right that were calculated from cross tables between
various cut-point values of cholesterol for samples with
and without CAD. The left vertical axle indicated the

Chi-square values and the right vertical axle indicated

the transformation of log,, (odds ratio) and its upper and

lower bounds a 95% confidence interval. The patterns of
odds ratios and Chi-square values were similar. The Chi-
square values obviously indicated that the two highest
cholesterol peaks of statistical significances were at
about 177 and 217 mg/dl, where odds ratios also denoted
the most significant statistics and the narrowest bounds
of the 95% confidence interval. This signifies that the
two cholesterol cut-off points were the most effective
and stable in discriminating whether or not samples had

CAD. The other cut-off points of glucose, triglyceride

and other continuous variables were determined for the

Bayesian model in the same way.

Moreover, in the instance of cholesterol (Fig. 1),
there were two or more peaks that we observed with
significant Chi-square values that indicated several
peaks for multiple cut-off points. The following cross
tables demonstrated why the highest two peaks should
be considered as multiple cut-off points at about 175mg/
dl and 215mg/dl (integrals from 177 and 217 were
applied for the sake of convenience). According to the
cross tables below, the first odds ratio (2.48) was over-
estimated when a single peak of cut-off point was at
175mg/dl, and the second one (odds ratio=2.62) was
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under-estimated when a single peak of the cut-off
point was at 215mg/dl. This phenomenon is similar to
misclassification in epidemiology. To be accurate, the
two peaks should be simultaneously picked as multiple
cut-off points at the first peak 175mg/dl and the second
peak 215mg/dl. The band is well established as a gray
area between the first and second peaks, which was from
175 to 215 mg/dl.

CAD Non CAD
Total cholesterol >=175mg/dI 74 32
<175mg/dl 40 43
OR=2.48
CAD Non CAD
Total cholesterol >=215mg/dI 30 9
<215mg/dl 84 66
OR=2.62

The following cross table demonstrated that the
accurate odds ratios of CAD were 3.58 and 2.06,
respectively, for patients with cholesterol over 215 mg/dl
and 175-215 mg/dl versus under 175 mg/dl.

CAD | Non CAD
Total cholesterol >=215mg/dl 30 9 OR=3.58
215-175mg/dI 44 23 OR=2.06
<175mg/dl 40 43
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Figure 2 shows, for the example of cholesterol, how
this study analyzed sensitivity and specificity from the
cross tables of association between CAD and cholesterol
at various cut-off points. In table 3, the evidence-
based knowledge was extracted from the mining of
204 samples of the TSGH-based training data set. The
highest three Bayesian posterior probabilities were 0.018
for HDL, 0.0138 for pulse of the hospitalized patient on
the last morning and 0.0115 for familial CAD history.
The lowest three Bayesian posterior probabilities were
0.0059 for patient BMI (Body Mass Index), 0.0063 for
hospitalized patient DBP on the first morning and 0.0063
for patient age. Every CAD morbid probability of the 211
samples of the testing data set was calculated, according
to Bayesian iteration (Table 3 footnote).

Figures 3, 4 and 5 show the performances of the two
evidence-based Bayesian models from the 205 samples of
the TSGH-based training set and the quoted figures from
the PROCAM-based epidemiological study, respectively.
In the 211 samples of the testing set given, the prior
probability was 0.005. The TSGH-based Bayesian
posterior probabilities (between 0.07 and 0.58, Fig. 3)
performed statistical significances for discriminating
patients with and without CAD when the lower bounds of
the confidence intervals of odds ratios were greater than
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Table 3 The Evidence-based Knowledge Extraction of TSGH-based
Risk factors for Detecting CAD of Bayesian Model

Bayesian post

Cut-off point®  Sensitivity — Specificit
P Yo oRealy o obability*S

Sex male vs. female 78.23% 52.50% 0.0082
Smoking ever vs. no 60.48% 68.75% 0.0096
Personal Medical History
Angina pectoris® Y€s vs. No 95.16% 32.50% 0.007
Hypertension yes vs. no 58.06% 61.25% 0.0075
Diabetes mellitus Yes vs. no 31.45% 82.50% 0.009
Familial Medical History
Hypertension yes vs. no 36.89% 83.54% 0.0111
CAD yes vs. no 35.25% 84.81% 0.0115
Cardio-vascular Diseases yes vs. no 32.79% 84.81% 0.0107
Diabetes Mellitus yes vs. no 31.97% 84.81% 0.0105
Age 60 yr.-old 67.29% 46.85% 0.0063
Body Mass Index 24 kg/m? 67.76% 42.66% 0.0059
Systolic Blood Pressure_first 145 mm-Hg 22.90% 86.71% 0.0086
Diastolic Blood Pressure_first 75 mm-Hg 71.03% 44.06% 0.0063
Pulse_last 80 times/min  36.92% 86.71% 0.0138
Glucose 85 mg/dl 80.00% 44.06% 0.0071
110 mg/dl 39.05% 74.13% 0.0075
Total cholesterol 175 mg/dl 64.88% 58.33% 0.0078
215 mg/dl 26.83% 87.88% 0.011
Triglyceride 145 mg/dl 55.01% 61.36% 0.0071
220 mg/dl 25.37% 85.61% 0.0088
High Density Lipoprotein 45 mg/dl 78.46% 78.46% 0.018

a: Contradistinction for dichotomous variable, b: Given 0.005 as a prior probability, c: patients

ever complained paroxysmal chest pain which is precordial, temporary, exertional, emotional,

burning like and relieved by rest, & footnote: For instance, given a patient data with age 65,

glucose 100, cholesterol 220 and triglyceride 200 in a population prevalence 0.005 (PD, as a

prior disease probability) that a Bayesian model calculates the patient morbid probability 0.0713

(PDagct) according to the following iteration:

» P (CAD| age=65)= PD * 0.6729 / ((PD * 0.6729) + (1-PD) * (1-0.4685))= 0.00063= PDa

» P (CAD| glucose=100 and age=65)= PDa * 0.8000 / (PDa * 0.8000 + (1-PDa) *
(1-0.4406))= 0.009= PDag

» P (CAD| cholesterol=220 and glucose=100 and age=65)= PDag * 0.2683 / (PDag * 0.2683
+ (1- PDag) * (1-0.8788))= 0.0197= PDagc

» P (CAD|] triglyceride=200 and cholesterol=220 and glucose=100 and age=65)= PDagc *
0.5501 / (PDagc * 0.5501 + (1- PDagc) * (1-0.8561))= 0.0713= PDagct

1 (Fig. 3 on the right axel). The best accuracy rate was

DISCUSSION

A non-invasive expert system for detecting
CAD before an invasive process of cardiac
angiography is worthy of evaluation®.
This study demonstrated how to implement
an evidence-based clinical expert system
of a Bayesian model to detect coronary
artery disease. The two datasets used as
evidence included one from data mined
from localized hospital samples and another
from epidemiological results quoted from a
previous study”’. The Bayesian model has
an advantage compared to logistic and linear
regression models. That is, it is still workable
when several variables are missing'®*%.

The Implementation of Clinical CAD
Expert System

When using a Bayesian theorem,
sensitivities and specificities drawn from
cross tables between the status of risk
factors and of CAD in a training set, should
be extracted as the inferring rules in the
knowledge base. A prior probability can be
borrowed from the population prevalence
of CAD. Consequently, a series of posterior
CAD probabilities can be used to calculate
the risk factors of patients one by one in a
trained Bayesian model. The final posterior
probability can discriminate probability and
detect whether or not a patient is morbid
with CAD.

The Verification of Clinical CAD Expert
Systems

A testing set can evaluate performances
of a trained Bayesian model, that is,
transplanting can be confirmed how to
detecting CAD in new patients. The TSGH-

about 70% with a Bayesian posterior probability of 0.12.
The PROCAM-based Bayesian posterior probabilities did
not perform statistical significances for discriminating
patients with or without CAD because the lower bounds
of the confidence intervals of the odds ratios were all less
than 1 (Fig. 4 on the right axel). Therefore, the accuracy
rates were not credible. The TSGH-based Bayesian
model outperformed the PROCAM-based model as their
AUCs were 0.862 and 0.822, respectively (Fig. 5).
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based Bayesian model outperformed the PROCAM-based
model, indicating that the data mining of localized data
is more suitable for local patients than quoted extractions
of epidemiological literature.

In addition, the sensitivities and specificities in
knowledge-based rules should be dynamically revised
and updated due to changes in the characteristics of
patients’ morbidity over time. This can prolong the
usability and life cycle of expert systems**%. The
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development of expert systems should refine a database
system that will provide the capacity to explore samples
and modify and transport knowledge bases.

The rules of knowledge bases should be influenced by
the characteristics of population, time change and disease
prevalence. The transplant of rules should be carefully
used in different populations that feature a variety of
causes, such as TSGH-based and PROCAM-based
models shown in this study. A clinical expert system
can extract more suitable localized rules and cut-off
points from data mining by using its own datasets. This
could make the Bayesian model even more accurate for
detection. Computer-based decision support systems can
be useful clinical applications for improving clinician
performance. Additional samples can enhance the
detective application.
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