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Numerical Studies on Crack Dilatancy of Concrete

I: Model Establishment and Verification

Tsai-Fu Chuang
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ABSTRACT

In this paper, a simple smeared crack dilatancy model is proposed. This model assumed that by
increasing the shear slip, a certain amount of volumetric increase would be caused. This leads to either
free expansion or an increase in the compressive stress if confined. In such a way, the dilatancy effect
could be simulated by considering the amount of volumetric change or the change in compressive stress
in confined conditions. Three crack dilatancy diagrams have been used to estimate the values of dilatancy
parameters. The above dilatancy parameters were then selected and implemented into the open crack state.
A single element test is designed to evaluate the performance of the simple dilatancy model. In this test,
two state displacement controls were adopted to investigate the characteristics of the simple dilatancy
model. The numerical test provided a logical result and this indicates that the simple dilatancy model is
able to properly estimate the influence of the dilatancy effect and can be employed in a more complex
structure.
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I. INTRODUCTION

A very early finite element codes to model
the crack behaviour of concrete was that proposed
by Bazant and Cedolin [1]. They also proposed a
fracture energy criterion to analyse a rectangular
reinforced concrete panel for crack propagation.
Furthermore, they also explained the reason for
the “mesh dependence”. The explanation given
for this spurious mesh sensitivity, or inobjectivity,
was that the value of the stress in an element
ahead of a crack front depends on the width of the
crack band. Also, the width depends on the
element size because the crack width is the
effective width of the area or volume associated
with a particular element sampling point. Thus,
the smaller the elements, the sharper the cracks
and the higher the stress in the element ahead of
the crack tip.

The methods proposed by Bazant and
Cedolin [1] drew attention to the fracture energy
and suggested that the answer to the spurious
mesh sensitivity was to apply fracture mechanics.

Doubtless, these were problems that could be
overcome, and, a fracture energy dependent
softening model was then proposed by Bazant and
Oh [2] for application to the smeared crack model.
They suggested that cracks occurred in a band or
zone rather than a line, and also, that over the
zone, a fracture strain could be defined which was
equal to the sum of the openings of the individual
micro-cracks divided by the width of the fracture
process zone. Thus, their crack criterion for
governing the crack initiation was again assumed
to be the tensile strength and once a crack had
started, the stress was then followed by a
decreasing linear function of the increasing
fracture strain. The fracture energy, per unit area
of crack, could then be equated to the area under
the stress/fracture strain curve multiplied by the
width of the fracture process zone. In the smeared
crack approach, a crack is assumed to be spread
over the width associated with a sampling position
and thus the ‘numerical’ crack process zone was
assumed to depend upon the size of the element.
Bazant and Oh [2] simply equated the
‘characteristic length’ of an element with the
width of the crack process zone.

This model was rapidly adopted by other

investigators [3-5] and become a well-established
way of modelling concrete fracture and this
approach is also adopted in this paper.

In reinforced concrete, it is well known that
shear forces in cracks are transferred by a
combination of dowel action and aggregate
interlock. The last phenomenon, in particular, is
often assumed to contribute significantly to the
shear forces [6].

Qualitatively, it is understood that, during
shear motion of a crack, opening of the crack
(dilatancy) due to the uneveness of the crack
surfaces will also occur and if the opening is
restrained then a compressive stress is introduced
on the crack surface. Indeed, a good deal of
research has been conducted in the past two
decades to collect more experimental data on the
topic [7,8]. Also, many formulas have been
proposed to capture this phenomenon analytically,
e.g., Gambarova and Karakoc [9], and Walraven
and Reinhardt [8].

Feenstra et al. [6] implemented these crack
dilatancy formulas into the finite element code in
their discrete crack model. Because of lack of
experimental data, they ignored the effect of shear
normal coupling (crack dilatancy) in the crack
development state and assumed that this effect
was only of importance in the open crack state.

Chan et al. [10] carried out a preliminary
numerical study on smeared dilatancy model.
Because of lack of experimental data, they
assumed a theoretical criterion to calculate the
effect of shear normal coupling in the crack
development state. In this study, the opening of
the crack (dilatancy) due to the uneveness of the
crack surfaces has been considered.

In this paper, the author developed a simple
smeared crack model that takes into account of
the crack dilatancy in order to investigate the
influence of dilatancy effect in an entire structure.
In addition, various dilatancy experimental data
[8,9,11] are collected from the literature in order
to calibrate the dilatancy model.

II. METHOD OF ANALYSIS

The basic fracture model used is the
“smeared fixed crack model” which has a
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maximum tensile stress criterion for initial crack
formation and subsequently the concrete is treated
as orthotropic with the material strain softening in
the direction normal to the crack. In this study, a
flat stepped softening curve was proposed based
on that suggested by Nilsson and Oldenburg [12]

(Fig. 1).

f;%W

Fig. 1. Flat stepped softening curve for tension

The shear modulus G, in the cracked
D-matrix, is multiplied by a shear retention factor

B (Fig. 2).

rs

Shear retention factor

% B
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Crack normal strain, &

Fig. 2. shear retention factor

The cracked compliance matrix for a single
crack is

Agn 1/D1 0 0 AG”
Aey |=| 0 1/D, 0 [Acy, (1)
Ay, 0 0 1/5G|| Az,

Hence the D matrix can be represented as

D, (&) 0 0
D = 0 D,(ey) 0 ()
0 0 PG

where D,(¢,,)and D,(¢,,) are derived from the
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slope of the softening curve.

D,(¢,,) = Tangential stiffness modulus in 1
direction i.e. normal to the crack plane.

D, (¢,,) = Tangential stiffness modulus in 2
direction i.e. perpendicular to 1 direction.

B = Shear retention factor which is a function
of the normal crack strain (g or &;).

G = Elastic shear modulus.

€11 = Total fracture strain in 1 direction i.e.
normal to the crack plane.

€5, = Total fracture strain in 2 direction i.e.
perpendicular to 1 direction.

Ag,, = Concrete strain increment in 1
direction i.e. normal to the crack plane.

Ag,, = Concrete strain increment in 2
direction i.e. perpendicular to 1 direction.

Ay, = Shear strain increment.

Ao,,,Ac,, = Principal stress increments.
At ,= Shear stress increment.

The mode I fracture energy can be derived by
multiplying the area under the c-¢ curve with the
characteristic length l.. Therefore, the mode I
fracture energy G can be represented as follows:

G, =1, _[;” ode =1, x area under the curve (3)

where |, = characteristic length and is taken as the
cubic root of the volume associated with an
element sampling point. G = Fracture energy per
unit area; g, = ultimate fracture strain; g, = elastic
ultimate strain.

In the current study, the equations of the
softening curve (Fig. 1) suggested by Nilsson and
Oldenburg [12] is shown as bellows:

& -&

o =f, xexp( ) 4)
= (G -05x1, x & x1)/(F, x1,) (5)
where f, = Uniaxial tensile strength. The

compressive behaviour of this model uses
non-linear hardening plasticity theory with a yield
criterion that is obtained by fitting biaxial
experimental results.

2.1 Yield Criterion
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In this paper, a yield criterion proposed by
Owen et al. [13] was employed. This criterion is
formulated in terms of the first two stress
invariants and only two material parameters are
involved in its definition.

F(,,J,)=[pGJ,)+al,]” = (6)

where o and 3 are material parameters and o is
the effective stress (or equivalent yield stress)
taken as the compressive stress from a uniaxial
test. I, =o0,+0,+0,,and

1
Js :g[(al _02)2 +(o, _03)2 + (o, _01)2]

In terms of principal stresses, the expression
for yielding can be written as,

ﬂ[%[(al _02)2 +(o, _63)2 + (o, _0'1)2]:|

—2
+a(o,+0,+0;)=0

(7

where o,,0,, and o, are the principal stresses

referring to the principal stress axes, 1, 2, and 3.
To fit the data of Kuper et. al [14], the
parameters take the values:

a=0355 0, p=1355
Substituting the above two values into (7)
and rearranging gives

o =Cl +||C*IF +DJ, =0 (8)

Or o= F(I,,J,) in which C = 0.1775, D =
4.065; o = equivalent yield stress; F(Ij,J,) is
yield surface.

2.2 Flow Rule

The flow rule is assumed to be associated to
the compressive yield surface. The gradient of the
yield surface is given by :

OF _0F 21, JF 1,
do, 01,00, 01,700,

y

©

where

JF C’I
i (10)
a1 JCI1E +DJ,
O F D

=C+ (11)
217, 2,/C*12 +DJ,
o1,

=0, 12
ﬂo’lj ij ( )

2. 3 Hardening Rule

The hardening rule adopted in concrete is
usually obtained by fitting the experimental data.
In this study, the hardening rule proposed by
Jefferson and Wright [4]. The hardening
parameter is obtained from Saenz’s equation [15].

Saenz’s equation can be expressed as :

— E
o= o’ _ (13)
E
14| B | by ) o
ES EC EC
where E, = initial Young’s modulus, &, =

uniaxial strain, &, = uniaxial strain at peak stress,

o, =peak uniaxial stress.

c

E =—
g(?

From the definition of H (Hardening
parameter), the following equation can be
obtained:

- do _ do _ 1

de, de-de, de de,
do do
do (14)
_ de _ E;
_do de, 1-E,/E,
de do

where o = stress, &= strain, ¢, = plastic
strain, &,=elastic strain.
do
" de

2.4 Simple dilatancy law

The dilatancy effect in the open crack state
(Fig. 3), i.e. when a crack is fully opened, has
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been evaluated by fitting experimental data
[7-9,11] and the detailed findings will be
introduced in the next section.

>

Hastic 4—— Developrent state —P‘ Open crack state 4

Fig. 3. Three states in the cracking process.
Where &, is the tensile strain and ft is

the tensile stress

However, since the dilatancy effect cannot be
isolated from other effects in the experimental
result, the empirical formula (stress-strain
relationship) cannot be derived directly for the
crack development state. In this study it is
proposed that by increasing the shear slip, a
certain amount of volumetric increase will be
caused. This leads to either free expansion or an
increase in the compressive stress if confined.
Consequently, the dilatancy effect could be
simulated by considering the amount of
volumetric change or the change in compressive
stress in confined conditions.

In concrete, unlike in a soil structure, the
dilatancy effect is confined to the crack surface
and the uncracked area is usually regarded to
exhibit very little dilatancy effect. Hence, in the
application to concrete structures, the volumetric
changes can usually be simplified as a change in
the normal strain. Therefore, the dilatancy effect
in a concrete structure usually can be modelled as
the coupling between normal and shear strain
[7,11].

On the basis of the above assumption, a
simple dilatancy criterion was proposed in this
study to model the dilatancy effect.

The fundamental feature of this simple
dilatancy model proposed in this study is a
decomposition of the total strain increment Ag
into a non-dilative concrete strain increment Ag"™
and a dilative normal strain increment Ag":
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In a two dimensional case, they may be
represented as follows, in the direction of crack.

Ag,, = Ag)) + Agl) (15)
Ag,, = Ae)y +Ael (16)

while the shear strain is not affected.

In a three dimensional case, if the change of
volume is represented as A ) and per unit
volume of the material is represented as €2, the
volumetric dilatation is related to the normal
strains as follows:

AQ
o Agy +Agy, +Asy, a7

and the dilatancy law is represented as

D D D
Ag)| +Agy, + Asy;
|A712|

=u (18)

where Ag” = Concrete strain increment in 1

direction i.e. normal to the crack plane. Asl =
Concrete strain increment in 2 direction i.e.
perpendicular to 1 direction. Agl, = Concrete

strain increment in 3 direction i.e. perpendicular
to 1 and 2 directions. Ay,, = Concrete shear strain

increment.

To consider the crack dilatancy effect in both
plane stress and plane strain cases, since this
effect is produced on the crack surface and the
uncracked area is usually regarded to exhibit very
little dilatancy effect, if the cracks are only
allowed to form in the 1 and 2 directions, the
non-cracked direction would exhibit only very
little dilatancy effect and can be ignored,
ie.Agl =0.

Therefore, in the plane stress and plane strain
problems, the dilatancy law can be represented as:

Agl +Ael
€1 En Y (19)
|A712|
Agl +Aed = ,u|A)/12| (20)

where p is defined as a constant dilatancy
parameter and the value is presented as:
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for the crack development state
n==1 for the open crack state

Three stages in the cracking process can be
distinguished: (1) The linear-elastic state; (2) the
development state; and (3) the open-crack, as
shown in Fig. 3. In the crack development state,
as there is no experimental evidence, the value of
dilatancy parameter cannot be estimated from the
experiment. Therefore, a number of values will be
investigated to explore the influence in the latter
sections. In the open crack state, the value of the
dilatancy parameter has been estimated to be 1
obtained by fitting the experimental results and
more details will be presented in next section.

In Egs. 19 and 20 the absolute value of
incremental shear strain Ay, is adopted; this

implies that no matter in which direction the
incremental shear strain Ay, is, the incremental

dilatancy term will always give a positive value
i.e. expansion. This is correct if the incremental
shear strain Ay, is in the same direction as the

current shear strain y,, , i.e. loading. In

conditions of unloading, ie. Ay,, is in the
opposite direction to shear strain y, , the
dilatancy law can be represented as:

Aglilj +A822 :_/1|A712| (21)

This implies that the incremental dilatancy
term will give a negative value, i.e. reduction in
the volumetric strain. Although the incremental
dilatancy term may give a positive or negative
value in different conditions, the total dilatancy
term will always give a positive value. In concrete,
the dilatancy will lead to an increase in volume,
and consequently the total dilatancy term always
has a positive value.

In order to satisfy the demands in both
loading and unloading conditions, the dilatancy
law can be represented as:

2 Ay, (22)

|712|

We further define a second parameter ki,
relating to the distribution of volumetric changes
in the two principal directions, such that

Ael +Aed = u

D

Agy;
D D
Ag] + A&y,

k=

(23)

Following Eq.18 and 19 we can derive that:

Agl :klyyiAy and
|712|
Aeh = (Hq)uﬁm (24)
12

After the dilative strain increment (Ag”) is

obtained, the next step is to consider the following
cases.
Case I: Free expansion (see Figs. 4 and 5).
Case II: Confined by boundary restrain (see
Fig. 6).

O

Fig. 4. A specimen subject to pure tensile force

Fig. 5. A specimen subject to tensile and shear forces
simultaneously Case I: Free expansion
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Fig. 6. A specimen subject to compressive and shear
forces simultaneously Case II: Confined by
boundary restrain

Case I: Free expansion

In this case, there is no compressive stress
developed on the crack surface. The influence of
the dilatancy effect can be evaluated indirectly by
adopting the non-dilative tensile concrete strain

g™ to fit the strain softening curve (Fig. 1) rather

than total tensile strain.

Since the strain softening curve (Fig. 1) or
most other softening curves were obtained by
fitting pure tension test or simulated pure tension
test data, 1.e. shear stress is assumed to be zero or
very small value, consequently, the softening
curve should have the best performance when
applied to a specimen subjected to pure tension.
However, when applied to a specimen subjected
to tension and shear forces simultaneously, this
curve may not be very correct.

Assuming that a strain softening curve (Fig.
7), we further assume that another strain softening
curve has been obtained by fitting a test that is
subjected to tensile and shear forces
simultaneously. Since there is no experimental
evidence available, a strain softening curve (dash
line) is assumed and shown in Fig. 8. In order to
obtain the tensile stress, one should use the total
tensile strain (&) to fit the softening curve under
both tensile and shear conditions. However, due to
the lack of experimental data, the softening curve
under both tensile and shear condition is not
available. An alternative presented in this study is

to adopt the non-dilative tensile strain (&™) to fit

the softening curve obtained from the tensile
effect only as shown in Fig. 7.

FLBEHE Rz E B-H AR 6L
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Fig. 7. Strain softening curve.

7~
™
N

Fig. 8. Assumed strain softening curve.

For the formation of the global stiffness
matrix, the non-dilative cracked tangential
D-matrix (Eq. 1) needs to be converted into the
dilative crack including tangential D-matrix.
Substituting Eq. 24 into Eq.1 the following
equation can be derived:

For loading i.e. T _y
|712|
Agy, Ag)) +Agl
Agy, |= | Ae) +Ael)
Ay Ay,
1/D, (&) 0 kul pG || Aoy,
= 0 1/Dy(&,) (I—k)u!fG || Aoy, (25)
0 0 1/ pG Aty

Then the cracked tangential D-matrix for a
single crack, by inverting Eq. 25 will be

D, (&) 0 =D, pik,
D, = 0 D,(&,) —Dyu(l-k)) (26)
0 0 PG
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For unloading 1.e. T
|712|
Agy, Agl +Ag]
Aey, [= | Ag), +Agy,
Ay, Ay
1/ Dy (&) 0 —kul fG || Aoy,
= 0 1/Dy(&y,) —(=k)u/ fiG || Aoy, (27)
0 0 1/ fG Az,
D, (&,,) 0 D, ik,
D, = 0 D,(&y,) Dyu(1-k)) (28)
0 0 PG

Comparing Eqgs. 1, 26 and 28, it can be seen
that some of the non-diagonal terms are now
non-zero; this implies that the dilatancy effect has
induced coupling between normal stress and shear
stress. From Eq. 1, the incremental normal strain
can be calculated as

Ag,, =—Aco 29
11 Dl (81 1 ) 11 ( )
Aty —— A (30)
? D ,(€2) z
However, from Eq. 25 (assuming that
ﬁ =1 ), the incremental normal strain in
712

1-direction can now be derived as

Ag,, :;AG“ +kl—’uAr12 (€2))]
D, (¢,)) pG
(I-k)u
Ag,, = Ao, + A 32
En D, (¢,) Oxn 5G T (32)

Comparing Egs. 29, 30, 31 and 32, it can be
seen that the shear stress in the non-dilating fixed
crack approach produces no normal strain. This
implies that the shear slip on crack surfaces can
occur at constant crack opening and this is
obviously not true due to the aggregate interlock
[7-9,11].

In contrast, the simple dilatancy approach

allows a certain amount of normal strain that is
proportional to the shear strain to be produced (Eq.
24). This implies that an increase of shear slip will
produce an increase of crack opening and this is in
accordance with experimental observation.

Case II: Confined by boundary restrain

According to the dilatancy experiments
completed by Paulay and Loeber [7]; Bazant and
Gambarova [11], Walraven and Reinhardt [8], and
Gambarova and Karakoc [9], as stated in the
previous section, “A shear slip on crack surfaces
cannot occur at constant crack opening
displacement. Furthermore, if the opening is
restrained then a large compressive stress is
introduced on the crack surface”. An approach
that allows an increase of shear slip to produce an
increase of crack opening has been presented in
the previous case (Case I). In this case, another
approach is developed to model the case that the
crack opening is restrained and a large
compressive stress is introduced on the crack
surface.

In this case, since the crack opening is
restrained, a compressive stress on the crack
surface will occur. In order to properly evaluate
the magnitude of the compressive stress, the
elasto-plastic theory must be adopted. The
following steps need to be employed when the
compressive yield surface is reached.

At some stage after initial yielding, consider
a further load application resulting in an
incremental increase of stress, Ao, accompanied

by a change of non-dilative strain, Ag" . In this
study, it is assumed that the strain can be
separated into elastic and plastic components, so
that

Ae" = Ag® + Ag” (33)

where Ag® = Elastic strain increment, Ag? =
Plastic strain increment. Therefore, the total
concrete strain increment Ag can be represented
as

Ag=Ae" +Ae” =Ae +Ae” +Ag” (34)
where Ae" = Non-dilative concrete strain
increment, Ag” = Dilative normal strain
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increment, Ag‘= Elastic strain increment.
(1) Elastic stress-strain relationships
Ao =D, As* (35)
where D, is the elastic stress-strain matrix.

(2) Flow rule

ae? =an 29 (36)
Jdo

where Q = Plastic potential function, AA=
The plastic multiplier, Ae, = Equivalent

uniaxial plastic strain increment.

If the flow potential function is equal to the
yield function (F), then the flow is said to be
‘associated’ and the plastic strain is then given by:

ae? =an 2F 37)
oo

(3) Hardening relationship

AN = (ﬂjrm (38)

(o2

Using equation (34) and (35) then the
following can be obtained

Ac=D,As “=D,(As —As "’ —Ae ")

(39)
=D,(As" —Ae ")
Therefore, Eq. 39 can be represented as
Ao =D, (A" —ar 25 (40)
Jo

Rearranging (Eq. 40) and premultiplying by
(ﬂ)T ives:
Jdo g '
F

a T ﬁF T N ﬁF
—) Ao=(—) D,(A&e” -AL —)(41
(50) o (50) (Asg 50)( )

By substituting Eq. 38 into Eq. 41, the
following can be obtained

FLBEHE Rz E B-H AR 6L
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ani= 5 p (asv —ax 2L 42)
oo oo

Rearranging Eq. 42 will give:

or

aa+ By p,
oo Jo

1= (25 b, ae¥ 43)
oo

Therefore, the plastic multiplier AA can be
represented as

(ﬁ)T D, Ag"
AM=—20C

(44)
OF ; . OF
[A+(7,)U) D, 7,,01

By substituting (44) into (40) and the
elasto-plastic-dilatancy  relationship can be
obtained as follows:

OF 7 N
(' DaY L

Ac=D,(Ae" - —) (45
(a+( 25y p, 7Fy 70
oo oo
Deﬁ(ﬂ)T D,
=(D,-—9Z20T —)as" (46)
A+(——)'D,
[ (50') ¢ ﬁa]
=D, A" (47)
where
D, =D, - G (48)
ep S
(A+(C DD, o
o oo

2.5 Forming the full D matrix D,

In order to form the full D matrix, the
equation (Eq. 47) needs to be represented by Ag
rather than Ag" . Substituting equation (Eq. 34)

into equation (Eq. 47), the following equation is
given.

- N o_ _ALD
Ao =D,Ae" =D, (Ae—A&™) (49)
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Recalling that

Y
AGil +0a = pp 2T (50)

12
Therefore, Agl} =k, ury,, |7i| and
7/12
Y
Aed = (—k)uAy,, ﬁ (51)
12

0 0 ko

Set D,1 = Y12 00 (l_kl):u (52)
|712| 0 0 0

Therefore, equation (47) can be rearranged as

Ao =D, As"
=D, (As—As”)
=D, {[I1-D,}Ae (53)
=D, ,A¢e

epd

where D, {[I]-D,}=D which is the full D

matrix for dilatancy effect with compression
failure.

epd *

2.6 Estimating the dilatancy parameter u
from the experiments

In order to estimate the range of value of the
dilatancy parameter p in the open crack state, the
experimental diagrams available in the open crack
state are used for this task.

The experimental diagrams collected in this
study include Aggregate-Interlock Relation [8],
Rough Crack Model [11] and Rough Crack Model
[9], as shown in Figs. 9, 10 and 11. In these
diagrams, fjis the confinement normal stress and
u; and u, are the normal and shear displacements.
The relations are shown as follows:

—0——u1(a1)=0.1 —L—u1(a2)=0.5
—A—u1(@3)=1.0 ----- f1=-2
- = 0= - u2(al) - 0- - u2(a2)

A- - u2(a3)

u2, shear displacement (mm)
‘ Y —

f1, confinement
stress N'mm*2

A

DY

=)
3

. 9. Response diagram of Aggregate-Interlock
Relation (Walraven and Reinhardt 1981)

—>—u1(a1)=0.1
—O—u1(a3)=1.0

—A—u1(a2)=0.5

u2, shear displacement (mm)
0 [TO=19 . . .

f1, confinement
stress NNmm*2

!
da

. 10. Response diagram of Rough Crack
Model (Bazant and Gambarova 1980)

—>—u1(a1)=0.1
—O0—ul(a3)=1.0

—A—u1(a2)=0.5

u2, shear displacement (mm)

f1, confinement
stress NNmm*2

Fig. 11. Response diagram of Rough Crack Model
(Gambarova and Karakoc 1983)

2.6.1 Aggregate-Interlock Relation
(Walraven and Reinhardt (1981))

The response diagram of this model is shown
in Fig. 9. The confinement normal stress f,

(N/mm?) and shear stress £, (N/mm?) are shown
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as follows:

fi :%—[1.35&;1’0‘63 +(0.19DAu; 2 ~0.15) 1, JAu, (54)

f= /;O +1.80, % +(0.234Au; 77 =0.20) £, JAu, (55)

where Au, = Normal displacement (mm), Au,=
Shear displacement
cube strength.

(mm), £, =Compressive

2.6.2 Rough Crack Model (Bazant and
Gambarova (1980))

The response diagram of this model is shown
in Fig. 10. The confinement normal stress f,

(N/mm?) and shear stress /s (N/mm?) are shown

as follows:

a
fi ==——(a,| 12" (56)
1 Au, 2| 2|

ay+aylrl?

fr=r r3—4_ (57)

U 1+a r4

4

where p =1.3x[1-0.231/(1+0.185Au, +0.563Au,>)] ,

r=Au,/Au, , t, =1,a, [a, +(Au,)] ,
a,=001D., , a, = 0.000534, a, = 145.0,
a,=245/t, , a, =2.44(1-4/7,); and

7, =0.245f. =0.195f

cc 2

r=Au,/Au, , Au, =
normal displacement, Au, = shear displacement.
The notation f, is used for the compressive

cylinder strength of the concrete, and the more
frequently used compressive cube strength is

denoted by f

cc”

2.6.3 Rough Crack Model (Gambarova
and Karakoc (1983))

The response diagram of this model is shown
in Fig. 11. The confinement normal stress f,

(N/mm?) and shear stress /1 (N/mm?) are shown
as follows:

f; =-a1ay Aul W 'fz (58)
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3

2A a,+a,|r

=1, 1- o3 4|| (59)

2 0 D 4
max 1+a4r

where aja, = 0.62, a3 = 2.45/7,, a,=244(1-4/7,),
and 19 = 025f = 02f, r=Au,/Au,, Au, =

Shear
The maximum

Normal displacement (mm), Au, =
displacement (mm), D,z =
aggregate size (mm).

The dilatancy parameter p can be obtained
using Eq.19. In addition, since the dilatancy tests
were conducted on the basis of a single crack only

(assuming €5,=0), Eq.19 can be simplified as:

Aey _ 60
Ay, X (60)

In a single crack, the dilatancy parameter is
assumed to be constant. But the most appropriate
value of u should be the one derived with zero
confining normal stress. However, as the
experiment was performed under constant
separation condition, some manipulations are
needed to obtain the value of the dilatancy
parameter. In these manipulations, we simply
assume that the parameters are not strongly
affected by the stress path.

Starting from a given point on the
experimental curve with normal stress (fj(a)) &
shear stress (f>(a)), normal displacement (u;(a)) &
shear displacement (u,(a)), the test proceeds to the
next state of normal stress (fi(b)) & shear stress
(f2(b)) and (u;(a)) & (ux(b)) with u;(a) remaining
unchanged. In this case, the volumetric change
has been suppressed by the increase in normal
stress. If the normal stress kept constant, the
normal displacement would need to increase with
increasing shear displacement. By considering
values of normal displacement for a constant
confined stress, we assume that the increase in
normal  displacement  between  different
experimental curves is equal to the volumetric
expansion required to keep the normal stress
constant when the shear deformation is increased.
Values of the dilatancy parameter can then be
obtained by considering the incremental normal
and shear displacement.

For
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B Angl
Ay
_ incrementd normaldisplacements (61)

incrementd shear displacemants

Using the experimental diagram used in the
Aggregate-Interlock Relation [8], and finding a
set of values of uy(al), ux(a2), us(al), and u,(a2)
and another set of values of u,(a2), uy(a3), us(a2),
and u;(a3) from Fig.9, the dilatancy parameter can
then be estimated using

B A&l _u(@)-u(al)  05-0.1
= T @ na) @) w@ O
4(2) = Agl _u (a3)—u,(a2) 1.0-0.5 (63)

Ay, uy(ad)—u,(a2)  u,(a3)—u,(a2)

Where al, a2 and a3 are used to distinguish
different values of ul and u2; x(1) and u(2)

represent two sets of dilatancy parameters.

Repeating the process, a number of estimates
for the dilatancy parameter x4 can be obtained
from the experimental diagram, as shown in Figs.
12, 13 and 14. It can be seen that the range of the
dilatancy parameter u is between 1.6 ~ 0.2 for
experimental data from Aggregate-Interlock
Relation [8]. The range of the dilatancy parameter
4 1s between 4.0 ~ 0.5 for Rough Crack Model
[11] and is between 3.0 ~ 0.8 for Rough Crack
Model [9]. In addition, it can be seen that all these
diagrams show that the dilatancy parameter u
decreases with the increasing confinement stress.
This is consistent with the fact that the crack
opening displacement decreases with the
increasing confinement stress.

Dilatancy parameter | —o—u_1
—{1+u 2

dilatancy parameter

confinement stress (fn)

Fig. 12. Dilatancy parameters obtained by fitting the
Aggregate-Interlock Relation (1981). (The
symbols u_1 and u_2 represents the dilatancy
parameters u() and H1(2)

respectively.)

It can be safely assumed that the value of
dilatancy parameter would be a function of the
size and shape of the aggregate. However, the
shapes of the aggregate have not been reported
with the experimental results. In this study, a
value of the dilatancy parameter p for zero
confined stress has been taken as 1.0 after
considering that the sloping angle of the shape of
the aggregate can be reasonably taken as 45°.

Dilatancy parameter | u 1
—3—u?

N

dilatancy
parameter
O=_NWwWhO

0.5 1 1.5 2 2.5

o

confinement stress (fn)

Fig. 13. Dilatancy parameter obtained by fitting the
Rough Crack Model (1980) (The symbols
ul and u 2 represents the dilatancy
parameters £(1) and p(2) respectively.)
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—0—u_1 Single Element Test
—{F—u 2

Dilatancy parameter

.
=4

1 1 Tal
03 -0.002 -0.001 _1'@.([00 0.001
15

dilatancy
parameter
o =N W hH
?
stress
WN N
o, o

strain

o
N
IS
»

confinement stress (fn) Step 1: Tension

Fig. 14. Dilatancy parameter obtained by fitting the
Rough Crack Model (1983) (The symbols
ul and u 2 represent the dilatancy

Single Element Test

parameter (1) and ¢(2) respectively.) 0,003 0,002 0,001 10‘ 00 0.001
] 151
£ 20 |
II1. SINGLE ELEMENT TEST ol
strain %
3.1 Single element test (I) Step 2: Compression

The single element test used is adopted to
examine the accuracy of the Finite Element
implementation in the LUSAS MMI [16].

The dimensions of the cubic element used in
this example are again 50mm*50mm, and the
thickness is 50mm. In this analysis, 1 element
with 9 Gauss points is adopted and the Al
displacements of all the nodes are prescribed. strain

The accuracy of the implementation of the Step 3: Tension
proposed crack model is examined using two
loading paths. For the first loading path, the Fig. 15. Single element test
element is made to perform tensile behavior first (tension-> compression->tension)
and then compressive behavior and finally tensile
behavior. For the second loading path, the element
is made to perform compressive behavior first and Single Element Test
then tensile behavior and finally compressive
behavior.

The results of this numerical test of the
proposed crack model are shown from Figs. 15 to
16. By comparing these curves with that presented 3L
in previous section, it can be seen that the strain
implementation of this model have been Step 1: Compression
successful.

Single Element Test

-0.003 -0.002 -0.001 1 .000 0.001

stress
EN
(4]

-0.003 -0.002 -0.001

stress
N
o

Single Element Test

-0.003 -0.002 -0.001 1§-400 0.001

stress
o

strain

Step 2: Tension
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Single Element Test

-0.003 -0.002 -0.001 .Q00 0.001

stress
&

strain

Step 3: Compression

Fig. 16. Single element test
(compression->tension-> compression)

3.2 Single element test (II)

Again, the single element tests with
displacement control were carried out to validate
the implementation of the dilatancy law.

Initially, we control in the first step so that
the boundary conditions in the 1 and 2 directions
Ag,,
Agy,

become =-v;Ay,, =0 in the linear elastic

state until a crack appears. After the concrete has
cracked, a switch is made and the shear strain is
applied in the y direction. In the current analysis,
the number of total displacement increments is
chosen as 10. Observing the output result, it is
found that the concrete cracked in the sixth
displacement increment. Therefore, the second
displacement control is applied from the seventh
displacement increment onward.

Furthermore, the dilatancy parameter p; is
varied from 0.0 to 0.4 and the ratio of the shear
strain over normal strain was chosen as 1.0 and

20,06 272 _10 and 22 _5p.

Ag, Ag,
The results for the simple dilatancy criterion
A . .
for %:1.0 are shown in Fig. 17 and the
n

result for %:2.0 is shown in Fig. 18. The
n

result for the dilatancy parameter p, = 0.0 is not
presented in Fig. 17 as the difference between p, =
0.0 and 0.1 is very minor.

It can be seen that by increasing the dilatancy
parameter L, the percentage of reduction of the

load reaction in 1 direction will gradually increase.

Furthermore, the larger ratios of the shear strain
over the normal strain, the larger the dilatancy
effect. This logical result indicates that the simple

dilatancy model is able to properly estimate the
influence of the dilatancy effect and can be
employed in a more complex structure.

Simge ey 51
100
i
Z 7 ——=l)
Eg il o = |-l
§5 o -
o /'/ —— 03"
==y

=

noement | 2 3 ¢ 3 6 7 i 9 10
adisp, (10°-9) 1 ? i 1 i b f b f b
y disp. (10°-0) 0 I I I l I ] LI il

Fig. 17. Reaction load - load increment curve of simple
- Ayy oo
dilatancy ( e =1.0 ) (The symbol “u

X

represents dilatancy parameter ( £,) )

il dlstcy 5t

/- @; Siq j —— )0
\‘\\( =]

=) \

X0 / ——y)d

==

5
adisp, (10-9) 1 ¢ i 1 oo f U | b
ydisp (10D 00 I 0 I

Fig. 18. Reaction load - load increment curve of simple
Ay

dilatancy ( =2.0) (The symbol “u”

X

represents dilatancy parameter (1, ))

3.3 Single element test (I11)

Following the previous dilatancy test, the
shear displacement is increasing continually in the
second step control until the reaction load
becomes negative. This test is made to examine

whether the compressive stress have been
properly evaluated in the finite element
implementation.
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In this test, the ratio of shear strain over

normal strain was chosen to be 35, i.e. ALE” =35,

11
the dilatancy parameter p; was chosen to be 0.4
and the result is shown in Fig. 19. In this study,
the response of concrete under compressive
stresses is assumed to be linear elastic until a
so-called initial yield surface is reached. After that,
the inelastic deformation begins and a
work-hardening plasticity approach is employed
for the irrecoverable part of deformation. Fig. 19
shows that the compressive stress has been
properly evaluated.

Simple dilatancy test
40000
20000

200000 2 4 6 8 12 14 16 18 20 22 24 2
-40000
-60000 |-
-80000 -
-100000 |
-120000 |

-140000

reaction load N.
(x direction)

Load increment

Fig. 19. Stress-strain relationship of simple dilatancy
test

IV. CONCLUSION

The mechanical behaviour of the shear forces
transfer to the cracked concrete is generally
regarded to be very important aspect and will
make significant effect on the whole behaviour in
a structure. Most numerical applications adopt a
so-called shear retention factor £ to simulate the

shear stress-shear strain relation in the crack
development state. Moreover, due to the lack of
experimental data, the magnitude of the shear
retention factor [ is generally assumed to be

from 0 to 1. The interaction between the normal
and shear displacement (or stress) is usually
ignored. From the experimental evidence, it can
be seen that the crack dilatancy effect is important
to be taken into account in calculating the normal
and shear forces transfer to the cracked concrete.
Therefore, when the dilatancy effect is not
properly evaluated, it will affect the precision of
the numerical prediction. However, very few of
the crack models have incorporated the dilatancy
effect in their crack models. Consequently, the
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influence of this effect in either the shear transfer
in cracked concrete or in the whole structure is
still not very clear. Therefore, it is very important
to improve the understanding of its possible
influence in the finite element application.

In this paper, a simple smeared crack
dilatancy model is proposed. This model has
incorporated the dilatancy effect and thus, a
nonsymmetrical stiffness matrix is inevitably
generated. Consequently, this leads to complicated
programming and numerical instability. A single
element test with displacement control has been
carried out to validate the implementation. The
logical result indicates that the simple dilatancy
model is able to properly estimate the influence of
the dilatancy effect and can be employed in a
more complex structure.

NOTATION

The following symbols are used in this paper:

D, the stiffness modulus in 1 direction i.e. normal
to the crack plane.

D, the stiffness modulus in 2 direction i.e.
perpendicular to 1 direction.

Decr cracked full D-matrix

D" stress-strain matrix for crack component

E  Young’s modulus

F  yield function

f; Uniaxial tensile strength

f,"  Uniaxial compressive strength (as a positive
quantity)

f, The confinement normal stress
f> The shear stress

G, Fracture energy

G L = Shear modulus
2(1+v)

H  Hardening parameter
le  Characteristic length

k, Dilatancy parameter
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Au, Normal displacement (mm)
Au, Shear displacement (mm)
0,,0,,0, Principal stresses, tensile positive
&,,&,,&; Principal strains, tensile positive

A 7, Shear stress increment

Ay, Shear strain increment

Poissons’s ratio

Element volume

Equivalent uniaxial yield stress
plastic potential function

dA The plastic multiplier

& Equivalent total wuniaxial plastic strain,

g, = [(de’de?)"”
dk Increment of plastic work
o Equivalent uniaxial stress
63 Initial yield stress
Gi+1 , Oi2  stress in the two planes orthogonal to
‘plane 1’
g); total fracture strain in the first direction i.e.
normal to the crack plane
€5, total fracture strain in the second direction i.e.
perpendicular to 1 direction.
gy ultimate fracture strain
g elastic ultimate strain
Agﬁ Non-dilative concrete strain increment in
first direction
Ag),  Non-dilative concrete strain increment in
the second direction
Agl Dilative concrete strain increment in the

first direction

D . . P .
Agy,  Dilative concrete strain increment in the

second direction
B Shear retention factor

v Constant dilatancy parameter
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