

Current Proceedings of Febrile Seizures and Related Epileptic Syndromes in SCN1A: from Bedside to Bench

Shyi-Jou Chen^{1*}, and Shinichi Hirose²

¹Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China, ²Department of Pediatrics, School of Medicine, Fukuoka University, 45-1, 7-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.

Febrile seizures (FS) characterize the majority of childhood seizures, it is well recognized highly inheritance in family of children with FS. Several genetic loci related to FS had been defined imply the genetic heterogeneity of FS. Nevertheless, molecular genetic approaches toward understanding FS related epilepsies have been explored this decade; especially sodium channel mutation 1 (*SCNIA*). Among them, generalized epilepsy with FS plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI) are highlighted. This review demonstrates recent development from clinics to genetics of FS and the update of genetics in FS associated epilepsy in *SCNIA* mutation and related epileptic syndromes.

Key words: febrile seizures, sodium channel, epileptic syndrome.

DEFINITION ANDEPIDEMIOLOGY OF FEBRILE SEIZURES (FS)

Febrile seizure (FS) is a common disorder of children, generally involved 2-5% of children, and the prevalence is 3.2% in Taiwan¹. However a higher affect rate of FS is 6-9% in Japan^{2,3}. The definition of FS from International League Against Epilepsy (ILAE) is that seizures associated with a febrile illness in the absence of central nervous system (CNS) infection or acute electrolyte imbalance in children >1month of age without pervious afebrile seizures⁴. Ordinarily, FS has a favorable outcome and is almost known only rare consequence into epilepsy except children of FS concurrent with afebrile seizure⁵. Also, Annegers et al. report the high consequence to partial seizures in complex febrile seizures than in simple febrile seizures⁶.

Ordinarily, FS is provoked by fever within range 6 months and 6 years old, and half cases of FS happen at the age from 1 to 2 1/2 years old, statistically the peak age of FS is 18 months old. The incidence of FS

Received: February 4, 2009; Revised: February 25, 2009; Accepted: February 26, 2009

*Corresponding author: Shyi-Jou Chen, Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-gong Rd, Taipei 114, Taiwan, Republic of China. E-mail: md900012@ndmctsgh.edu.tw

is slightly higher in male than in female. Near 90% of children with FS, the duration of FS is less than 10 minutes, and about 10% is over fifteen minutes. Nevertheless, five percent of FS develop febrile status epilepticus. The clinical outline is summarized in table 1.

Table 1

Gender (M:F)	Male 1.4	Female:1
Age(mean: 18m)	6m-6yr	50% on 12-30 m
Family history	FS in 24%	Epilepsy in 4%
FS duration	87%:<10min	9%:>15min

Hauser et al. had traced that the increased risk for FS in siblings, offspring, and nieces and nephews of probands⁷, implying that FS is a highly related genetic disorder. About one fourth of FS can be traced positive family history of FS. On the other hand, only 4% of FS have epileptic family. Thus, increased occurrence of FS is abstracted in table 2.

Table 2 Risk factors for development of the first FS

Table 2 Kisk factors for development of the first 15	
First or 2nd-degree relative with a history of FS	
Siblings had FS	
History of FS in both parents: 40-80%	
History of FS in a parent: 20-30%	
No history of FS in the parents: 5-20%	
Neonatal nursery stay >30 d	
Attendance at daycare	
Developmental delays	

CLINICAL MANIFESTATION IN FS

The classic clinical manifestations of simple FS present as generalized seizure, duration less than fifteen minutes, without recurrence within 24 hours; alternatively is defined as complex FS. Statistically, 9 to 35% of FS is attributed to complex FS (table 3).

Table 3 Clinical classification of FS

Simple (65-91%)	Complex (9-35%)
Generalized seizures	Partial seizures
<15min	Prolonged >15min
Do not recur within 24 h	Recur within 24 h
No previous neurologic	Known neurologic problems of the
problems	patient

Adapted and modified from reference⁸ Generally, the recurrence of FS is variable from quarter to half and overall the average of recurrent FS is around 30% (variant from 25 to 50%). Additionally, 70% of FS occurs within 1 year old and 90% less than 2 years old. However, only 9% of FS has three times and more of recurrent FS. Tracing these cases of recurrent FS, some associated factors are list in table 4.

Table 4 Risk Factors for FS recurrence

- 1. Family history of FS (50%)
- 2. <Age18 mo (50%)
- 3. Lower peak fever with prior FS
- 4. Shorter duration<1 hr of fever before FS

Either age less than 18 month or positive family history of FS has increased recurrent rate of FS up to 50% respectively. In addition, when child having minor fever less than 38.5 prior FS and disclosing shorten duration less than one hour of fever, both have relevance to increase recurrent rate of FS⁹.

The associated factors of FS subsequently evolving into epilepsy are attributed as (a) neurological abnormalities or psychomotor retardation, (b) family history of epilepsy and (c) complex FS. If the patient had none of three main risk factors, the incidence of consequent epilepsy is about 1% similarly to general populations. However, the occurrence of epilepsy is increased to 2% when the patient has one added risk factor, and up to 10% in patient of FS has two or more main risk factors. Nevertheless, when children

with FS are full of whole factors including neurologic abnormalities and family history of epilepsy as well as all items of complex FS, more than 50% of them have consequence of epilepsy. Recently, Nakayama et al. review that there are Six susceptibility FS loci recognized on chromosomes 8q13-q21 (FEB1), 19p (FEB2), 2q23q24 (FEB3), 5q14-q15 (FEB4), 6q22-q24 (FEB5), and 18p11 (FEB6). Moreover, mutations in the voltagegated sodium channel -1, -2 and -1 subunit genes (SCN1A, SCN2A and SCN1B) and the GABAA receptor -2 subunit gene (GABRG2) have been identified in families with a clinical subset of seizures termed "generalized epilepsy with febrile seizure plus (GEFS+)"¹⁰. To our interest, variant mutations of SCN1A are linked to GEFS+ and severe myoclonic epilepsy of infancy (SMEI) – an epileptic syndrome with grave prognosis respectively.

VOLTAGE-GATED SODIUM CHANNEL AND SCN1 GENE

Voltage-gated sodium channels (Na_v) play a role of cellular excitability¹¹, Na_v provides a delicate sensing mechanism to equilibrium membrane-potential, these channels respond to minor voltage declinations by opening their gates to allow Na⁺ pouring into the cells. Over the last decade, these so-called Nav channelopathies are encoded in several electric excitable disorders, chiefly focus on cardiac arrhythmia and epilepsy. 11-13. Considering Na_v channelopathy in neuron, these neurons spontaneously enter periods of simultaneous firing leading to recurrent seizures and/or brain dysfunction. Moreover, epileitiologists highly aware in the epilepsy field for a peculiarly association between febrile seizures and Na_v ^{14,15}. Three sodium channel genes, including SCN1A, SCN2A and SCN3A, are clustered on chromosome 2q24 that are encoded as sodium channel forming a pore¹⁶ (figure 1). The isoform in Na_v1.1 (gene symbol SCN1A) is highly expressed in CNS and produces variant phenotypes of seizure and epilepsy ranging from benign to extremely severe had been uncovered progressively 17-20. A total 6,030-bp of SCN1A mRNA is organized into 26 exons spanning about 100 kb of genomic sequence. Alternative splicing of SCN1A results in two isoforms that differ by 33 bases in the 30 end of exon 11, resulting in an 11 amino acid difference between the translated proteins²¹ forming four domains, each contains six transmembrane segments (figure 2).

Fig. 1 Structure of neuronal voltage-gated Na⁺-channel. Neuronal voltage-gated Na+-channel, the major generator of action potentials in neurons, is assemble of three subunits; an subunit and two auxiliary subunits, 1 and 2. This subunit preserves a large pore forming molecule and sufficient to function as a Na+-channel on its 2 subunits regulate channel own. Both 1 and function providing inactivation kinetics to Na⁺channel. The 1 subunit binds to the subunit by a non-covalent linkage, while 2 subunit binds to subunit by a disulfide bond covalent linkage. There are several subtypes of subunits expressed in the central nervous system: 1, 2 and form electrophysiologically different Na+-channels; Na_v1.1, Na_v1.2 and Na_v1.3, respectively. They have developmentally and spatially different expression patterns and Na_v1.2 is the most abundant in adult brain.46

TWO COMMON EPILEPTIC SYNDROME TYPE ENCODED WITH VARIANT MUTATION OF SCN1

GENES: GEFS+ and SMEI

Since Scheffer and Berkovic first nominate GEFS+ [MIM 604236] defined as a genetic disorder. Clinically, these children with GEFS+ usually manifest of febrile seizures extending beyond 6 years, with or without associated *afebrile* generalized tonic–clonic seizures (GTCS), lacking other recognized syndromes and consequently benign outcome²². Afterward, GEFS+ is approved as a common epilepsy syndrome at present ^{15,16,23-25}. Instead, (SMEI) (MIM# 607208) - a devastating epileptic syndrome had been discovered to be related with both febrile seizure and SCN1A mutations; but almost poor outcome eventually. Since 1978, Dravet first postulated SMEI, which is recruited as an epileptic syndrome in

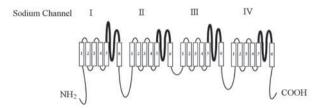


Fig. 2 Schematic representation of the SCN1A protein consists of four domains designated I~IV, each contains six transmembrane segments designated S1~S6.

the ILAE classification, proposed by the Commission on Classification and Terminology of the ILAE (1989)⁴. The diagnosis of SMEI is based upon several clinical features including: (a) appearance of seizures, typically generalized tonic-clonic, during the first year of life; (b) impaired psychomotor development following onset of seizures; (c) occurrence of myoclonic seizures; (d) ataxia; and (e) poor response to AEDs. Otherwise, borderline SMEI (SMEB) and intractable childhood epilepsy with generalized tonic-clonic seizures (ICEGTC) have been attributed to patients with an epilepsy syndrome close to SMEI but in whom myoclonic seizures are absent and less severe psychomotor impairment is manifested²⁶⁻²⁸. Otherwise, a number of epilepsy syndromes are related with SCN1A gene (MIM# 182389) mutations, apart from typical SMEI, SMEB, ICEGTC, and GEFS+ (MIM# 604233) were summarized in Table 5²⁹⁻³².

Table 5 Common types of febrile seizure related epilepsy encoded with abnormality of SCN1 genes

Disorder	Chromosome	Genes (product)	Reference
GEFS+1	19q13.1	SCN1B (Na+-channel)	33, 34
GEFS+2	2q24	SCN1A (Na+-channel)	30, 35, 36
ICEGTC	2q24	SCN1A (Na+-channel)	27, 37
SMEI	2q24	SCN1A (Na+-channel)	35, 37, 38
Borderline SMEI	2q24	SCN1A (Na+-channel)	35, 39

PREVALENCE

Statistically, SMEI and its derivatives including SMEB, ICEGTC etc is undoubtedly the most common (86.1%) phenotype encountered with *SCN1A* mutations. Second most, but uncommon (6.7%), are GEFS+ and FS related syndromes. The remaining association with syndromic epilepsies encompass cryptogenic focal and cryptogenic generalized epilepsy (about 3%), and

sporadic occurrences of myoclonic astatic epilepsy severe idiopathic generalized epilepsy of infancy (0.8%), and merely 0.3% of severe idiopathic generalized epilepsy of infancy, Rasmussen's encephalitis, infantile spasms and Lennox-Gastaut syndrome respectively 15,40,41.

DILEMMA OF PHENOTYPE AND GENOTYPE BETWEEN GEFS+ AND SMEI

A total of some 330+ genetic alterations of SCN1A was reviewed recently⁴², however it is extremely difficult to validate a faithful correlation between the reported phenotypes and genotypes. Presently, it has become widespread practice in the clinic to perform candidate genetic screenings mutations in SCN1A for the strong links to either SMEI or GEFS+. Studies showing a higher concordance rate in monozygotic rather than in dizygotic twins also support a genetic contribution 43,44. But, one quandary is that whole genomic sequence of SCN1A cover more than 81 kb causes an infeasible work for regularly complete delineation of sequence. For example, one copy of SCN1A missing as a result of a genomic deletion cannot be detected in that fashion. Similarly, microchrosomal deflection were reveled in SMEI, that cannot be detected from conventional sequence methods³⁸. However, intact SCN1A is displayed in some patients of GEFS+/SMEI^{17,45}. Nevertheless, a number of studies with partial success genomic alterations extending beyond short insertions, deletions, or point mutations commonly produce negatives in analyses where exonic sequencing is employed. And the other challenge is that it is impossible as the SCN1A regulatory regions are not well established²⁰.

SUMMARY

We address from the clinical inspection of a common childhood neurologic disorder - febrile seizure to the genetic currency of related epileptic syndromes. The enormous diversity is arised in between simple febrile seizure – a benign neurologic disorder and SMEI - a devastating neuronal disorder. Finally, we conduct febrile related epileptic syndromes attributed to neuronal channelopathy of the *SCNIA* mutations chiefly. We hope this review to provide a close link of basic and clinical proceeding from bedside to bench.

ACKNOWLEDGEMENTS

We are indebted to our patients with epilepsy and their

families for their encouragement to complete this review. This work was supported by the Cheng-Han education Foundation.

REFERENCES

- 1. Shian WJ, Chi CS. Clinical study of epileptic children with history of febrile convulsion. Zhonghua Yi Xue Za Zhi (Taipei) 1994;54:182-187.
- 2. Fukuyama Y, Kagawa K, Tanaka K. A genetic study of febrile convulsions. Eur Neurol 1979;18:166-182.
- 3. Bird TD: Genetic considerations in childhood epilepsy. Epilepsia 1987;28 Suppl 1:S71-81.
- 4. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30:389-399.
- 5. Sadleir LG, Scheffer IE: Febrile seizures. Bmj 2007;334:307-311.
- Annegers JF, Hauser WA, Shirts SB, Kurland LT. Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med 1987; 316:493-498.
- 7. Hauser WA, Annegers JF, Anderson VE, Kurland LT. The risk of seizure disorders among relatives of children with febrile convulsions. Neurology 1985;35:1268-1273.
- 8. Waruiru C, Appleton R. Febrile seizures: an update. Arch Dis Child 2004, 89:751-756.
- 9. Shinnar S, Glauser TA: Febrile seizures. J Child Neurol 2002;17 Suppl 1:S44-52.
- 10. Nakayama J, Arinami T. Molecular genetics of febrile seizures. Epilepsy Res 2006;70 Suppl 1:S190-198.
- 11. Fozzard HA, Hanck DA. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 1996;76:887-926.
- 12. Balser JR. Structure and function of the cardiac sodium channels. Cardiovasc Res 1999;42:327-338.
- 13. Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family. Genome Biol 2003;4:207.
- 14. Mulley JC, Scheffer IE, Petrou S, Berkovic SF. Channelopathies as a genetic cause of epilepsy. Curr Opin Neurol 2003;16:171-176.
- 15. Hirose S, Mohney RP, Okada M, Kaneko S, Mitsudome A. The genetics of febrile seizures and related epilepsy syndromes. Brain Dev 2003;25:304-312.
- 16. Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations and epilepsy. Hum Mutat 2005;25:535-542.
- 17. Fukuma G, Oguni H, Shirasaka Y, Watanabe K,

- Miyajima T, Yasumoto S, Ohfu M, Inoue T, Watanachai A, Kira R, Matsuo M, Muranaka H, Sofue F, Zhang B, Kaneko S, Mitsudome A, Hirose S. Mutations of neuronal voltage-gated Na+ channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia 2004;45:140-148.
- 18. Oguni H, Hayashi K, Osawa M, Awaya Y, Fukuyama Y, Fukuma G, Hirose S, Mitsudome A, Kaneko S. Severe myoclonic epilepsy in infancy: clinical analysis and relation to SCN1A mutations in a Japanese cohort. Adv Neurol 2005;95:103-117.
- 19. Yamakawa K. Na channel gene mutations in epilepsythe functional consequences. Epilepsy Res 2006;70 Suppl 1:S218-222.
- 20. Ragsdale DS: How do mutant Nav1.1 sodium channels cause epilepsy? Brain Res Rev 2008;58:149-159.
- 21. Schaller KL, Krzemien DM, McKenna NM, Caldwell JH. Alternatively spliced sodium channel transcripts in brain and muscle. J Neurosci 1992;12:1370-1381.
- 22. Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 1997, 120 (Pt 3):479-490.
- 23. Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud'homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 2001;28:46-48.
- 24. Sugawara T, Tsurubuchi Y, Agarwala KL, Ito M, Fukuma G, Mazaki-Miyazaki E, Nagafuji H, Noda M, Imoto K, Wada K, Mitsudome, A., Kaneko, S., Montal, M., Nagata, K., Hirose, S., Yamakawa, K. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U. S. A. 2001;98:6384-6389.
- 25. Deng YH, Berkovic SF, Scheffer IE. GEFS+ where focal seizures evolve from generalized spike wave: video-EEG study of two children. Epileptic Disord 2007:9:307-314.
- 26. Scheffer IE, Wallace R, Mulley JC, Berkovic SF. Clinical and molecular genetics of myoclonic-astatic epilepsy and severe myoclonic epilepsy in infancy (Dravet syndrome). Brain Dev 2001;23:732-735.
- 27. Rhodes TH, Vanoye CG, Ohmori I, Ogiwara I, Yamakawa K, George AL, Jr. Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures. J Physiol

- 2005;569:433-445.
- 28. Wolff M, Casse-Perrot C, Dravet C: Severe myoclonic epilepsy of infants (Dravet syndrome). natural history and neuropsychological findings. Epilepsia 2006;47 Suppl 2:45-48.
- 29. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, Brice A, LeGuern E, Moulard B, Chaigne D, Buresi C., Malafosse, A. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000;24:343-345.
- 30. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68:1327-1332.
- 31. Hirose S, Okada M, Kaneko S, Mitsudome A. Molecular genetics of human familial epilepsy syndromes. Epilepsia 2002;43 Suppl 9:21-25.
- 32. Wallace RH, Hodgson BL, Grinton BE, Gardiner RM, Robinson R, Rodriguez-Casero V, Sadleir L, Morgan J, Harkin LA, Dibbens LM, Yamamoto T, Andermann E, Mulley JC, Berkovic SF, Scheffer IE. Sodium channel alphal-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 2003;61:765-769.
- 33. Wallace RH, Wang DW, Singh R, Scheffer IE, George AL, Jr., Phillips HA, Saar K, Reis A, Johnson EW, Sutherland GR, Berkovic SF, and Mulley JC. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 1998;19:366-370.
- 34. Wallace RH, Scheffer IE, Parasivam G, Barnett S, Wallace GB, Sutherland GR, Berkovic SF, Mulley JC: Generalized epilepsy with febrile seizures plus. mutation of the sodium channel subunit SCN1B. Neurology 2002;58:1426-1429.
- 35. Sugawara T, Mazaki-Miyazaki E, Fukushima K, Shimomura J, Fujiwara T, Hamano S, Inoue Y, Yamakawa K. Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology 2002;58:1122-1124.
- 36. Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus-and prevalence of variants in patients with epilepsy. Am J Hum Genet 2001;68:866-873.
- 37. Fujiwara T, Sugawara T, Mazaki-Miyazaki E, Takahashi Y, Fukushima K, Watanabe M, Hara K, Morikawa T, Yagi K, Yamakawa K, Inoue Y.

- Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 2003;126:531-546.
- 38. Wang JW, Kurahashi H, Ishii A, Kojima T, Ohfu M, Inoue T, Ogawa A, Yasumoto S, Oguni H, Kure S, Fujii T, Ito M, Okuno T, Shirasaka Y, Natsume J, Hasegawa A, Konagaya A, Kaneko S, Hirose S. Microchromosomal deletions involving SCN1A and adjacent genes in severe myoclonic epilepsy in infancy. Epilepsia 2008;49:1528-1534.
- 39. Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K. Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem Biophys Res Commun 2002;295:17-23.
- 40. Harkin LA, McMahon JM, Iona X, Dibbens L, Pelekanos JT, Zuberi SM, Sadleir LG, Andermann E, Gill D, Farrell K, Connolly M, Stanley T, Harbord M, Andermann F, Wang J, Batish SD, Jones JG, Seltzer WK, Gardner A; Infantile Epileptic Encephalopathy Referral Consortium, Sutherland G, Berkovic SF, Mulley JC, Scheffer IE. The spectrum of SCN1Arelated infantile epileptic encephalopathies. Brain 2007;130:843-852.
- 41. Ebach K, Joos H, Doose H, Stephani U, Kurlemann G, Fiedler B, Hahn A, Hauser E, Hundt K, Holthausen H, Müller U, Neubauer BA. SCN1A mutation analysis in myoclonic astatic epilepsy and severe idiopathic generalized epilepsy of infancy with generalized tonic-clonic seizures. Neuropediatrics 2005;36:210-213.

- 42. Lossin C. A catalog of SCN1A variants. Brain Dev 2009;31:114-130.
- 43. Corey LA, Berg K, Pellock JM, Solaas MH, Nance WE, DeLorenzo RJ. The occurrence of epilepsy and febrile seizures in Virginian and Norwegian twins. Neurology 1991;41:1433-1436.
- 44. Tsuboi T, Endo S. Genetic studies of febrile convulsions: analysis of twin and family data. Epilepsy Res Suppl 1991;4:119-128.
- 45. Madia F, Striano P, Gennaro E, Malacarne M, Paravidino R, Biancheri R, Budetta M, Cilio MR, Gaggero R, Pierluigi M, Minetti C, Zara F. Cryptic chromosome deletions involving SCN1A in severe myoclonic epilepsy of infancy. Neurology 2006;67:1230-1235.
- 46. Hirose S, Okada M, Yamakawa K, Sugawara T, Fukuma G, Ito M, Kaneko S, Mitsudome A. Genetic abnormalities underlying familial epilepsy syndromes. Brain Dev 2002;24:211-222.