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ABSTRACT

The method for deriving the analytic solution in the pure pursuit course is presented. The novel
closed form solution for graphing the trajectory of pursuit guidance are validated and compared with the
classical Howe’s method. The Howe’s solution used polar coordinate and was applied in the tail chase
scenario only. Our proposed pursuit guidance law uses rectangular coordinate and it can be applied in the
head-on scenario. Besides, it can further predict the hitting position and arc length of the missile trajectory.
Thus the proposed method is also suitable to many other conditions.

Keywords: Pursuit guidance, Analytical solution, Head-on, Guidance law, Closed-form solution.
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I. INTRODUCTION

In the missile guidance law design phase,
one of the most straightforward means to assure
an intercept is to keep the missile, which must
have velocity superiority, pointed at the target.
This is the principle of pursuit guidance[l] law
which is an alternative terminal guidance law .
The derivation of the pure pursuit course is
provided in the textbooks by Locke[2] and
Howe[3]. In 1955, Locke presented a closed form
solution of pursuer range versus pursuer angular
position. In addition, an advanced closed-form
solution of pure pursuit trajectory for
non-maneuvering targets was derived by Howe in
1965. His analytical procedure of the pursuit
guidance law was frequently cited in the textbook
and people. Since the Howe’s solution is
fundamentally a non-linear, anomalous behavior
(e.g. head-on or singular) associated with polar
coordinate. It is difficult to plot trajectories and
compute the length of arc along missile trajectory
from the Howe’s solution without having an
explicit relationship between instantaneous slant
range, inclination angle of trajectory and the time.
Due to this anomalous behavior, this paper has
centered on the effect of the Cartesian coordinate
system derivation upon trajectory computation
convergence and simplicity. In this paper, a novel
closed-form solution of the differential equations
describing the pursuit trajectory of the pursuer for
non-maneuvering target is discussed. This study
also shows that the scattered published results in
the field of pursuit guidance theory can be derived
directly from a general differential equation
derived from classical geometry.

II. Howe’s closed-form solution

From Fig. 1, we have a fundamental

equation of guidance as:

R=V,cos(f—8,)—V,, cos(B—6) (1)

Vi sin(B-6,)-V,, sin(-0)
R

p= )

X

Fig. 1. Geometry of two-dimensional
homing problem.

where 6, is a function of time (forced
function) and & is dependent on a guidance law.
For simplicity, we assume a non-maneuvering
target with V, = constant. Furthermore, let
6. =0 since we can always reorient the (x, y)
reference system of Fig. 1 [4]. For an ideal pursuit
guidance 6=, and for 6, =0, Eqgs. (1) and (2)
become

R=V,cos -V, 3)

Vs

g = R “4)

The geometry required for deriving the
pursuit course equations of motion is given in Fig.

2. Note that B is not zero unless =0 or 7,
i.e., unless the attack is a head-on or tail chase.
Since =/ in pursuit guidance, the missile will
always have to turn during the attack unless it is a

head-on or tail chase. By eliminating time from
Egs. (3) and (4), we can solve for £ and hence

the missile heading @ as a function of the range
R.

Dividing Eq. (3) by (4), we obtain

d?R = (—cot B+ ycsc B)df Q)
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where y =V, /V,, the ratio of missile to target
velocity. After integration, Eq. (5)

y ,.
T,
R
P
,"” VM
N0 x’
M

Fig. 2. Typical geometry of two-dimensional
pursuit problem.

Becomes

InR =—1n|sinﬁ|+7ln + const

tan ﬁ
2

Assuming that 0< <7z, we can drop the
absolute-value signs and write

Rsin _ R, sin f,

(tan '§)7 (tan ﬂz")’

=K = const (6)

where R, and f; are initial values of range and

line-of-sight angle, respectively. As the missile
approaches the target, R approaches zero. Also
from Eq. (6), it is evident that S must also

approach zero for the left-hand side of Eq. (6) to
keep R be constant. Thus we obtain an important
conclusion that in ideal pursuit guidance, the
trajectory always terminates in a tail chase with
0=0£=0.

Substituting R from Eq. (6) into (4), we
obtain

. V. sin’p
P4 ©

tan )"

(tan ")
Near the trajectory termination, when
p<<1 and sinfz=p, tangsg, Eq. (7)
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becomes

2
K

112

i B (8)

III. Novel closed-form solution

In the same geometry of two-dimensional
homing problem as Fig. 2, the missile path is
considered to be under continuous control
throughout the trajectory. To simplify the
discussion, let us restrict the problem to Cartesian
coordinate, as shown in Fig. 3. Here we designate
target and missile positions with respect to a
two-dimensional inertial frame with coordinates,
(x",¥") . There are two techniques for deriving the
differential equation of pursuit trajectory. Both
techniques lead to a functional relation between
the two variables x and y, not the variables R
and g . This is the major difference between the
Howe’s solution and our proposed one.

Suppose that the curve of the pursuit
trajectory whose length we wish to find is the
graph of x=x(y) from y=0 to y=yp. We
calculate the arc length with the following
equation [5,6]:

(0,]) Vit D=(V,S/V,.1)
y 1
Los, -
x=x(y)
v/'// M
x.y)
S
X’
(0,0)

Fig. 3. Typical geometry of pursuit in
Cartesian coordinate.

Fig. 3 shows the path of the missile that
moved from point (0,0) to point (x,y) and the

path of the target that moved from point (0,/) to

point (;—TS,I). In an ideal pursuit course, the
M
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tangent line of x=x(y) passing through point

(x,y)Wa’ +b*> is line-of-sight (LOS), and thus
we have

d %S_x
LS T (10)
dy -y
From this, we see
dx S
(I-y)—=—-x (11)
dy 'y

Differentiating Eqs. (9) and (11) by variable
¥y, we obtain

das dx ,
d_y_ f1+(5) (12)

d’x 1dS
(I—J’)F=——

(13)
"y dy

Substituting Eq. (12) into Eq. (13), we get

d*x 1 dx
- =— [1+(=)’ 14
( y)a,y2 74/ +(dy) (14)

If now we consider a general condition that
the position of missile and target are given by

(y)=@@),y@®)  and (o +Vi0.0)
respectively, Here ¢ is time to reach
instantaneous position and x;,is initial distance

between missile and target in x'-direction. Note

dx
dx _ %{t:xTOiVTt—x (15)

dy_d%t [—y

From this, we see

(Z—y)ﬂziVTz—x (16)
dy

Differentiating Eq. (16) by variable y, we
obtain

2
d ol 4y At (17)
dy dy

(=)

From the definition of velocity, we have

dx,  dy, dy dx ,
M ‘/(dt) (dt) & (dy)

Similarly, ar = 2 1+ (ﬁ)2 (18)
dy Vy dy

Substituting Eq. (18) into Eq. (17), we obtain
the similar result as follows:

2
(LS It
dy” 7 dy

(+: outgoing,—:incomin g) (19)

Eq. (19) is an important differential equation
to govern the behavior of pursuit course.
Therefore, the missile path trajectories are a
family of differential equations defined by Eq.
(19) [7,8].

Assume that the missile is initially at rest at
point (0,0). Then the initial condition of the
governing equation is

X(0)=0
x'(0)=0

Then according to Eq. (14), we have

dx' _ 1 dy
JI+(x)? 7 (=)

(20)

By integrating Eq. (20), we have

1
In[x'+/1+(x')*]=In(l-y) 7 +In¢, (21)
where ¢, isa constant, and then

1

X Jl+ () =¢(I-y) 7 (22)
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2

1+(x)Y =¢2(-y) 7

1 (23)
=2¢,(I=y) " X'+ (x')’
Let Eq. (23) expansions for x(y) be
2
., ct(l-y) 7 -1
w=x(y) =D ol
2a(-y) 7 (24)

1

Sla=9) 7 =—(="]

G
Solving for x" from x'(0)=0, we obtain

1 1
x(O):—(cl 7 —izy) 0, ¢,=1"

G

1

By applying ¢, =17,

Eq. (24) can be rewritten as

x'=x'(y)=
Lt I 1 (25)
5[17(1—y) T=T(=y)]
Integrating Eq. (25), we obtain
s =T
2 1+y
! (26)

1 s

— 1 V(] — /4
1_/ (- T+,
e

where ¢, isa constant.

By applying x(0)=0, Eq. (26) becomes

1 1+l

! o
X(O)—E[Wl (=)

L

———1"(I-y) "1+¢,=0

=)
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get c—l( ! ! )j
b 2__—_—
21-1 141
Sy

Again, by substituting

1 1 1

Eq. (26) can be converted into the form as
follows:

1
x(y) —5[1

L

1

1

1+—

l}/l_ e
v

1 1

1
- 17 (] - y 27

PR S Y
21-V 141
Jr

By applying the result of Eq. (27), when y

closesto / and /-y — 0", we note that
1 7
) = [

1- / 1+ / y -1

Homing problem is inherently a “final value”,
i.e., nearly intercept. The missile hits the target at

x—)(

s=—2 | (28)

Eq. (28) could be derived by using the
properties of arc length given in Eq. (9) readily.
From Eq. (9) and Eq. (25), we deduce

S=J‘;1/1+(x’)2dy

~fieg Ly rpa

= yV G
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1 1 1

A=y Ay iy

l+1
,(—y)

1
+1
[ 7 (Z y)}/ ]:l
y+1 -1/
Y Y

2

1,1 1 7
=—( + ) = ! (29)
21+ Vo 1-1 21
PR A

Eq. (28)=Eq. (29).

IV. Hlustrative Example

In this section, we consider some realistic
examples to illustrate the performance of the
proposed skill and compare it to the Howe’s
closed form and the exact solution. The tests use
three scenarios. Three types of target engagement:

an outgoing target (S, = % ), an outgoing target
(B, = % ) and an incoming target ( 5, = % ) are

considered. In the numerical example, we are also
concerned with the arc length as well as with the
effectiveness of the proposed schemes of the
simple closed form solution.

A. Outgoing target (5, = % )

Assume that the target moves with fixed
velocity, V; =100m/sec , and fixed heading,

0,=0.
velocity, ¥, =300m/sec, is launched at an initial

Assume that the missile with fixed

range, R, =2000m, and initial line-of-sight angle,

Notice that when Howe’s skill is

V4

By = 5

employed [9-11], substituting y = Vf‘/ =3 and
p

sin ff = ZSinzcosg into the Eq. (7), we obtain

4V, sin’ ﬁcosz P
B=- 2
- ﬂ 2

sin =
2

K
cos

4V, cos’ = ﬂ
== (30)
K sinﬁ
2
Thenas B, = %,sinﬂo =1 and
tan Z % =1, Eq. (6) becomes
R, =K (31)

Substituting the Eq. (31) into the Eq. (30),
the LOS rate, ﬂ ,1s

) 4V, cos’ = ﬂ 4V, c0s6§
p=- -- (32)
R, sinﬁ R, sin s cosﬁ
2 2
By noting that.
0S2£:l+cosﬁ nd smﬂcosﬁzM
2 2 2 2 2
Eq. (32) can be written as:
G- V,(1+cos B)’
R,sin B
LNy S (33)
(1 +cos f)’ R,

Integrating both side of Eq. (33), then we can
write

1
2(1+cos B)’ fo
1 1 Vit

(34)
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Substituting Eq. (31) into Eq. (6), we have

B,
Ryttan’)

R n p (35)

In this case, by using the Eqgs. (34) and (35)
repeatedly, we can calculate the position of target
and missile relative to target. The plot of the
trajectories is drawn in Fig. 4. To implement the
simple closed form of pursuit course, Eq. (27) is
employed directly. Numerical results have been
obtained using a computer program and plotted in
Fig.4.

Fig. 4. depicts the trajectories of the Howe’s
solution and our proposed solution, which are
identified by the symbols “-”

and “o” respectively.
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Numerical results show that trajectory obtained
by the simple closed form is same to that obtained
by the Howe’s solution. According to proposed
skill, the interception point is

(—L—1,1) =(750,2000)..
y =1

We may draw a cross point upon the line of
missile path and target path. Of the two observers
shown, the position of the interception point is
(750,2000).

As expected, the position of the
interception point is very close to the

predictive position, (2Lll,l) .
7/ p—

Outgoing target, LOS(0)=90Deg.

1800~~~ -

1600F ~——— - - -

1400~ — =~ Ao g

1200F ———— - g -

Eiooor - - - -
>

80O —— - -

600 & ~ -

4008 - - -

2008~

P target

******* = simple closed form solution|—

© Howe's solution
T

Fig. 4. Trajectory for outgoing target with 3, =90 Deg.

This pattern, which was manifest during all

tests, is precisely that the proposed solution

4

2

[, we can calculate
y -1

predicts. Knowing

2

4

2

y =1
S . In the case A, S=2250m , the proposed

/', which is arc length along the trajectory,

solution is simpler and more convenient than the
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Howe’s solution.
B. Outgoing target (5, = %)

The missile velocity is chosen as that in the
case A. The initial conditions of the engagement
are given by 6, =45deg, x,,=2000m . The
target is outgoing with a constant speed same to
that in the case A. From Eq. (6), given the missile
initial range R, and the initial LOS angle 6,,

we can compute the constant K as

2 %2000 sin
K= 4 _28142. (36)
(tan%)3

From Eq. (30),

we have ; h= it o or the
2(1+cos f)’ n K
functional relationships.
S =cos” ! -1 (37)
\/ 03432- 21
28142

Substituting Eq. (37) into Eq. (6) gives

28142(tan £)3
R=— 2 (38)
sin

The recursive target location and missile
position algorithm for the pursuit trajectory are
employed as Egs. (37) and (38), respectively. We
can gain information about the shape of the

trajectory graph if we know the Egs. (37) and (38).

Finally, we plot the points and use the information
about how the LOS line shortens and rotates to
complete the sketch, as shown in Fig.5.

About the proposed skill, we have
established that the trajectory of the pursuit course

is Eq. (24) for some values of ¢,. To find out
them, we substitute the initial conditions
x(0)=0 and x'(0)=1 into Eq. (24). The

solution we seek is therefore

1
1——
#V(l » 7

(39)

where y=3 and [/=2000m.

We sketch the curve of Eq. (39) in Fig. (5).
Substituting the final value into Eq. (39), the
interception point gives:

[
ERSRaSL Yy o)

= (3310.66,2000)

Since

2
2
MNP B a4

yoor-
the arc length of pursuit course in the case B,
V27 2" + ey,

]/ p—
S§'=3931.98m .

S, 1is and therefore we obtain

Fig. 5 shows that the curves for the Howe’s
solution and the proposed solution are almost the
same. Again the position of the interception point
is almost the same as that of the proposed
solution.

-90 -



PEEER F2L2% 59 9611
JOURNAL OF C.C.1.T, VOL. 36, NO. 1, NOV, 2007

Outgoing target, LOS(0)=45Deg.

2000

1800 — ~ — = -

1600 — — — - -

- — — b — — 4 —

1400 — = =~ -4 - - - - -~

1200~~~ ~q - S

E 1000 - - - - -
>

800 — — — -~ -

- - — L - — 4 —
Y B

[ i 2

T

b target
— — — —| = simple closed form solution| |
© Howe's solution

T T

1500

x(m)

3500

Fig. 5. Trajectory for outgoing target with 3, =45 Deg.

C. Incoming target ( 5, = % )

x'=x'(y)

g -La-n @b
Referring to Ref. 4, the relationship to Eq. (6) 2 G
leads to the property of pursuit guidance which
terminates in a tail chase, that is, B(7,)=0, for By applying initial values x(0)=0 and
all case except the head-on case. Note that ﬂ =0 x'(0)=1,
if f=0,7.Therefore B will always be varying we have
unless S =0,7, which implies a head-on or tail 11 [ L Lt
chase path. Consequently, since &=/4 , the x(y):E[m_lﬂ (I-y) 7
missile must be continuously turning if f=0,7, 1-—
a situation which is singular. When the pursuit 1 1}/
equation is solved as Eq. (38), B=cos'(e), —1+{l 7(l—y)1+’] (42)

—1<(0)<1 is assumed. In this case we shall
approach head-on problems that have some
nonlinearity in the Howe’s solution. Of course, the
presence of nonlinearity does not, in itself, insure
that an interception point exists. [12,13] The
proposed solution was validated using a scenario
of incoming target with initial LOS angle,

B, = % The first detection of position (2000m,
2000m) and LOS angle (% 4) which are adopted as

the “lock on” point and the initial values.
According to the incoming condition of Eq. (19),
the pursuit equation can be rewritten as:

-91] -
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the position of the interception point is
P2
(yz—_lyu) .

Since
2
Xpo = Vot =Xy _£S:[_§:72—\/§7[,
Vv 7 y -1

the arc length along the trajectory can be
obtained from the interception point as:

2_
S:@l (43)
y -1

We plot Eq. (42) over 0<y<2000m to

check its shape and the interception point. The
graph goes up, as shown in Fig. 6.

Fig. 6 shows that the position of the
interception point is almost the same as that of the

proposed solution. As we can see in Fig. 6, y
increases as X increases in the initial time, but the
position of the curve that lies over the point
(slop=00) changes to different ways, and then y
decreases as x increases. The graph of Fig. 6 is
concave up with the tangent turning
counterclockwise over 0< £ <. This is the major

difference between Fig. 6, Fig. 4, and 5 . The Figs. 4
and 5 are concave down with tangent turning

; T
clockwise over 0< < A .

We plot Fig. 7 and put in enough detail to
identify the truth that Fig. 6 appears for incoming
engagement. The results demonstrate that the
velocities of missile and target are same under given
conditions. The path angle follows the LOS angle,
0=/, which clearly shows that the proposed

solution is very close to the ideal pursuit course.

2000 T T T
| | | |
| | | |
1800 — — — J— — — L 1L
| | | |
| | | |
| | | |
1600~~~ -~~~ - -~ -~~~ 7~ —
| | | |
| | | |
1400 — = = Ak
| | | |
| | | |
| | | |
1200k =~ 9~~~ ~—yp -~ ~~" 9~~~ ~-7 -~
| | | |
_ | | | |
LE,1OOO****4****F****\****Jr
> | | | |
| | |
800F - ———-—---L——— ‘
| | | |
| | | |
| | |
600 ———A-———t+ - M- — -+ - —
| | | |
| | | |
| | |
400 | | | |
| | | |
| | | |
200F —— - A~ ——r - -~ -~ -1~
| | | |
| | | |
I I I I
0 200 400 600 800

A

N
A
A
A
A

_ |- target B
=& simple closed form solution

|
|
I
1000 1200 1400 1600 1800 2000

x(m)

Fig. 6. Trajectory for incoming target with ,30 =45 Deg.

-9) .-



Missile Velocity, Target Velocity,

PLEEE S22 % B4 9611,
JOURNAL OF C.C.I.T, VOL. 36, NO. 1, NOV, 2007

LOS Angle and Path Angle

400 T T T T T T T T
| | | | | | — missile velocity
I I I I I I -@--target velocity
,,,,,, B [ -
350 | | | | | | —©-LOS angle
: : : : : : -%--path angle
| | | | | |
300 -
| | | | | |
| | | | | |
— | | | | | |
D50 - [ AR S : . |
o | | | | | |
[} | | | | | |
° l l l l l l
S200F - e e e :
N | | | | |
Q : l l l l
Ers0- - TR SRREEES SRR - |
> | | | | |
‘O | | | | |
(o] | | | | | | |
D 100 - ®-—0+-0-——0-——-@——0——-0-—-0——0 ——0-—-@—— -0+~ — =@+ ——-@-—— G~ —0——-@ —
| | | | | | |
> | | | |
| | | |
| | o be
50 - g B ==
| | | |
l l l l
O R EREREE RS SR SRR
| | | |
l l l l
N I I I I
500 1 2 3 4
seconds

Fig. 7. Computation results of case C by proposed solution.

V. CONCLUSIONS

The algorithms presented a novel approach,
instead of a classical solution derived by Howe, to
obtain a good solution in the pursuit guidance
problem. The proposed method is sufficiently robust
to face the lack of a head-on solution, and the
computational cost is affordable. This paper has
demonstrated that the essential technique has been
applied in the design of a pursuit problem. The
methods actually offer great advantages of using the
Cartesian coordinate variables to determine the
trajectory, inception point and path length of pursuit
course.
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