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Background: The purpose of this study was to use a data mining technique to develop an expert system of the Bayesian 
model for detecting coronary artery disease (CAD).  In addition, this study provides an evaluation of CAD detection 
before an invasive cardiac angiography as well as a paradigm for implementing relevant expert systems in the future. 
Methods: The study samples were drawn from all patients with cardiac angiography between August 1, 2005 and July 
31, 2006, from the cardiac department in a medical center (Tri-Service General Hospital, TSGH), excluding samples with 
acute myocardial infarction, dilated cardio myopathy and rheumatic heart disease.  A total of 415 samples were studied. 
All CAD-related risk factors were data-mined using a training set of randomly extracted 204 samples. All risk factors 
were calculated for sensitivity and specifi city for Bayesian modeling and the implementation of the localized rules of 
a knowledge based. Furthermore, this study also quoted the epidemiological results of the knowledge based external 
rules from the PROspective Cardiovascular Münster study (PROCAM). Two knowledge bases, the TSGH base and the 
PROCAM base, were validated by a testing set of 211 samples. Results: The accuracy rates of the TSGH and PROCAM 
bases were as high as 70%. For detecting CAD, the localized data mining of the TSGH-based AUC was more stable at 
86.2%, outperforming  the PROCAM-based AUC of 82.2%. Conclusions: In this study, an evidence-based clinical expert 
system of the Bayesian model provides an evaluation for detecting CAD before an invasive cardiac angiography as well 
as a paradigm for relevant expert systems.
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INTRODUCTION

An expert system is a computer system that can use 
domain knowledge expertise in a specialized field and 
can perform specifi c analysis like an expert. An expert 
system could provide the following characters1-11. 

Expertise consists of arranged rules and must be extracted 
from evidence provided by experienced data. Expert 
systems must verify and utilize domain knowledge from 
evidence-based data. 

Expert system contains three parts: inference engine, 
knowledge base and user interface. Inference engines 
lead static rules in knowledge bases to act as the 
intellect of dynamic reasoning. Suitable rules can be 
extracted from observed users or objective facts. These 
rules include new facts or rules that produce results. 
The domain knowledge base is the intelligent location 
of an expert system. Data-mined facts and deducted 
rules are formulated by experts interoperating with the 
inference engine. User interface is convenient for users 
communicating with expert systems. It contains the 
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interfaces for acquiring expertise and catching evidence-
based facts of the data mining.

A knowledge base can be extracted from an amount 
of real samples for evidence-based data mining and can, 
hence, perform Bayesian probability theory1,2,5. This 
approach can analyze experienced data and implement 
an expert system for evaluating and detecting coronary 
artery disease (CAD) before an invasive process of 
cardiac angiography is conducted. 

This study aims to establish an expert system for 
assisting in the detection and evaluation of CAD 
according to the analysis of CAD risk factors from (1) a 
hospital-based data of local evidence-based samples and 
(2) an existing epidemiological study.

METHODS

A rule-based expert system shell, EXSYS for 
Windows of Albuquerque, NM, was used to establish 
an expert system. The knowledge base implemented a 
Bayesian model to detect CAD.

Evidence-based data mining
There were two evidence-based sources, one from 

hospital-based data and another from existing epide-
miological data.
1. Evidence-based patient clinical records in a medical 

center (Tri-Service General Hospital, TSGH), the 
TSGH-based Bayesian model
This study designed a computerized sheet for 

extracting patient clinical records including patient 
demographic data, biomedical blood data, smoking and 
alcohol use, personal and familial medical history and 
cardiac angiographic results. The cardiac angiography 
was the golden standard for diagnosing CAD in the 
study. In this study, only selective patients received 
detailed history taking, CAD stratification, and non-
invasive laboratory tests. However, this study did not 
conduct any costly examinations such as treadmill EKG 
and Thallium-201 myocardial perfusion imaging. There 
were 415 samples drawn from the department of cardiac 
angiography in TSGH of the National Defense Medical 
Center, for August 1st 2005 and July 31st 2006. 204 
samples were randomized samples for training of the 
evidence-based knowledge rules and another 211 samples 
were used to test the trained TSGH-based knowledge. 
2. Epidemiological Results of PROCAM  (PROspective 

CArdiovascular Münster) Study (PROCAM), the 
PROCAM-based Bayesian model 
Meanwhile, the study also quoted the epidemiological 

results of the PROCAM study12-18 to construct PROCAM-
based knowledge. The PROCAM-based knowledge was 
also validated by the above TSGH testing set of 211 
samples.

The risk factors analysis and the expert system prototype 
environment

The patients’ clinical records were retrieved using 
Microsoft Access 2007. This study analyzed the relation-
ship between every variable and cardiac angiographic 
results (indicating CAD morbidity) for odds ratios, 
confi dence intervals, sensitivities and specifi cities. SPSS 
17 and Clementine for Windows were used to compute 
Chi-square values and t-tests between every variable and 
the cardiac angiographic results that statistically analyzed 
significant risk factors associated with angiographic 
diagnosis.

Bayesian theory was employed to calculate the posterior 
CAD-morbid probability according to the CAD prevalence, 
sensitivity and specifi city of every identifi ed risk factor in 
the expert system of the evidence-based data mining2,19,20, 
as shown in the algorithm below. 

   P (D+ | Rj) = P (D+| Ri) Senj / (P (D+| Ri) Senj 
                     + (1-P (D+| Ri)) (1-Spej)), j= i+1

In the formula, Ri and Rj indicate the ith and jth 
risk P (D+ | R+) is a posterior probability. According to 
Bayesian theory, that means a probability of a disease 
(D+) with a risk (R+). P (D) is a prior probability of 
a disease that is often estimated by prevalence of the 
disease. Sen and Spe indicate sensitivity and specifi city 
in a 2 by 2 cross table between a status of disease (D+ 
or D-) and risk (R+ or R-). An iteration algorithm can 
perform the cumulative probabilities of a disease with 
multiple risks, as the above formula. 

RESULTS

The study drew 415 samples who previously had not 
received any costly tests such as treadmill EKG and 
Thallium-201 myocardial perfusion imaging from the 
cardiac angiographic department in the TSGH of NDMC 
that were collected for 6 factors in the clinical records, 
1) Personal demographic data, 2) Biomedical blood data, 
3) Smoking and alcohol use, 4) Personal medical history, 
5) Familial medical history and 6) Cardiac angiographic 
results. The cardiac angiographic results were the golden 
standard of CAD diagnosis in the study. There were 238 
(57.3%)  patients with CAD of the 415 samples.   
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The samples were randomized as a half sets (204 
samples). The first set trained the Bayesian model 
construct a TSGH-based knowledge base and the other 
half set (211 samples) compared, testedand verifyed the 
trained TSGH-based and PROCAM-based Bayesian 
models.

Evidence-based Risk Factors Analysis and Knowledge 
Extraction

Table 1, the variables of sex, smoking, angina pectoris 
(AP), hypertension, personal medical history of diabetes 
mellitus (DM), familial medical history of hypertension, 
CAD, cardio-vascular diseases (CVD) and DM were 
signifi cantly associated with CAD morbidity. The odds 
ratios of male versus female, smoking versus non-
smoking were 3.97 and 2.71 times greater for CAD, 
respectively. The odds ratios of patients with personal 
medical history of AP, hypertension and DM were 9.47, 
2.19 and 2.16, respectively. Moreover the odds ratios of 
patients with familial medical history with hypertension, 
CAD, CVD and DM were 2.97, 3.04, 2.72 and 2.62, 
respectively.

Table 2 shows the difference between continuous 
personal demographic data, biomedical blood data and 
CAD. The variables of age, body height, fi rst hospitalized 
for DBP in the morning, glucose, total cholesterol, 
triglyceride, creatinine and inorganic phosphate were 
signifi cantly associated with CAD.

Due to the fact that the Bayesian model requires 
sensitivity and specificity between CAD and a risk 
factor, particularly for a risk factor of a continuous 
variable, thus, it is an issue to determine a cut-off point 
to discriminate the risky threshold factor of CAD, e.g. 
variables of age, body height, blood pressure, glucose, 
cholesterol, triglyceride, creatinine and inorganic 
phosphate. Similarly, as a categorical variable, we 
proposed to examine the cross table between the CAD 
morbid status (CAD versus non-CAD) and a risk factor 
of continuous values at various cut-off points (risk 
versus non-risk) that determined proper cut-off points 
of signifi cant odds ratio and narrow confi dence interval. 
The algorithm was used in the following steps.
1. To compute the odds ratio of every risk factor and its 

confi dence interval at each cut-off threshold from the 
minimum to maximum value, as shown in below cross 
table between cholesterol and CAD, which obtained 
odds ratios at various cholesterol cut-off points, as in 
Figure 1.

CAD 
(n=124)

Non CAD 
(n=80)

Odds 
Ratio

95% C.I.

Sex***

　 Male 97 38 3.97 7.32-2.15

 　Female 27 42 1

Personal Lifestyle

  Smoking**

     Ever 75 25 3.37 6.11-1.86

       Yes 58 24 2.71 5.00-1.47

       Cessation 10 1 11.22 90.88-1.39

       Social  7 0 n.a.

     No 49 55 1

  Alcohol

     Ever 49 25 1.44 2.61-0.79

       Yes 12 6 1.47 4.15-0.52

       Cessation 34 19 1.31 2.54-0.68

       Social 3 0 n.a.

　 No 75 55 1

Personal Medical History

  Angina pectoris ***

　   Yes 118 54 9.47 24.35-3.68

　   No 6 26 1

  Hypertension**

　   Yes 72 31 2.19 3.89-1.23

 　  No 52 49 1

  Diabetes mellitus*

　  Yes 39 14 2.16 4.31-1.08

　  No 85 66 1

Family Medical History

  Hypertension**

 　Yes 45 13 2.97 5.97-1.47

  　No 77 66 1

　 Unknown 2 1

  CAD**

　 Yes 43 12 3.04 6.23-1.48

　 No 79 67 1

　 Unknown 2 1

  Cardio-vascular diseases*

 　Yes 40 12 2.72 5.60-1.32

  　No 82 67 1

　 Unknown 2 1

  Diabetes mellitus*

 　Yes 39 12 2.62 5.40-1.27

  　No 83 67 1

　 Unknown 2 1

***, p<0.001; **, p<0.01; *, p<0.05; n.a., non available

Table 1 The Knowledge Extraction of Categorical Risk 
factors for Detecting Coronary Artery Disease 
(CAD)
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Cut-off value CAD Non CAD

Total cholesterol >=160mg/dl 88 42

<160mg/dl 27 32

OR=2.49, S.D. (OR)=0.31, X2=14.63

 Cut-off value CAD Non CAD

Total cholesterol >=165mg/dl 83 39

<165mg/dl 32 35

OR=2.37, S.D. (OR)=0.31, X2=13.90

2. To choose an optimal cut-off point that suits two 
criteria, one being an odds ratio that is as statistically 
significant as possible. Such a ratio indicates 
the cholesterol cut-off point more effectively to 
discriminate CAD. The other criteria is that the 
confi dence interval of odds ratio is as narrow (stable) 
as possible, in which case, the cholesterol cut-off point 
is more reliable in discriminating CAD.

In Figure 1, the vertical axles indicated Chi-square 
values on the left and log10 transposed odds ratios on 
the right that were calculated from cross tables between 
various cut-point values of cholesterol for samples with 
and without CAD. The left vertical axle indicated the 
Chi-square values and the right vertical axle indicated 
the transformation of log10 (odds ratio) and its upper and 
lower bounds a 95% confi dence interval. The patterns of 
odds ratios and Chi-square values were similar. The Chi-
square values obviously indicated that the two highest 
cholesterol peaks of statistical significances were at 
about 177 and 217 mg/dl, where odds ratios also denoted 
the most signifi cant statistics and the narrowest bounds 
of the 95% confidence interval. This signifies that the 
two cholesterol cut-off points were the most effective 
and stable in discriminating whether or not samples had 
CAD. The other cut-off points of glucose, triglyceride 
and other continuous variables were determined for the 
Bayesian model in the same way. 

Moreover, in the instance of cholesterol (Fig. 1), 
there were two or more peaks that we observed with 
significant Chi-square values that indicated several 
peaks for multiple cut-off points. The following cross 
tables demonstrated why the highest two peaks should 
be considered as multiple cut-off points at about 175mg/
dl and 215mg/dl (integrals from 177 and 217 were 
applied for the sake of convenience). According to the 
cross tables below, the fi rst odds ratio (2.48) was over-
estimated when a single peak of cut-off point was at 
175mg/dl, and the second one (odds ratio=2.62) was 

CAD Non-CAD

mean S.D. Mean S.D. t P-value

Age* 62.2 8.92 59.4 10.41 2.05 0.042

Body height (cm)** 163.6 7.35 160.5 8.66 2.75 0.007

Body weight (kg) 68.1 9.86 65.6 11.99 1.59 0.113

Body Mass Index (kg/m2) 25.5 3.56 25.5 4.40 -0.02 0.987

Hospitalized systolic 
blood pressure at morning

　　First 130.6 20.66 129.1 18.98 0.51 0.612 

　　Second 128.7 18.56 127.3 17.63 0.54 0.590

　　Last 126.1 17.84 125.9 16.51 0.08 0.937

　　Average 128.4 16.33 127.5 15.28 0.42 0.673

Hospitalized diastolic 
blood pressure at morning 

　　First * 80.7 9.95 77.6 10.49 2.17 0.031

　　Second 79.5 9.60 78.6 9.65 0.66 0.511

　　Last 76.9 8.27 77.7 9.29 -0.59 0.553

 　   Average 79.1 7.32 77.9 7.81 1.07 0.285

Hospitalized pulse at 
morning

　　First 74.8 11.53 74.5 13.80 0.19 0.850

    　Second 73.0 10.98 74.7 12.39 -1.03 0.306

    　Last 74.3 10.63 73.8 9.37 0.35 0.725 

   　Average 74.1 8.87 74.3 9.87 -0.20 0.842

Glucose* 121.0 55.68 104.9 39.71 2.22 0.027

Total cholesterol*** 193.6 49.47 167.6 40.10 3.80 0.001

triglycride* 185.7 116.32 151.4 92.39 2.17 0.032

HDL-cholesterol 41.6 12.90 47.1 14.30 -1.46 0.150

LDL-cholesterol 115.1 47.27 99.1 30.00 1.34 0.186

Blood urea nitrogen 18.7 8.04 17.0 7.40 1.49 0.137

Creatinine** 1.3 0.85 1.0 0.30 2.63 0.009

Uric acid 7.1 2.22 7.6 4.56 -1.03 0.303

Total calcium 8.6 1.03 8.7 0.47 -0.86 0.390

Inorganic phosphorus** 3.4 0.81 3.7 0.76 -2.73 0.007

Aspartate transaminase 27.1 21.29 28.4 27.92 -0.38 0.704

Alanine aminotransferase 23.4 20.73 23.6 26.38 -0.07 0.944

Alkaline phosphatase 119.6 43.75 110.1 40.64 1.50 0.137

Total bilirubin 0.8 0.56 1.0 0.91 -1.66 0.099

Total protein 6.8 0.93 7.0 0.72 -1.71 0.090

Albumin 3.8 0.42 3.9 0.61 -0.97 0.333

Albumin/globulin ratio 1.3 0.26 1.2 0.21 0.89 0.372

Sodium 144.6 5.27 145.2 3.58 -0.93 0.356

Potassium 4.0 1.02 3.8 1.29 1.05 0.294

 ***, p<0.001   **, p<0.01   *, p<0.05

Table 2 The Risk Factors of Continuous Personal Demo-
graphic and Biomedical Data of CAD
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under-estimated when a single peak of the cut-off 
point was at 215mg/dl. This phenomenon is similar to 
misclassification in epidemiology. To be accurate, the 
two peaks should be simultaneously picked as multiple 
cut-off points at the fi rst peak 175mg/dl and the second 
peak 215mg/dl. The band is well established as a gray 
area between the fi rst and second peaks, which was from 
175 to 215 mg/dl.    

CAD Non CAD
Total cholesterol >=175mg/dl 74 32

<175mg/dl 40 43
OR=2.48

CAD Non CAD
Total cholesterol >=215mg/dl 30 9

<215mg/dl 84 66
OR=2.62

The following cross table demonstrated that the 
accurate odds ratios of CAD were 3.58 and 2.06, 
respectively, for patients with cholesterol over 215 mg/dl 
and 175-215 mg/dl versus under 175 mg/dl.

  CAD Non CAD

Total cholesterol >=215mg/dl 30 9 OR=3.58

215-175mg/dl 44 23 OR=2.06

<175mg/dl 40 43

Figure 2 shows, for the example of cholesterol, how 
this study analyzed sensitivity and specificity from the 
cross tables of association between CAD and cholesterol 
at various cut-off points. In table 3, the evidence-
based knowledge was extracted from the mining of 
204 samples of the TSGH-based training data set. The 
highest three Bayesian posterior probabilities were 0.018 
for HDL, 0.0138 for pulse of the hospitalized patient on 
the last morning and 0.0115 for familial CAD history. 
The lowest three Bayesian posterior probabilities were 
0.0059 for patient BMI (Body Mass Index), 0.0063 for 
hospitalized patient DBP on the fi rst morning and 0.0063 
for patient age. Every CAD morbid probability of the 211 
samples of the testing data set was calculated, according 
to Bayesian iteration (Table 3 footnote). 

Figures 3, 4 and 5 show the performances of the two 
evidence-based Bayesian models from the 205 samples of 
the TSGH-based training set and the quoted fi gures from 
the PROCAM-based epidemiological study, respectively. 
In the 211 samples of the testing set given, the prior 
probability was 0.005. The TSGH-based Bayesian 
posterior probabilities (between 0.07 and 0.58, Fig. 3) 
performed statistical significances for discriminating 
patients with and without CAD when the lower bounds of 
the confi dence intervals of odds ratios were greater than 

Fig. 1 The Chi-square value and transposed Odds Ratio of 
respective cut-point cholesterol point in samples 
with CAD to without CAD

Fig. 2 Sensitivity and specifi city of respective signifi cant 
risk factor with morbid CAD

Fig. 3 The correct rate and transposed Odds Ratio of 
respective Bayes’ posterior Probability with CAD in 
Tri-Service General Hospital data-driven approache.

Fig. 4 The correct rate and transposed Odds Ratio of 
respective Bayes’ posterior Probability with CAD 
in PROspective Cardiovascular Münster study data-
driven approache.
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1 (Fig. 3 on the right axel). The best accuracy rate was 
about 70% with a Bayesian posterior probability of 0.12. 
The PROCAM-based Bayesian posterior probabilities did 
not perform statistical significances for discriminating 
patients with or without CAD because the lower bounds 
of the confi dence intervals of the odds ratios were all less 
than 1 (Fig. 4 on the right axel). Therefore, the accuracy 
rates were not credible. The TSGH-based Bayesian 
model outperformed the PROCAM-based model as their 
AUCs were 0.862 and 0.822, respectively (Fig. 5). 

DISCUSSION

A non-invasive expert system for detecting 
CAD before an invasive process of cardiac 
angiography is worthy of evaluation19. 
This study demonstrated how to implement 
an evidence-based clinical expert system 
of a Bayesian model to detect coronary 
artery disease. The two datasets used as 
evidence included one from data mined 
from localized hospital samples and another 
from  epidemiological results quoted from a  
previous study21-27. The Bayesian model has 
an advantage compared to logistic and linear 
regression models. That is, it is still workable 
when several variables are missing19,28-32.

The Implementation of Clinical CAD 
Expert System

W h e n u s i n g a B a y e s i a n t h e o r e m, 
sensitivities and specificities drawn from 
cross tables between the status of risk 
factors and of CAD in a training set, should 
be extracted as the inferring rules in the 
knowledge base. A prior probability can be 
borrowed from the population prevalence 
of CAD. Consequently, a series of posterior 
CAD probabilities can be used to calculate 
the risk factors of patients one by one  in a 
trained Bayesian model. The fi nal posterior 
probability can discriminate probability and 
detect whether or not a patient is morbid 
with CAD. 

The Verification of Clinical CAD Expert 
Systems  

A testing set can evaluate performances 
of a t ra ined Bayesian model, tha t i s, 
transplanting can be confirmed how to 
detecting CAD in new patients. The TSGH-

based Bayesian model outperformed the PROCAM-based  
model,  indicating that the data mining of localized data 
is more suitable for local patients than quoted extractions 
of epidemiological literature. 

In addition, the sensitivities and specificities in 
knowledge-based rules should be dynamically revised 
and updated due to changes in the characteristics of 
patients’ morbidity over time. This can prolong the 
usability and life cycle of expert systems2,19,20,29. The 

  Cut-off  pointa Sensitivity Specifi city
Bayesian post 
probabilityb,§

Sex  male vs. female 78.23% 52.50% 0.0082
Smoking ever vs. no 60.48% 68.75% 0.0096
Personal Medical History
 　Angina pectorisc yes vs. no 95.16% 32.50% 0.007
 　Hypertension yes vs. no 58.06% 61.25% 0.0075
 　Diabetes mellitus yes vs. no 31.45% 82.50% 0.009
Familial Medical History
　 Hypertension yes vs. no 36.89% 83.54% 0.0111
　 CAD yes vs. no 35.25% 84.81% 0.0115
 　Cardio-vascular Diseases yes vs. no 32.79% 84.81% 0.0107
 　Diabetes Mellitus yes vs. no 31.97% 84.81% 0.0105
Age 60 yr.-old 67.29% 46.85% 0.0063
Body Mass Index 24 kg/m2 67.76% 42.66% 0.0059
Systolic Blood Pressure_fi rst 145 mm-Hg 22.90% 86.71% 0.0086
Diastolic Blood Pressure_fi rst 75 mm-Hg 71.03% 44.06% 0.0063
Pulse_last 80 times/min 36.92% 86.71% 0.0138
Glucose 85 mg/dl 80.00% 44.06% 0.0071

110 mg/dl 39.05% 74.13% 0.0075
Total cholesterol 175 mg/dl 64.88% 58.33% 0.0078

215 mg/dl 26.83% 87.88% 0.011
Triglyceride 145 mg/dl 55.01% 61.36% 0.0071

220 mg/dl 25.37% 85.61% 0.0088
High Density Lipoprotein 45 mg/dl 78.46% 78.46% 0.018

Table 3 The Evidence-based Knowledge Extraction of TSGH-based 
Risk factors for Detecting CAD of Bayesian Model

a: Contradistinction for dichotomous variable, b: Given 0.005 as a prior probability, c: patients 
ever complained paroxysmal chest pain which is precordial, temporary, exertional, emotional, 
burning like and relieved by rest, § footnote: For instance, given a patient data with age 65, 
glucose 100, cholesterol 220 and triglyceride 200 in a population prevalence 0.005 (PD, as a 
prior disease probability) that a Bayesian model calculates the patient morbid probability 0.0713 
(PDagct) according to the following iteration: 

 P (CAD| age=65)= PD * 0.6729 / ((PD * 0.6729) + (1-PD) * (1-0.4685))= 0.00063= PDa
 P (CAD| glucose=100 and age=65)= PDa * 0.8000 / (PDa * 0.8000 + (1-PDa) * 
(1-0.4406))= 0.009= PDag

 P (CAD| cholesterol=220 and glucose=100 and age=65)= PDag * 0.2683 / (PDag * 0.2683 
+ (1- PDag) * (1-0.8788))= 0.0197= PDagc

 P (CAD| triglyceride=200 and cholesterol=220 and glucose=100 and age=65)= PDagc * 
0.5501 / (PDagc * 0.5501 + (1- PDagc) * (1-0.8561))= 0.0713= PDagct
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development of expert systems should refi ne a database 
system that will provide the capacity to explore samples 
and  modify and transport knowledge bases. 

The rules of knowledge bases should be infl uenced by 
the characteristics of population, time change and disease 
prevalence. The transplant of rules should be carefully 
used in different populations that feature a variety of 
causes, such as TSGH-based and PROCAM-based 
models shown in this study. A clinical expert system 
can extract more suitable localized rules and cut-off 
points from data mining by using its own datasets. This 
could make the Bayesian model even more accurate for 
detection. Computer-based decision support systems can 
be useful clinical applications for improving clinician 
performance. Additional samples can enhance the 
detective application.
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