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ABSTRACT 
 

The method for deriving the analytic solution in the pure pursuit course is presented. The novel 
closed form solution for graphing the trajectory of pursuit guidance are validated and compared with the 
classical Howe’s method. The Howe’s solution used polar coordinate and was applied in the tail chase 
scenario only. Our proposed pursuit guidance law uses rectangular coordinate and it can be applied in the 
head-on scenario. Besides, it can further predict the hitting position and arc length of the missile trajectory. 
Thus the proposed method is also suitable to many other conditions. 
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摘要 

 
本文係研究純追逐導引軌跡之解析解法，經推導可得出一組新的封閉解，經與舊有導引律常

用之 Howe 解法比對檢驗，Howe 解法之特點為使用極座標解析，僅能適用於尾追目標場景。本文

解法則適用於直角座標解析，並增加了迎頭追逐場景，此外並可計算出撞擊點與軌跡弧長，本文

之解析方法可更廣泛運用於各導引追逐場景。 
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I.  INTRODUCTION 
In the missile guidance law design phase, 

one of the most straightforward means to assure 
an intercept is to keep the missile, which must 
have velocity superiority, pointed at the target. 
This is the principle of pursuit guidance[1] law 
which is an alternative terminal guidance law . 
The derivation of the pure pursuit course is 
provided in the textbooks by Locke[2] and 
Howe[3]. In 1955, Locke presented a closed form 
solution of pursuer range versus pursuer angular 
position. In addition, an advanced closed-form 
solution of pure pursuit trajectory for 
non-maneuvering targets was derived by Howe in 
1965. His analytical procedure of the pursuit 
guidance law was frequently cited in the textbook 
and people. Since the Howe’s solution is 
fundamentally a non-linear, anomalous behavior 
(e.g. head-on or singular) associated with polar 
coordinate. It is difficult to plot trajectories and 
compute the length of arc along missile trajectory 
from the Howe’s solution without having an 
explicit relationship between instantaneous slant 
range, inclination angle of trajectory and the time. 
Due to this anomalous behavior, this paper has 
centered on the effect of the Cartesian coordinate 
system derivation upon trajectory computation 
convergence and simplicity. In this paper, a novel 
closed-form solution of the differential equations 
describing the pursuit trajectory of the pursuer for 
non-maneuvering target is discussed. This study 
also shows that the scattered published results in 
the field of pursuit guidance theory can be derived 
directly from a general differential equation 
derived from classical geometry. 
 

II. Howe’s closed-form solution 
 From Fig. 1, we have a fundamental 

equation of guidance as: 
 

cos( ) cos( )T T MR V Vβ θ β θ= − − −&      (1) 

 

sin( ) sin( )T T MV V
R

β θ β θβ − − −
= −&     (2) 

 

Fig. 1. Geometry of two-dimensional  
homing problem. 
 
where Tθ  is a function of time (forced 

function) and θ  is dependent on a guidance law. 
For simplicity, we assume a non-maneuvering 
target with TV = constant. Furthermore, let 

0Tθ =  since we can always reorient the ( x , y ) 
reference system of Fig. 1 [4]. For an ideal pursuit 
guidance θ β= , and for 0Tθ = , Eqs. (1) and (2) 
become 

 
cosT MR V Vβ= −&                   (3) 

 

R
VT β

β
sin

−=&                     (4) 

 
The geometry required for deriving the 

pursuit course equations of motion is given in Fig. 
2. Note that β&  is not zero unless 0β =  or π , 
i.e., unless the attack is a head-on or tail chase. 
Since θ β=& &  in pursuit guidance, the missile will 
always have to turn during the attack unless it is a 
head-on or tail chase. By eliminating time from 
Eqs. (3) and (4), we can solve for β  and hence 
the missile heading θ  as a function of the range 
R . 

 
Dividing Eq. (3) by (4), we obtain 

 ββγβ d
R

dR )csccot( +−=           (5) 
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where /M TV Vγ = , the ratio of missile to target 
velocity. After integration, Eq. (5) 
  

 
Fig. 2. Typical geometry of  two-dimensional  

pursuit problem. 
 
Becomes 

ln ln sin ln tan
2

R constββ γ= − + +  

Assuming that 0 β π≤ ≤ , we can drop the 
absolute-value signs and write 

 
0 0

0

sinsin

(tan ) (tan )
2 2

RR K const
γ γ

ββ
β β

= = =          (6) 

 
where 0R  and 0β  are initial values of range and 
line-of-sight angle, respectively. As the missile 
approaches the target, R  approaches zero. Also 
from Eq. (6), it is evident that β  must also 
approach zero for the left-hand side of Eq. (6) to 
keep R be constant. Thus we obtain an important 
conclusion that in ideal pursuit guidance, the 
trajectory always terminates in a tail chase with 

0θ β= = . 
Substituting R  from Eq. (6) into (4), we 

obtain 
2sin

(tan )
2

TV
K γ

ββ
β

= −&                    (7) 

 
Near the trajectory termination, when 

1β <<  and sin β β≅ , tan
2 2
β β
≅ , Eq. (7) 

becomes 
 

22TV
K

γ
γβ β −≅ −&                     (8) 

 
III. Novel closed-form solution 

 
In the same geometry of two-dimensional 

homing problem as Fig. 2, the missile path is 
considered to be under continuous control 
throughout the trajectory. To simplify the 
discussion, let us restrict the problem to Cartesian 
coordinate, as shown in Fig. 3. Here we designate 
target and missile positions with respect to a 
two-dimensional inertial frame with coordinates, 
( ', ')x y . There are two techniques for deriving the 
differential equation of pursuit trajectory. Both 
techniques lead to a functional relation between 
the two variables x  and y , not the variables R  
and β . This is the major difference between the 
Howe’s solution and our proposed one. 

Suppose that the curve of the pursuit 
trajectory whose length we wish to find is the 
graph of ( )x x y=  from 0y =  to y y= . We 
calculate the arc length with the following 
equation [5,6]: 

 

Fig. 3. Typical geometry of pursuit in 
Cartesian coordinate. 

 
Fig. 3 shows the path of the missile that 

moved from point (0,0)  to point ( , )x y  and the 
path of the target that moved from point (0, )l  to 

point ( , )T

M

V S l
V

. In an ideal pursuit course, the 
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tangent line of ( )x x y=  passing through point 
2 2( , )x y a b+  is line-of-sight (LOS), and thus 

we have 
 

T

M

V S x
Vdx

dy l y

−
=

−
                    (10) 

 
From this, we see 
 

( ) dx Sl y x
dy γ

− = −                   (11) 

 
Differentiating Eqs. (9) and (11) by variable 

y , we obtain 
 

21 ( )dS dx
dy dy

= +                    (12) 

 
2

2

1( ) d x dSl y
dy dyγ

− =                  (13) 

 
Substituting Eq. (12) into Eq. (13), we get 
 

2
2

2

1( ) 1 ( )d x dxl y
dy dyγ

− = +            (14) 

 
If now we consider a general condition that 

the position of missile and target are given by 
( , ) ( ( ), ( ))x y x t y t=  and 0( , )T Tx V t l+ , 
respectively, Here t  is time to reach 
instantaneous position and 0Tx is initial distance 
between missile and target in 'x -direction. Note 

 

0T T
dx x V t xdx dt
dydy l y

dt

± −
= =

−
           (15) 

 
From this, we see 

( ) T
dxl y V t x
dy

− = ± −                 (16) 

 
Differentiating Eq. (16) by variable y , we 

obtain 
 

2

2( ) T
d x dtl y V
dy dy

− = ±                 (17) 

 
From the definition of velocity, we have 
 

2 2 2( ) ( ) 1 ( )M
dx dy dy dxV
dt dt dt dy

= + = +   

 

Similarly, 21 1 ( )
M

dt dx
dy V dy

= +         (18) 

 
Substituting Eq. (18) into Eq. (17), we obtain 

the similar result as follows: 
2

2
2

1( ) 1 ( )d x dxl y
dy dyγ

− = ± +

( : , : min )outgoing inco g+ −               (19) 
 
Eq. (19) is an important differential equation 

to govern the behavior of pursuit course. 
Therefore, the missile path trajectories are a 
family of differential equations  defined by Eq. 
(19) [7,8]. 

Assume that the missile is initially at rest at 
point (0,0). Then the initial condition of the 
governing equation is 

 
0)0( =x  
0)0( =′x  

 
Then according to Eq. (14), we have 
 

2

1
( )1 ( )

dx dy
l yx γ

′
=

−′+
               (20) 

 
By integrating Eq. (20), we have 
 

1
2

1ln[ 1 ( ) ] ln( ) lnx x l y cγ
−

′ ′+ + = − +       (21) 
 

where 1c  is a constant, and then 
 

1
2

11 ( ) ( )x x c l y γ
−

′ ′+ + = −            (22) 
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2
2 2

1
1

2
1

1 ( ) ( )

2 ( ) ( )

x c l y

c l y x x

γ

γ

−

−

′+ = −

′ ′− − +

               (23) 

 
Let Eq. (23) expansions for ( )x y  be  
 

2
2

1
1

1
1 1

1
1

( ) 1( )
2 ( )

1 1[ ( ) ( ) ]
2

c l yx x y
c l y

c l y l y
c

γ

γ

γ γ

−

−

−

− −′ ′= = =

−

− − −

         (24) 

 
Solving for x′  from (0) 0x′ = , we obtain 
 

1 1

1
1

1 1(0) ( ) 0
2

x c l l
c

γ γ
−

′ = − = , 
1

1c l γ=  

 

By applying 
1

1c l γ= ,  
 
Eq. (24) can be rewritten as 
 

1 1 1 1

( )

1 [ ( ) ( ) ]
2

x x y

l l y l l yγ γ γ γ
− −

′ ′= =

− − −
          (25) 

 
Integrating Eq. (25), we obtain 
 

1 11

1 11

2

1 1( ) [ ( )12 1

1 ( ) ]11

x x y l l y

l l y c

γ γ

γ γ

γ

γ

− +

−

= = −
+

− − +
−

      (26) 

 
where 2c  is a constant. 
 
By applying (0) 0x = , Eq. (26) becomes 

1 11

1 11

2

1 1(0) [ ( )12 1

1 ( ) ] 011

x l l y

l l y c

γ γ

γ γ

γ

γ

− +

−

= −
+

− − + =
−

 

, get  2
1 1 1( )1 12 1 1

c l
γ γ

= −
− +

 

 
Again, by substituting  
 

2
1 1 1( )1 12 1 1

c l
γ γ

= −
− +

,  

 
Eq. (26) can be converted into the form as 

follows: 
1 11

1 11

1 1( ) [ ( )12 1

1 ( ) ]11

1 1 1( )1 12 1 1

x y l l y

l l y

l

γ γ

γ γ

γ

γ

γ γ

− +

−

= −
+

− −
−

+ −
− +

         (27) 

 
By applying the result of Eq. (27), when y  

closes to l  and 0l y +− → , we note that 

2

1 1 1( )1 12 11 1
x l lγ

γγ γ
→ − =

−− +
 

Homing problem is inherently a “final value”, 
i.e., nearly intercept. The missile hits the target at 

the point 2( , )
1

l lγ
γ −

.  

Since  

2 1
T

T
M

V SV t S l
V

γ
γ γ

= = =
−

,  

 
we can see 
 

2

2 1
S lγ

γ
=

−
                       (28) 

 
Eq. (28) could be derived by using the 

properties of arc length given in Eq. (9) readily. 
From Eq. (9) and Eq. (25), we deduce 

 
2

0
1 ( )

l
S x dy′= +∫  

1 1 1
2 2

0

1{1 [( ) ( ) ] }
4

l l y l dy
l l y

γ γ−
= + −

−∫
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1 1 1 1

0

1 [ ( ) ( ) ]
2

l
l l y l l y dyγ γ γ γ
− −

= − + −∫
1 11 11 1

0
1 ( ) ( )[ ]1 12 1 1

y l
y

l y l yl l
γ γ

γ γ

γ γ

+ − +
−

=
=

− −
= +

−+ +

1 1 1( )1 12 1 1
l

γ γ
= +

+ −

2

2 1
lγ

γ
=

−
          (29) 

 
Eq. (28)≡Eq. (29).       

 

IV. Illustrative Example 
In this section, we consider some realistic 

examples to illustrate the performance of the 
proposed skill and compare it to the Howe’s 
closed form and the exact solution. The tests use 
three scenarios. Three types of target engagement: 
an outgoing target ( 0 2

πβ = ), an outgoing target 

( 0 4
πβ = ) and an incoming target ( 0 4

πβ = ) are 

considered. In the numerical example, we are also 
concerned with the arc length as well as with the 
effectiveness of the proposed schemes of the 
simple closed form solution. 

 

A. Outgoing target ( 0 2
πβ = ) 

Assume that the target moves with fixed 
velocity, 100 secTV m= , and fixed heading, 

0Tθ = . Assume that the missile with fixed 
velocity, 300 secTV m= , is launched at an initial 
range, 0 2000R m= , and initial line-of-sight angle, 

0 2
πβ = . Notice that when Howe’s skill is 

employed [9-11], substituting 3M

T

V
Vγ = = and 

sin 2sin cos
2 2
β ββ = into the Eq. (7), we obtain 

2 2

3

4 sin cos
2 2

sin
2

cos
2

TV

K

β β

β
β

β

= −
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

&          

54 cos
2

sin
2

TV

K

β

β
= −                     (30) 

Then as 0 0,sin 12
πβ β= =  and 

0tan 12
β = , Eq. (6) becomes 

 
0R K=                           (31) 

 
Substituting the Eq. (31) into the Eq. (30), 

the LOS rate, β& , is 
 

5 6

0 0

4 cos 4 cos
2 2

sin sin cos
2 2 2

T TV V

R R

β β

β
β β β

= − = −&       (32) 

 
By noting that. 
 

2 1 coscos
2 2
β β+
=  and sinsin cos

2 2 2
β β β

=  

 
Eq. (32) can be written as: 
 

3

0

(1 cos )
sin

TV
R

ββ
β

+
= −&  

or 3
0

sin
(1 cos )

TVd dt
R

β β
β

= −
+

              (33) 

 
Integrating both side of Eq. (33), then we can 

write 
 

0 02
0

1
2(1 cos )

tTV t
R

β
ββ
= −

+

2
0

1 1
2(1 cos ) 2

TV t
Rβ

⇒ − = −
+

0

1cos 121 TV t
R

β⇒ = −
−

 

1

0

1cos 121 TV t
R

β −

⎛ ⎞
⎜ ⎟
⎜ ⎟⇒ = −
⎜ ⎟−⎜ ⎟
⎝ ⎠

            (34) 
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Substituting Eq. (31) into Eq. (6), we have 
 

0 (tan )
2

sin

R
R

γβ

β
=                     (35) 

 
In this case, by using the Eqs. (34) and (35) 

repeatedly, we can calculate the position of target 
and missile relative to target. The plot of the 
trajectories is drawn in Fig. 4. To implement the 
simple closed form of pursuit course, Eq. (27) is 
employed directly. Numerical results have been 
obtained using a computer program and plotted in 
Fig.4. 

Fig. 4. depicts the trajectories of the Howe’s 
solution and our proposed solution, which are 
identified by the symbols “-” and “o” respectively. 

Numerical results show that trajectory obtained 
by the simple closed form is same to that obtained 
by the Howe’s solution. According to proposed 
skill, the interception point is 

2( , ) (750,2000)
1

l lγ
γ

=
−

.  

We may draw a cross point upon the line of 
missile path and target path. Of the two observers 
shown, the position of the interception point is 
(750,2000). 

As expected, the position of the 
interception point is very close to the 

predictive position, 2( , )
1

l lγ
γ −

.  
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Fig. 4. Trajectory for outgoing target with 0β =90 Deg. 

 

This pattern, which was manifest during all 
tests, is precisely that the proposed solution 

predicts. Knowing 2 1
lγ

γ −
, we can calculate 

2

2 1
lγ

γ −
, which is arc length along the trajectory, 

S . In the case A, 2250S m= , the proposed 

solution is simpler and more convenient than the 
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 Howe’s solution. 
 

B. Outgoing target ( 0 4
πβ = ) 

 
The missile velocity is chosen as that in the 

case A. The initial conditions of the engagement 
are given by 0 45degθ = , 0 2000Tx m= . The 
target is outgoing with a constant speed same to 
that in the case A. From Eq. (6), given the missile 
initial range 0R  and the initial LOS angle 0θ , 
we can compute the constant K  as 

 

 
3

2 2000 sin
4 28142

(tan )
8

K

π

π

× ×
= = .      (36) 

 
From Eq. (30),  
 

we have 02
4

1
2(1 cos )

tTV t
K

β
πβ
= −

+
 or the 

functional relationships. 
 
 

  1 1cos 120.3432
28142

TV tβ −

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

       (37) 

 
 

Substituting Eq. (37) into Eq. (6) gives  
 

328142(tan )
2

sin
R

β

β
=                  (38) 

 
The recursive target location and missile 

position algorithm for the pursuit trajectory are 
employed as Eqs. (37) and (38), respectively. We 
can gain information about the shape of the 
trajectory graph if we know the Eqs. (37) and (38). 
Finally, we plot the points and use the information 
about how the LOS line shortens and rotates to 
complete the sketch, as shown in Fig.5. 

About the proposed skill, we have 
established that the trajectory of the pursuit course 

is Eq. (24) for some values of 1c . To find out 
them, we substitute the initial conditions 

(0) 0x =  and (0) 1x′ =  into Eq. (24). The 
solution we seek is therefore 

 
 

1 11

1 11

1 1 1( ) [ ( )12 1 2 1

1 2 ( )11

1 2 1 1( ) ]1 11 21 1

x y l l y

l l y

l

γ γ

γ γ

γ

γ

γ γ

−

− +

= −
− −

−
− −

+

−
+ −

−+ −

      (39) 

 
 
where 3γ =  and 2000l m= . 
 
We sketch the curve of Eq. (39) in Fig. (5). 

Substituting the final value into Eq. (39), the 
interception point gives:  

 
2

2

2( , ) ( , )
1

(3310.66,2000)

f fx y l lγ γ
γ
+

=
−

=

           (40) 

 
Since  
 

2

0 2

2
1T T

Sx V t l lγ γ
γ γ

+
+ = + =

−
,  

 
the arc length of pursuit course in the case B, 

S , is 
2

2

2
1

lγ γ
γ

+
−

 and therefore we obtain 

3931.98S m= . 
 
Fig. 5 shows that the curves for the Howe’s 

solution and the proposed solution are almost the 
same. Again the position of the interception point 
is almost the same as that of the proposed 
solution. 
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Fig. 5. Trajectory for outgoing target with 0β =45 Deg. 

 

C. Incoming target ( 0 4
πβ = ) 

 
Referring to Ref. 4, the relationship to Eq. (6) 

leads to the property of pursuit guidance which 
terminates in a tail chase, that is, ( ) 0ftβ = , for 

all case except the head-on case. Note that 0β =&  
if 0,β π= . Therefore β&  will always be varying 
unless 0,β π= , which implies a head-on or tail 
chase path. Consequently, since θ β= , the 
missile must be continuously turning if 0,β π≠ , 
a situation which is singular. When the pursuit 
equation is solved as Eq. (38), 1cos ( )β −= • , 

1 ( ) 1− ≤ • ≤  is assumed. In this case we shall 
approach head-on problems that have some 
nonlinearity in the Howe’s solution. Of course, the 
presence of nonlinearity does not, in itself, insure 
that an interception point exists. [12,13] The 
proposed solution was validated using a scenario 
of incoming target with initial LOS angle, 

0 4
πβ = . The first detection of position (2000m, 

2000m) and LOS angle ( )4
π which are adopted as 

the “lock on” point and the initial values. 
According to the incoming condition of Eq. (19), 
the pursuit equation can be rewritten as: 

1 1

1
1

( )

1 1[ ( ) ( ) ]
2

x x y

c l y l y
c

γ γ
−

′ ′=

= − − −
         (41) 

 
By applying initial values (0) 0x =  and 

(0) 1x′ = ,  
we have 
 

1 11

1 11

1 1 1( ) [ ( )12 1 2 1

1 2 ( ) ]11

1 1 2 1 1[ ]1 12 1 21 1

x y l l y

l l y

l

γ γ

γ γ

γ

γ

γ γ

−

− +

= −
+ −

+
− −

+

+
+ −

++ −

      (42) 

 
When  
 
y l−→ ,  

2

2

2( )
1

x l lγ γ
γ
−

=
−

,
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 the position of the interception point is  
2

2

2( , )
1

l lγ γ
γ
−
−

.  

Since  
2

0 0 2

2
1

T
T T T

M

V Sx V t x S l l
V

γ γ
γ γ

−
− = − = − =

−
,  

the arc length along the trajectory can be 
obtained from the interception point as: 

 
2

2

2
1

S lγ γ
γ

−
=

−
                      (43) 

 
We plot Eq. (42) over 0 2000y m≤ ≤  to 

check its shape and the interception point. The 
graph goes up, as shown in Fig. 6. 

Fig. 6 shows that the position of the 
interception point is almost the same as that of the 

proposed solution. As we can see in Fig. 6, y 
increases as x increases in the initial time, but the 
position of the curve that lies over the point 
(slop=∞ ) changes to different ways, and then y 
decreases as x increases. The graph of Fig. 6 is 
concave up with the tangent turning 
counterclockwise over 0 β π≤ ≤ . This is the major 
difference between Fig. 6, Fig. 4, and 5 . The Figs. 4 
and 5 are concave down with tangent turning 
clockwise over 0 2

πβ≤ ≤ . 

We plot Fig. 7 and put in enough detail to 
identify the truth that Fig. 6 appears for incoming 
engagement. The results demonstrate that the 
velocities of missile and target are same under given 
conditions. The path angle follows the LOS angle, 
θ β= , which clearly shows that the proposed 
solution is very close to the ideal pursuit course.
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Fig. 6. Trajectory for incoming target with 0β =45 Deg. 
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Fig. 7. Computation results of case C by proposed solution. 

 

V. CONCLUSIONS 

The algorithms presented a novel approach, 
instead of a classical solution derived by Howe, to 
obtain a good solution in the pursuit guidance 
problem. The proposed method is sufficiently robust 
to face the lack of a head-on solution, and the 
computational cost is affordable. This paper has 
demonstrated that the essential technique has been 
applied in the design of a pursuit problem. The 
methods actually offer great advantages of using the 
Cartesian coordinate variables to determine the 
trajectory, inception point and path length of pursuit 
course. 
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