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ABSTRACT  

 
In this paper, a simple smeared crack dilatancy model is proposed. This model assumed that by 

increasing the shear slip, a certain amount of volumetric increase would be caused. This leads to either 
free expansion or an increase in the compressive stress if confined. In such a way, the dilatancy effect 
could be simulated by considering the amount of volumetric change or the change in compressive stress 
in confined conditions. Three crack dilatancy diagrams have been used to estimate the values of dilatancy 
parameters. The above dilatancy parameters were then selected and implemented into the open crack state. 
A single element test is designed to evaluate the performance of the simple dilatancy model. In this test, 
two state displacement controls were adopted to investigate the characteristics of the simple dilatancy 
model. The numerical test provided a logical result and this indicates that the simple dilatancy model is 
able to properly estimate the influence of the dilatancy effect and can be employed in a more complex 
structure. 
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摘要 

 
在這篇文章裡，提出一個簡單的混凝土均散裂縫膨脹模式（smeared crack dilatancy model）。本

模型假設在增加剪力滑移（shear slip）的條件下，將產生一定大小的體積增量，且將導致混凝土自

由膨脹。但如果在邊界被限制的狀況之下，則將引起一定量的體積增量。如此一來，則混凝土膨

脹性（dilatancy）的效用可透過考量體積的變化量或壓力的改變量（在限制的邊界條件裡）被間接

考量。本研究並採用三組裂縫膨脹曲線去估算混凝土膨脹參數的值。上述參數並接著被考慮於完

全開縫狀態（open crack stagte）。本研究並設計一組單一元素測試（Single element test）以評估本

模型的各項性能。測試結果顯示本模式對於估計混凝土膨脹性的效用具有相當的合理性。 
 
關鍵詞：膨脹，塗抹裂縫模式，有限元素法 
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I. INTRODUCTION 
A very early finite element codes to model 

the crack behaviour of concrete was that proposed 
by Bazant and Cedolin [1]. They also proposed a 
fracture energy criterion to analyse a rectangular 
reinforced concrete panel for crack propagation. 
Furthermore, they also explained the reason for 
the “mesh dependence”. The explanation given 
for this spurious mesh sensitivity, or inobjectivity, 
was that the value of the stress in an element 
ahead of a crack front depends on the width of the 
crack band. Also, the width depends on the 
element size because the crack width is the 
effective width of the area or volume associated 
with a particular element sampling point. Thus, 
the smaller the elements, the sharper the cracks 
and the higher the stress in the element ahead of 
the crack tip. 

The methods proposed by Bazant and 
Cedolin [1] drew attention to the fracture energy 
and suggested that the answer to the spurious 
mesh sensitivity was to apply fracture mechanics. 

Doubtless, these were problems that could be 
overcome, and, a fracture energy dependent 
softening model was then proposed by Bazant and 
Oh [2] for application to the smeared crack model. 
They suggested that cracks occurred in a band or 
zone rather than a line, and also, that over the 
zone, a fracture strain could be defined which was 
equal to the sum of the openings of the individual 
micro-cracks divided by the width of the fracture 
process zone. Thus, their crack criterion for 
governing the crack initiation was again assumed 
to be the tensile strength and once a crack had 
started, the stress was then followed by a 
decreasing linear function of the increasing 
fracture strain. The fracture energy, per unit area 
of crack, could then be equated to the area under 
the stress/fracture strain curve multiplied by the 
width of the fracture process zone. In the smeared 
crack approach, a crack is assumed to be spread 
over the width associated with a sampling position 
and thus the ‘numerical’ crack process zone was 
assumed to depend upon the size of the element. 
Bazant and Oh [2] simply equated the 
‘characteristic length’ of an element with the 
width of the crack process zone. 

This model was rapidly adopted by other 

investigators [3-5] and become a well-established 
way of modelling concrete fracture and this 
approach is also adopted in this paper.  

In reinforced concrete, it is well known that 
shear forces in cracks are transferred by a 
combination of dowel action and aggregate 
interlock. The last phenomenon, in particular, is 
often assumed to contribute significantly to the 
shear forces [6]. 

Qualitatively, it is understood that, during 
shear motion of a crack, opening of the crack 
(dilatancy) due to the uneveness of the crack 
surfaces will also occur and if the opening is 
restrained then a compressive stress is introduced 
on the crack surface. Indeed, a good deal of 
research has been conducted in the past two 
decades to collect more experimental data on the 
topic [7,8]. Also, many formulas have been 
proposed to capture this phenomenon analytically, 
e.g., Gambarova and Karakoc [9], and Walraven 
and Reinhardt [8]. 

Feenstra et al. [6] implemented these crack 
dilatancy formulas into the finite element code in 
their discrete crack model. Because of lack of 
experimental data, they ignored the effect of shear 
normal coupling (crack dilatancy) in the crack 
development state and assumed that this effect 
was only of importance in the open crack state. 

Chan et al. [10] carried out a preliminary 
numerical study on smeared dilatancy model. 
Because of lack of experimental data, they 
assumed a theoretical criterion to calculate the 
effect of shear normal coupling in the crack 
development state. In this study, the opening of 
the crack (dilatancy) due to the uneveness of the 
crack surfaces has been considered.  

In this paper, the author developed a simple 
smeared crack model that takes into account of 
the crack dilatancy in order to investigate the 
influence of dilatancy effect in an entire structure. 
In addition, various dilatancy experimental data 
[8,9,11] are collected from the literature in order 
to calibrate the dilatancy model. 
 

II. METHOD OF ANALYSIS  

The basic fracture model used is the 
“smeared fixed crack model” which has a 
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maximum tensile stress criterion for initial crack 
formation and subsequently the concrete is treated 
as orthotropic with the material strain softening in 
the direction normal to the crack. In this study, a 
flat stepped softening curve was proposed based 
on that suggested by Nilsson and Oldenburg [12] 
(Fig. 1).  

 
tf

tε 0ε

 
Fig. 1. Flat stepped softening curve for tension 

 
The shear modulus G, in the cracked 

D-matrix, is multiplied by a shear retention factor 
β (Fig. 2).  
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Fig. 2. shear retention factor 

 
The cracked compliance matrix for a single 

crack is  
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Hence the D matrix can be represented as  
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where )( 111 εD and )( 222 εD  are derived from the 

slope of the softening curve. 
)( 111 εD  = Tangential stiffness modulus in 1 

direction i.e. normal to the crack plane. 
)( 222 εD = Tangential stiffness modulus in 2 

direction i.e. perpendicular to 1 direction. 
β = Shear retention factor which is a function 

of the normal crack strain (ε1 or ε2). 
G = Elastic shear modulus. 
ε11 = Total fracture strain in 1 direction i.e. 

normal to the crack plane. 
ε22 = Total fracture strain in 2 direction i.e. 

perpendicular to 1 direction. 
Δε11 = Concrete strain increment in 1 

direction i.e. normal to the crack plane. 
Δε 22 = Concrete strain increment in 2 

direction i.e. perpendicular to 1 direction. 
Δγ 12 = Shear strain increment. 

2211 , σσ ΔΔ = Principal stress increments. 
Δτ12 = Shear stress increment. 
The mode I fracture energy can be derived by 

multiplying the area under the σ-ε curve with the 
characteristic length le. Therefore, the mode I 
fracture energy Gf can be represented as follows: 

 
×== ∫
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where le = characteristic length and is taken as the 
cubic root of the volume associated with an 
element sampling point. GF = Fracture energy per 
unit area; ε0 = ultimate fracture strain; εt = elastic 
ultimate strain. 

In the current study, the equations of the 
softening curve (Fig. 1) suggested by Nilsson and 
Oldenburg [12] is shown as bellows: 
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where tf = Uniaxial tensile strength. The 
compressive behaviour of this model uses 
non-linear hardening plasticity theory with a yield 
criterion that is obtained by fitting biaxial 
experimental results.  

 
2.1 Yield Criterion 
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In this paper, a yield criterion proposed by 

Owen et al. [13] was employed. This criterion is 
formulated in terms of the first two stress 
invariants and only two material parameters are 
involved in its definition. 

 
[ ] σαβ =+= 2/1

1221 )3(),( IJJIF      (6) 
 

where α and β are material parameters and σ  is 
the effective stress (or equivalent yield stress) 
taken as the compressive stress from a uniaxial 
test. 3211 σσσ ++=I , and 
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In terms of principal stresses, the expression 
for yielding can be written as, 
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where  , , 21 σσ and 3 σ  are the principal stresses 
referring to the principal stress axes, 1, 2, and 3. 

To fit the data of Kuper et. al [14], the 
parameters take the values:  

355.0=α σ ,  355.1=β  
Substituting the above two values into (7) 

and rearranging gives 
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Or σ = F(I1,J2) in which C = 0.1775, D = 

4.065; σ  = equivalent yield stress; F(I1,J2) is 
yield surface. 

 
2.2 Flow Rule 

 
The flow rule is assumed to be associated to 

the compressive yield surface. The gradient of the 
yield surface is given by : 

ijijij

F
σ∂

∂
∂
∂

σ∂
∂

∂
∂

∂σ
∂

 
J  

 
J  
F  

 
I  

 
I  
F   2

2

1

1

+=      (9)  

 
where 
 

2
2

1
2

1
2

1I  
F  

DJIC

IC
C

+
+=

∂
∂      (10) 

2
2
1

2
2 2J  

F  

DJIC

DC
+

+=
∂
∂      (11) 

ij
ij

δ
σ∂

∂
=

 
I  1         (12) 

2. 3 Hardening Rule 
 
The hardening rule adopted in concrete is 

usually obtained by fitting the experimental data. 
In this study, the hardening rule proposed by 
Jefferson and Wright [4]. The hardening 
parameter is obtained from Saenz’s equation [15]. 

Saenz’s equation can be expressed as： 
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where oE = initial Young’s modulus, uε = 
uniaxial strain, '

cε = uniaxial strain at peak stress, 
 
cσ  = peak uniaxial stress. 
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From the definition of H (Hardening 

parameter), the following equation can be 
obtained: 
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where σ = stress, ε = strain, pε = plastic 

strain, eε =elastic strain. 

ε
σ

d
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2.4 Simple dilatancy law 

 
The dilatancy effect in the open crack state 

(Fig. 3), i.e. when a crack is fully opened, has 
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been evaluated by fitting experimental data 
[7-9,11] and the detailed findings will be 
introduced in the next section.  

 

Development state Open crack stateElastic ε1

tf

 
Fig. 3. Three states in the cracking process. 

 Where ε 1  is the tensile strain and tf  is 
 the tensile stress 

 
 
However, since the dilatancy effect cannot be 

isolated from other effects in the experimental 
result, the empirical formula (stress-strain 
relationship) cannot be derived directly for the 
crack development state. In this study it is 
proposed that by increasing the shear slip, a 
certain amount of volumetric increase will be 
caused. This leads to either free expansion or an 
increase in the compressive stress if confined. 
Consequently, the dilatancy effect could be 
simulated by considering the amount of 
volumetric change or the change in compressive 
stress in confined conditions. 

In concrete, unlike in a soil structure, the 
dilatancy effect is confined to the crack surface 
and the uncracked area is usually regarded to 
exhibit very little dilatancy effect. Hence, in the 
application to concrete structures, the volumetric 
changes can usually be simplified as a change in 
the normal strain. Therefore, the dilatancy effect 
in a concrete structure usually can be modelled as 
the coupling between normal and shear strain 
[7,11]. 

On the basis of the above assumption, a 
simple dilatancy criterion was proposed in this 
study to model the dilatancy effect. 

The fundamental feature of this simple 
dilatancy model proposed in this study is a 
decomposition of the total strain increment εΔ  
into a non-dilative concrete strain increment ΔεN 

and a dilative normal strain increment ΔεD:  

In a two dimensional case, they may be 
represented as follows, in the direction of crack. 

 
DN
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DN
222222 εεε Δ+Δ=Δ       (16) 

 
while the shear strain is not affected. 

In a three dimensional case, if the change of 
volume is represented as Δ Ω  and per unit 
volume of the material is represented as Ω , the 
volumetric dilatation is related to the normal 
strains as follows: 
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and the dilatancy law is represented as 
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where D

11εΔ = Concrete strain increment in 1 
direction i.e. normal to the crack plane. D

22εΔ = 
Concrete strain increment in 2 direction i.e. 
perpendicular to 1 direction. D

33εΔ = Concrete 
strain increment in 3 direction i.e. perpendicular 
to 1 and 2 directions. 12γΔ = Concrete shear strain 
increment. 

To consider the crack dilatancy effect in both 
plane stress and plane strain cases, since this 
effect is produced on the crack surface and the 
uncracked area is usually regarded to exhibit very 
little dilatancy effect, if the cracks are only 
allowed to form in the 1 and 2 directions, the 
non-cracked direction would exhibit only very 
little dilatancy effect and can be ignored, 
i.e. 033 =Δ Dε . 

Therefore, in the plane stress and plane strain 
problems, the dilatancy law can be represented as: 
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122211 γμεε Δ=Δ+Δ DD      (20) 
 

where μ is defined as a constant dilatancy 
parameter and the value is presented as: 
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μ = μ1       for the crack development state 

μ = μ2 =1     for the open crack state                                   
 
Three stages in the cracking process can be 

distinguished: (1) The linear-elastic state; (2) the 
development state; and (3) the open-crack, as 
shown in Fig. 3. In the crack development state, 
as there is no experimental evidence, the value of 
dilatancy parameter cannot be estimated from the 
experiment. Therefore, a number of values will be 
investigated to explore the influence in the latter 
sections. In the open crack state, the value of the 
dilatancy parameter has been estimated to be 1 
obtained by fitting the experimental results and 
more details will be presented in next section.  

In Eqs. 19 and 20 the absolute value of 
incremental shear strain 12γΔ  is adopted; this 
implies that no matter in which direction the 
incremental shear strain 12γΔ  is, the incremental 
dilatancy term will always give a positive value 
i.e. expansion. This is correct if the incremental 
shear strain Δγ 12  is in the same direction as the 
current shear strain γ 12 , i.e. loading. In 
conditions of unloading, i.e. Δγ 12  is in the 
opposite direction to shear strain γ 12 , the 
dilatancy law can be represented as: 

 
122211 γμεε Δ−=Δ+Δ DD      (21) 

 
This implies that the incremental dilatancy 

term will give a negative value, i.e. reduction in 
the volumetric strain. Although the incremental 
dilatancy term may give a positive or negative 
value in different conditions, the total dilatancy 
term will always give a positive value. In concrete, 
the dilatancy will lead to an increase in volume, 
and consequently the total dilatancy term always 
has a positive value.  

In order to satisfy the demands in both 
loading and unloading conditions, the dilatancy 
law can be represented as: 
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We further define a second parameter k1, 

relating to the distribution of volumetric changes 
in the two principal directions, such that  
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Following Eq.18 and 19 we can derive that: 
 

γ
γ
γ

με Δ=Δ
12

12
111 kD  and 

γ
γ
γ

με Δ−=Δ
12

12
122 )1( kD               (24) 

 
After the dilative strain increment )( DεΔ  is 

obtained, the next step is to consider the following 
cases. 

Case I: Free expansion (see Figs. 4 and 5). 
Case II: Confined by boundary restrain (see 

Fig. 6). 
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Fig. 4. A specimen subject to pure tensile force 
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Fig. 5. A specimen subject to tensile and shear forces  
 simultaneously  Case I: Free expansion 
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Fig. 6. A specimen subject to compressive and shear 

forces simultaneously Case II: Confined by 
boundary restrain 

Case I: Free expansion 
 
In this case, there is no compressive stress 

developed on the crack surface. The influence of 
the dilatancy effect can be evaluated indirectly by 
adopting the non-dilative tensile concrete strain 
ε N  to fit the strain softening curve (Fig. 1) rather 
than total tensile strain.  

Since the strain softening curve (Fig. 1) or 
most other softening curves were obtained by 
fitting pure tension test or simulated pure tension 
test data, i.e. shear stress is assumed to be zero or 
very small value, consequently, the softening 
curve should have the best performance when 
applied to a specimen subjected to pure tension. 
However, when applied to a specimen subjected 
to tension and shear forces simultaneously, this 
curve may not be very correct.  

Assuming that a strain softening curve (Fig. 
7), we further assume that another strain softening 
curve has been obtained by fitting a test that is 
subjected to tensile and shear forces 
simultaneously. Since there is no experimental 
evidence available, a strain softening curve (dash 
line) is assumed and shown in Fig. 8. In order to 
obtain the tensile stress, one should use the total 
tensile strain (ε ) to fit the softening curve under 
both tensile and shear conditions. However, due to 
the lack of experimental data, the softening curve 
under both tensile and shear condition is not 
available. An alternative presented in this study is 
to adopt the non-dilative tensile strain (ε N ) to fit 
the softening curve obtained from the tensile 
effect only as shown in Fig. 7. 
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σ

 
 

Fig. 7. Strain softening curve. 
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Fig. 8. Assumed strain softening curve. 
 
For the formation of the global stiffness 

matrix, the non-dilative cracked tangential 
D-matrix (Eq. 1) needs to be converted into the 
dilative crack including tangential D-matrix. 
Substituting Eq. 24 into Eq.1 the following 
equation can be derived: 
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Then the cracked tangential D-matrix for a 

single crack, by inverting Eq. 25 will be  
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For unloading 1.e. 1
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Comparing Eqs. 1, 26 and 28, it can be seen 

that some of the non-diagonal terms are now 
non-zero; this implies that the dilatancy effect has 
induced coupling between normal stress and shear 
stress. From Eq. 1, the incremental normal strain 
can be calculated as  

11
111

11 )(
1 σ
ε

ε Δ=Δ
D

      (29) 

22
222

22 )(
1 σ
ε

ε Δ=Δ
D

      (30) 

 
However, from Eq. 25 (assuming that 

1
12

12 =
γ
γ ), the incremental normal strain in 

1-direction can now be derived as 
 

12
1

11
111
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       (31) 

 

12
1

22
222

22
)1(

)(
1 τ

β
μ

σ
ε

ε Δ
−

+Δ=Δ
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   (32) 

 
Comparing Eqs. 29, 30, 31 and 32, it can be 

seen that the shear stress in the non-dilating fixed 
crack approach produces no normal strain. This 
implies that the shear slip on crack surfaces can 
occur at constant crack opening and this is 
obviously not true due to the aggregate interlock 
[7-9,11]. 

In contrast, the simple dilatancy approach 

allows a certain amount of normal strain that is 
proportional to the shear strain to be produced (Eq. 
24). This implies that an increase of shear slip will 
produce an increase of crack opening and this is in 
accordance with experimental observation. 

 
Case II: Confined by boundary restrain 
 
According to the dilatancy experiments 

completed by Paulay and Loeber [7]; Bazant and 
Gambarova [11], Walraven and Reinhardt [8], and 
Gambarova and Karakoc [9], as stated in the 
previous section, “A shear slip on crack surfaces 
cannot occur at constant crack opening 
displacement. Furthermore, if the opening is 
restrained then a large compressive stress is 
introduced on the crack surface”. An approach 
that allows an increase of shear slip to produce an 
increase of crack opening has been presented in 
the previous case (Case I). In this case, another 
approach is developed to model the case that the 
crack opening is restrained and a large 
compressive stress is introduced on the crack 
surface. 

In this case, since the crack opening is 
restrained, a compressive stress on the crack 
surface will occur. In order to properly evaluate 
the magnitude of the compressive stress, the 
elasto-plastic theory must be adopted. The 
following steps need to be employed when the 
compressive yield surface is reached.  

At some stage after initial yielding, consider 
a further load application resulting in an 
incremental increase of stress, Δσ , accompanied 
by a change of non-dilative strain, Δε N . In this 
study, it is assumed that the strain can be 
separated into elastic and plastic components, so 
that  

 
peN εεε Δ+Δ=Δ       (33) 

 
where eεΔ = Elastic strain increment, pεΔ = 
Plastic strain increment. Therefore, the total 
concrete strain increment Δε  can be represented 
as  

 
DN εεε Δ+Δ=Δ Dpe εεε Δ+Δ+Δ=    (34) 

 
where NεΔ = Non-dilative concrete strain 
increment, DεΔ  = Dilative normal strain 
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increment, eεΔ = Elastic strain increment. 
 
(1) Elastic stress-strain relationships 
 
   e

eD εσ Δ=Δ            (35) 
 
where  eD is the elastic stress-strain matrix. 
 
(2) Flow rule 
 

   
σ∂

∂λε
 
Q   Δ=Δ p                 (36) 

where Q = Plastic potential function, λΔ = 
The plastic multiplier, pεΔ  = Equivalent 
uniaxial plastic strain increment. 

If the flow potential function is equal to the 
yield function (F), then the flow is said to be 
‘associated’ and the plastic strain is then given by:  

 

σ∂
∂λε

 
F   Δ=Δ p        (37) 

 
(3) Hardening relationship 
 

σ
σ∂

∂λ Δ⎟
⎠
⎞

⎜
⎝
⎛=Δ

T

A
 
F       (38) 

 
Using equation (34) and (35) then the 

following can be obtained  
 

) (

) ( 
pN

e

Dp
e

e
e

D

DD

εε

εεεεσ

Δ−Δ=

Δ−Δ−Δ=Δ=Δ
  (39) 

 
Therefore, Eq. 39 can be represented as  
 

)
 
F    (e σ∂

∂λεσ Δ−Δ=Δ ND         (40) 

 
Rearranging (Eq. 40) and premultiplying by 

 )
 
F ( T

σ∂
∂  gives: 

 

σ
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∂
Δ )

 
F 

( T = )
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F ( e σ∂
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By substituting Eq. 38 into Eq. 41, the 

following can be obtained 
 

=ΔλA )
 
F    (D )F ( e σ∂

∂λε
σ∂
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Δ−Δ NT    (42) 

 
Rearranging Eq. 42 will give: 
 

+[A λΔ NTT ε
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F (]

 
F  D )F ( ee (43) 

 
Therefore, the plastic multiplier Δλ  can be 

represented as  
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By substituting (44) into (40) and the 

elasto-plastic-dilatancy relationship can be 
obtained as follows: 
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= N

epD εΔ                (47) 
 

where  

 =epD
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F (
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e
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e
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∂
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∂
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2.5 Forming the full D matrix Depd  

 
In order to form the full D matrix, the 

equation (Eq. 47) needs to be represented by Δε  
rather than Δε N . Substituting equation (Eq. 34) 
into equation (Eq. 47), the following equation is 
given. 

 

  

)( D
ep

N
ep DD εεεσ Δ−Δ=Δ=Δ     (49) 
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Recalling that  
 

12
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2211 γ
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Therefore, 
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Therefore, equation (47) can be rearranged as  
 

     

D=     
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where epdD}]{[ =− nep DID , which is the full D 
matrix for dilatancy effect with compression 
failure. 
 
2.6 Estimating the dilatancy parameter μ  

from the experiments 
 
In order to estimate the range of value of the 

dilatancy parameter μ in the open crack state, the 
experimental diagrams available in the open crack 
state are used for this task. 

The experimental diagrams collected in this 
study include Aggregate-Interlock Relation [8], 
Rough Crack Model [11] and Rough Crack Model 
[9], as shown in Figs. 9, 10 and 11. In these 
diagrams, f1 is the confinement normal stress and 
u1 and u2 are the normal and shear displacements. 
The relations are shown as follows: 
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    Fig. 9. Response diagram of Aggregate-Interlock 
      Relation (Walraven and Reinhardt 1981) 
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Fig. 10. Response diagram of Rough Crack 

Model (Bazant and Gambarova 1980) 
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Fig. 11. Response diagram of Rough Crack Model  

(Gambarova and Karakoc 1983) 
 

2.6.1 Aggregate-Interlock Relation 
(Walraven and Reinhardt (1981)) 

 
The response diagram of this model is shown 

in Fig. 9. The confinement normal stress 1f  
(N/mm2) and shear stress 2f  (N/mm2) are shown 



中正嶺學報 第三十六卷 第一期 民國 96.11. 
JOURNAL OF C.C.I.T., VOL. 36, NO. 1, Nov, 2007 

 
- 49 -

as follows:  

2
552.0

1
63.0

11 ])15.0)191.0(35.1[
20
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f cc
cc Δ−Δ+Δ−= −−  (54) 

2
707.0
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12 ])20.0234.0(8.1[
30

ufuu
f

f cc
cc Δ−Δ+Δ+= −−  (55) 

 
where 1uΔ = Normal displacement (mm), 2uΔ = 
Shear displacement (mm), ccf =Compressive 
cube strength. 

 
2.6.2 Rough Crack Model (Bazant and 

Gambarova (1980)) 
 
The response diagram of this model is shown 

in Fig. 10. The confinement normal stress f1  
(N/mm2) and shear stress f 2  (N/mm2) are shown 
as follows: 

 

1f = pfa
u

a
)( 22

1

1

Δ
−      (56) 
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ra

raa
ruf

+

+
=τ     (57) 

 
where )]563.0185.01/(231.01[3.1 2

11 uup Δ+Δ+−×= , 

12 / uur ΔΔ= , ])(/[ 2
1000 uaau Δ+= ττ , 

2
max0 01.0 Da = , a1 = 0.000534, a2 = 145.0, 

03 /45,2 τ=a , );/41(44.2 04 τ−=a  and 

ccc ff 195.0245.00 ==τ , 12 / uur ΔΔ= , Δu1 = 
normal displacement, Δu2 = shear displacement.  

The notation cf  is used for the compressive 
cylinder strength of the concrete, and the more 
frequently used compressive cube strength is 
denoted by ccf . 

 
2.6.3 Rough Crack Model (Gambarova 

and Karakoc (1983)) 
 
The response diagram of this model is shown 

in Fig. 11. The confinement normal stress f1  
(N/mm2) and shear stress f 2  (N/mm2) are shown 
as follows: 
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where a1a2 = 0.62, a3 = 2.45/τ 0 , a4 02441 4= −. ( / );τ  
and τ0 = 0.25fc = 0.2fcc, r u u= Δ Δ2 1/ , Δu1 = 
Normal displacement (mm), Δu2 = Shear 
displacement (mm), Dmax = The maximum 
aggregate size (mm). 

The dilatancy parameter μ can be obtained 
using Eq.19. In addition, since the dilatancy tests 
were conducted on the basis of a single crack only 
(assuming ε22=0), Eq.19 can be simplified as: 

 

μ
γ
ε

=
Δ
Δ

12

11
D

       (60) 

 
In a single crack, the dilatancy parameter is 

assumed to be constant. But the most appropriate 
value of μ should be the one derived with zero 
confining normal stress. However, as the 
experiment was performed under constant 
separation condition, some manipulations are 
needed to obtain the value of the dilatancy 
parameter. In these manipulations, we simply 
assume that the parameters are not strongly 
affected by the stress path. 

Starting from a given point on the 
experimental curve with normal stress (f1(a)) & 
shear stress (f2(a)), normal displacement (u1(a)) & 
shear displacement (u2(a)), the test proceeds to the 
next state of normal stress (f1(b)) & shear stress 
(f2(b)) and (u1(a)) & (u2(b)) with u1(a) remaining 
unchanged. In this case, the volumetric change 
has been suppressed by the increase in normal 
stress. If the normal stress kept constant, the 
normal displacement would need to increase with 
increasing shear displacement. By considering 
values of normal displacement for a constant 
confined stress, we assume that the increase in 
normal displacement between different 
experimental curves is equal to the volumetric 
expansion required to keep the normal stress 
constant when the shear deformation is increased. 
Values of the dilatancy parameter can then be 
obtained by considering the incremental normal 
and shear displacement. 

For  
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ntsdisplacemeshear  lincrementa
ntsdisplaceme normal lincrementa
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  (61)  

 
Using the experimental diagram used in the 

Aggregate-Interlock Relation [8], and finding a 
set of values of u2(a1), u2(a2), u1(a1), and u1(a2) 
and another set of values of u2(a2), u2(a3), u1(a2), 
and u1(a3) from Fig.9, the dilatancy parameter can 
then be estimated using   
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Where a1, a2 and a3 are used to distinguish 

different values of u1 and u2; )1(μ  and )2(μ  
represent two sets of dilatancy parameters. 

Repeating the process, a number of estimates 
for the dilatancy parameter μ  can be obtained 
from the experimental diagram, as shown in Figs. 
12, 13 and 14. It can be seen that the range of the 
dilatancy parameter μ  is between 1.6 ~ 0.2 for 
experimental data from Aggregate-Interlock 
Relation [8]. The range of the dilatancy parameter 
μ  is between 4.0 ~ 0.5 for Rough Crack Model 
[11] and is between 3.0 ~ 0.8 for Rough Crack 
Model [9]. In addition, it can be seen that all these 
diagrams show that the dilatancy parameter μ  
decreases with the increasing confinement stress. 
This is consistent with the fact that the crack 
opening displacement decreases with the 
increasing confinement stress. 
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Fig. 12. Dilatancy parameters obtained by fitting the 

Aggregate-Interlock Relation (1981). (The 
symbols u_1 and u_2 represents the dilatancy 
parameters )1(μ and )2(μ        
respectively.) 

 
It can be safely assumed that the value of 

dilatancy parameter would be a function of the 
size and shape of the aggregate. However, the 
shapes of the aggregate have not been reported 
with the experimental results. In this study, a 
value of the dilatancy parameter μ for zero 
confined stress has been taken as 1.0 after 
considering that the sloping angle of the shape of 
the aggregate can be reasonably taken as 45o. 
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Fig. 13. Dilatancy parameter obtained by fitting the 

Rough Crack Model (1980) (The symbols 
u_1 and u_2 represents the dilatancy 
parameters )1(μ and )2(μ  respectively.) 
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Fig. 14. Dilatancy parameter obtained by fitting the 

Rough Crack Model (1983) (The symbols 
u_1 and u_2 represent the dilatancy 
parameter )1(μ and )2(μ  respectively.) 

 
III. SINGLE ELEMENT TEST 
 

3.1 Single element test (I) 
 
The single element test used is adopted to 

examine the accuracy of the Finite Element 
implementation in the LUSAS MMI [16]. 

The dimensions of the cubic element used in 
this example are again 50mm*50mm, and the 
thickness is 50mm. In this analysis, 1 element 
with 9 Gauss points is adopted and the 
displacements of all the nodes are prescribed.  

The accuracy of the implementation of the 
proposed crack model is examined using two 
loading paths. For the first loading path, the 
element is made to perform tensile behavior first 
and then compressive behavior and finally tensile 
behavior. For the second loading path, the element 
is made to perform compressive behavior first and 
then tensile behavior and finally compressive 
behavior. 

The results of this numerical test of the 
proposed crack model are shown from Figs. 15 to 
16. By comparing these curves with that presented 
in previous section, it can be seen that the 
implementation of this model have been 
successful.  
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Fig. 15. Single element test  

(tension-> compression->tension) 
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Fig. 16. Single element test  

(compression->tension-> compression) 
 

3.2 Single element test (II) 
 

Again, the single element tests with 
displacement control were carried out to validate 
the implementation of the dilatancy law.  

Initially, we control in the first step so that 
the boundary conditions in the 1 and 2 directions 

become 0; 12
11

22 =Δ−=
Δ
Δ

γν
ε
ε  in the linear elastic 

state until a crack appears. After the concrete has 
cracked, a switch is made and the shear strain is 
applied in the y direction. In the current analysis, 
the number of total displacement increments is 
chosen as 10. Observing the output result, it is 
found that the concrete cracked in the sixth 
displacement increment. Therefore, the second 
displacement control is applied from the seventh 
displacement increment onward. 

Furthermore, the dilatancy parameter μ1 is 
varied from 0.0 to 0.4 and the ratio of the shear 
strain over normal strain was chosen as 1.0 and 

2.0, i.e. 0.1
11

12 =
Δ
Δ
ε
γ  and 0.2

11

12 =
Δ
Δ
ε
γ . 

The results for the simple dilatancy criterion 

for 0.1
11

12 =
Δ
Δ
ε
γ  are shown in Fig. 17 and the 

result for 0.2
11

12 =
Δ
Δ
ε
γ  is shown in Fig. 18. The 

result for the dilatancy parameter μ1 = 0.0 is not 
presented in Fig. 17 as the difference between μ1 = 
0.0 and 0.1 is very minor. 

It can be seen that by increasing the dilatancy 
parameter μ1, the percentage of reduction of the 
load reaction in 1 direction will gradually increase. 
Furthermore, the larger ratios of the shear strain 
over the normal strain, the larger the dilatancy 
effect. This logical result indicates that the simple 

dilatancy model is able to properly estimate the 
influence of the dilatancy effect and can be 
employed in a more complex structure. 

 

 
 

Fig. 17. Reaction load - load increment curve of simple 

dilatancy ( 0.1=
Δ

Δ

x

xy

ε
γ

) (The symbol “u” 

represents dilatancy parameter ( )1μ ) 
 

 
 

Fig. 18. Reaction load - load increment curve of simple 

dilatancy ( 0.2=
Δ

Δ

x

xy

ε
γ

) (The symbol “u” 

represents dilatancy parameter ( )1μ ) 
 
3.3 Single element test (III) 
 

Following the previous dilatancy test, the 
shear displacement is increasing continually in the 
second step control until the reaction load 
becomes negative. This test is made to examine 
whether the compressive stress have been 
properly evaluated in the finite element 
implementation.  
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 In this test, the ratio of shear strain over 

normal strain was chosen to be 35, i.e. 35
11

12 =
Δ
Δ
ε
γ , 

the dilatancy parameter μ1 was chosen to be 0.4 
and the result is shown in Fig. 19. In this study, 
the response of concrete under compressive 
stresses is assumed to be linear elastic until a 
so-called initial yield surface is reached. After that, 
the inelastic deformation begins and a 
work-hardening plasticity approach is employed 
for the irrecoverable part of deformation. Fig. 19 
shows that the compressive stress has been 
properly evaluated. 
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Fig. 19. Stress-strain relationship of simple dilatancy 
test 

 
IV. CONCLUSION 

 
The mechanical behaviour of the shear forces 

transfer to the cracked concrete is generally 
regarded to be very important aspect and will 
make significant effect on the whole behaviour in 
a structure. Most numerical applications adopt a 
so-called shear retention factor β  to simulate the 
shear stress-shear strain relation in the crack 
development state. Moreover, due to the lack of 
experimental data, the magnitude of the shear 
retention factor β  is generally assumed to be 
from 0 to 1. The interaction between the normal 
and shear displacement (or stress) is usually 
ignored. From the experimental evidence, it can 
be seen that the crack dilatancy effect is important 
to be taken into account in calculating the normal 
and shear forces transfer to the cracked concrete. 
Therefore, when the dilatancy effect is not 
properly evaluated, it will affect the precision of 
the numerical prediction. However, very few of 
the crack models have incorporated the dilatancy 
effect in their crack models. Consequently, the 

influence of this effect in either the shear transfer 
in cracked concrete or in the whole structure is 
still not very clear. Therefore, it is very important 
to improve the understanding of its possible 
influence in the finite element application.  

In this paper, a simple smeared crack 
dilatancy model is proposed. This model has 
incorporated the dilatancy effect and thus, a 
nonsymmetrical stiffness matrix is inevitably 
generated. Consequently, this leads to complicated 
programming and numerical instability. A single 
element test with displacement control has been 
carried out to validate the implementation. The 
logical result indicates that the simple dilatancy 
model is able to properly estimate the influence of 
the dilatancy effect and can be employed in a 
more complex structure. 
 

NOTATION 
The following symbols are used in this paper: 

D1 the stiffness modulus in 1 direction i.e. normal 

to the crack plane. 

D2 the stiffness modulus in 2 direction i.e. 

perpendicular to 1 direction. 

Dcr cracked full D-matrix 

Dcr  stress-strain matrix for crack component 

E  Young’s modulus   

F yield function 

ft  Uniaxial tensile strength 

fc 
‘  Uniaxial compressive strength (as a positive 

quantity) 

f1  The confinement normal stress 

f 2  The shear stress 

GF  Fracture energy 

G 
E

2 1( )+ν
= Shear modulus 

H '   Hardening parameter 

le Characteristic length 

k1  Dilatancy parameter 
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Δu1  Normal displacement (mm)  

Δu2  Shear displacement (mm)  

321 ,, σσσ  Principal stresses, tensile positive 

321 ,, εεε  Principal strains, tensile positive 

Δτ12   Shear stress increment 

Δγ 12   Shear strain increment 

ν  Poissons’s ratio 

Ω  Element volume 

σ y  Equivalent uniaxial yield stress 

Q plastic potential function 

dλ  The plastic multiplier 

ε p  Equivalent total uniaxial plastic strain, 

ε ε εp
p pd d= ∫ ( ) /1 2  

dk  Increment of plastic work 

σ  Equivalent uniaxial stress 

σ y
0   Initial yield stress  

σi+1 , σi+2  stress in the two planes orthogonal to 

‘plane i’ 

ε11  total fracture strain in the first direction i.e. 

normal to the crack plane 

ε22 total fracture strain in the second direction i.e. 

perpendicular to 1 direction. 

ε0 ultimate fracture strain 

εt elastic ultimate strain 

Δε 11
N  Non-dilative concrete strain increment in 

first direction 

Δε 22
N  Non-dilative concrete strain increment in 

the second direction 

Δε 11
D  Dilative concrete strain increment in the 

first direction 

Δε 22
D  Dilative concrete strain increment in the 

second direction 

β  Shear retention factor 

μ  Constant dilatancy parameter 
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