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ABSTRACT 

 
In this paper, a simple smeared crack dilatancy model is proposed. This model has been 

implemented into a FE program (LUSAS [1]) to investigate the influence of dilatancy effect. A single 
notched beam and a simple supported reinforced concrete beam subjected to transient impulsive loading 
were chosen for comparison. The numerical results have provided reasonable agreement with the 
experimental data. For the monotonic case, the influence of the dilatancy effect is more significant in the 
post-peak regime than in the pre-peak regime. For the impulsive loading case, the fundamental period 
increases when the dilatancy effect is considered. 
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摘要 

本研究提出一個混凝土均散裂縫膨脹模式（smeared crack dilatancy model）。本模式已利用

Fortran 程式撰寫並與有限元素法程式（ＬＵＳＡＳ）連結。本文選擇單槽口樑（single notched 
beam）與鋼筋混凝土樑（Simple supported reinforced concrete beam）受到衝擊荷重之實驗資料做

為驗證此模式之範例。分析結果顯示本模式數值結果與實驗結果相當吻合。而單槽口樑的分析

結果並顯示，混凝土裂縫膨脹性的效果（dilatancy effect）在荷重─位移曲線(Load-Deflection Curve)
的後頂區（post-peak regime）比前頂區（pre-peak regime）更為重要。而在鋼筋混凝土樑受到衝

擊荷重分析結果顯示，震動週期會因為考慮了裂縫膨脹性的效果（dilatancy effect）而增加。 
 

關鍵詞：膨脹，塗抹裂縫模式，有限元素法 

 
 
   

 文稿收件日期 95.12.04 ; 文稿修正後接受日期 97. 01.10 

Manuscript received December 04, 2006; revised January 10, 2008 



T. F. Chuang. 
Numerical Studies on Crack Dilatancy of Concrete II: Example of Practical Applications 
 

 - 96 -

 
I. INTRODUCTION 

In this study, a single notched beam that is 
expected to have significant dilatancy effect was 
selected. This example was performed by 
CMSD-controlled (the CMSD is the Crack Mouth 
Sliding Displacement).The load-CMSD curves 
and the crack patterns obtained from experiment 
and numerical analysis are compared. The 
numerical crack patterns was also plotted to be 
further investigated. The second example relates 
to the mixed mode fracture test of a simple 
supported beam subject to transient impulsive 
loading. This work is intended to conduct a 
further investigation and gather more information 
of the dilatancy behaviour. 

 
II. FINITE ELEMENT ANALYSIS 

 
The LUSAS [1] finite element analysis 

package was used in this study. This program 
contains a material model interface (MMI) that 
allows users to develop computer code for 
material models then link the codes to the main 
program in such a way that the user code controls 
the material behaviour of the specified elements. 
With the help of this advanced package, the 
iterative scheme (i.e. Newton-Raphson or 
Modified Newton-Raphson method), the 
convergence criterion, and the arc-length method 
[2] needed to trace the softening curve can be 
easily adopted without expensive programming 
and testing. In this study, the iterative scheme 
adopted is the Newton-Raphson or Modified 
Newton-Raphson method, and the convergence 
criterion is the Euclidian residual norm [1]. Both 
of them are available in LUSAS and can directly 
be used without any programming. In LUSAS [1], 
the Euclidian residual norm ψr  is defined by the 
norm of the residuals ψ as a percentage of the 
norm of the external forces R and is written as 
 

100
2

2 ×=
R

r
ψ

ψ            (1) 

where R contains the external loads and reactions. 
Owing to the inconsistency of the units of 
displacement and rotation, usually only 
translational degrees of freedom are considered 

although all freedoms may optionally be included. 
In this study, a default value of 0.1=ψr  
suggested by LUSAS user’s manual is adopted. 
 
2.1 Single notched beam 

 
Among the experiments on mixed-mode 

concrete fracture, a single notched beam, tested by 
Arrea & Ingraffea [3], is selected for analysis. The 
supports and the loading conditions are 
non-symmetric with respect to the notch, as given 
in Fig. 1. The typical crack pattern is also given in 
Fig. 1. The test was performed by 
CMSD-controlled (the CMSD is the Crack Mouth 
Sliding Displacement). The material properties for 
the test are given in Tables 1. 

The single notch beam is analysed with the 
fixed crack model first without and then with the 
dilatancy effect to investigate the influence of the 
dilatancy effect. Two-dimensional plane stress 
model with eight-noded plane stress elements 
(type QPM8) and six-noded plane stress element 
(type TPM6), see LUSAS User’s Manual, were 
used to analyse the test specimens. The finite 
element mesh employed is this analysis is shown 
in Fig. 2 and 3. 

 

Table 1 Concrete properties of single notch beam 

Young’s modulus E = 24800 N/mm2

Poisson’s ratio  ν   = 0.2 
Uniaxial compressive 
strength 

fc = 28.0 N/mm2 

Uniaxial tensile strength ft = 2.8 N/mm2 
Uniaxial strain at peak 
compressive strength 

εc
’ = 0.0022 

Fracture energy  Gf = 0.07 N/mm 
Initial shear retention 
factor 

β = 0.1 
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Fig. 1. The typical crack pattern of experiment 

 

 

Fig. 2. Single notched beam. Mesh I 

 

 
Fig. 3. Single notched beam. Mesh II 
 
2.1.1 Mesh dependency study 
 

The load-CMSD curves of the single notch 
beam obtained with the two meshes are shown in 
Fig. 4. It can be seen that the two finite element 
meshes give similar results. Based on this 
observation, all subsequent studies are performed 
using only mesh I. In the numerical analysis, the 
number of load increment is 30 and the number of 
iteration at each load step is shown in Table 2.  
 
 
 
 
 

Table 2 Load increment and iteration of single 
notch beam 

Load 
increment

Number 
of 

iteration

Load 
increment 

Number 
of 

iteration
1 1 16 3 
2 1 17 3 
3 1 18 2 
4 1 19 2 
5 2 20 3 
6 2 21 3 
7 2 22 6 
8 3 23 6 
9 2 24 9 

10 2 25 9 
11 3 26 9 
12 4 27 6 
13 5 28 6 
14 10 29 6 
15 3 30 6 
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Fig. 4. Mesh dependency test (μ = 0.0) 
 
2.1.2 Load-CMSD curves 

 
Two different values of the dilatancy 

parameter (μ1 = 0.3 and 0.5) are used to show the 
influence of dilatancy effect on the load-CMSD 
curves. The load-CMSD curves obtained with 
non-dilating (μ1 = 0.0), simple dilatancy model 
and experimental results are shown in Fig. 5. 

Fig. 5 shows that the load-CMSD curves 
obtained from the experiment and the numerical 
model (μ1 = 0.0, 0.3 and 0.5) are in reasonable 
agreement. In addition, it can be seen that the 
influence of the dilatancy effect is more 
significant in the post-peak regime rather than that 
of the pre-peak regime as expected. Additionally, 
in the post-peak regime, it can be observed that 
the dilatancy effect has the obvious influence. 
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Fig. 5. Load F versus CMSD of single notch beam 

   (“u” represents dilatancy parameter ( )1μ ) 
 
2.1.3 Non-orthogonal crack model 

 
In order to compare the results obtained 

from the simple dilatancy model (fixed crack) 
with other crack models, the non-orthogonal 
crack model [4] available in LUSAS is also 
used with the same material parameters used 
by the simple dilatancy model. Fig. 5 also 
provides a load-CMSD curves obtained from 
the non-orthogonal model. By comparing the 
results obtained from the non-orthogonal 
model and the experiment, it can be seen that 
the non-orthogonal model shows a reasonable 
agreement with one of the experimental 
results. However, by comparing the results 
obtained from the fixed crack model (μ1 = 0.0) 
and the non-orthogonal model (non-dilatat), it 
can be seen that the results differ greatly. The 
main reason could be that the criteria to 
account for shear transfer to cracked surfaces 
employed in these two models are different 
and therefore, lead to a different result.  
 
2.1.4 Crack pattern 
 

Since the influence of the dilatancy effect on 
the numerical crack pattern is very minor, only the 
crack pattern obtained from the non-dilating 
model is given, as shown in Fig. 6.  

In the pre-peak regime, i.e. from 1st load 
increment to 20th load increment, the cracks 
initially appeared on the above right of the notch. 
With the increase of loading, the cracks 
propagate in a curvilinear way and then 
continues to propagate in a vertical direction. 
The numerical crack pattern obtained in this 

study shows good agreement with other smeared 
crack model [5]. However, the experimental 
crack pattern (Fig. 1) shows a larger change in 
propagating direction than the numerical crack 
pattern. 

The comparison between the numerical and 
experimental crack patterns shows that the 
maximum principal stress criterion adopted in the 
current crack model can predict the crack 
initiation well but needs to be improved in the 
prediction of the crack propagation. 
 

 

Increment=10 

 
Increment=20 

 

Increment=30 
Fig. 6. Numerical crack patterns 

 
2.2 Simply Supported beam 

 
A simply supported reinforced concrete 

beam investigated by Beshara and Virdi [6] is 
selected for analysis. This reinforced concrete 
beam shown in Fig 7 is subjected to two 
symmetrically applied concentrated loads which 
are applied as step loads with a zero rise time 
(Fig. 8). The beam is reinforced in the lower 
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position by 1290 mm2. The material properties 
are listed in Tables 3 and 4 

 
Two-dimensional plane stress models are 

used to analyse the test specimens. Due to the 
symmetry, only one half of the specimen was 
modeled using eight-noded isoparametric 
elements (QPM8) with axial bars (BAR3) to 
simulate the reinforcing steel. The dynamic 
analysis is performed with a time step of 0.002 
sec. 

 

Table 3 Concrete properties  

Initial Young’s modulus E0 = 42059 
N/mm2 

Poisson’s ratio  ν   = 0.2 

Mass density 1932 kg /m3 

Uniaxial compressive 
strength 

fc = 25.8 N/mm2

Uniaxial tensile strength ft = 3.2 N/mm2 

Uniaxial strain at peak 
compressive strength 

εc
’ = 0.0023 

Fracture energy  Gf = 0.1 N/mm 

Initial shear retention 
factor 

β = 0.1 

 

Table 4 Steel properties  

Initial Young’s modulus E0 = 206850 
N/mm2 

Poisson’s ratio  ν   = 0.2 

Mass density 6535 kg/m3 

Yield stress  σf = 303 N/ mm2

Hardening parameter H = 15000 
N/mm2 

 

 

Fig. 7. Beam geometry and dimensions (mm.) 
10×

210×
 

Fig. 8. Loading time history 
 
2.2.1 Step-by-step dynamic analysis 
 

In this study, both the linear and non-linear 
step-by-step dynamic analyses have been 
selected. The incremental equations of dynamic 
equilibrium can be presented as  

 

QdKdCdM T Δ=Δ+Δ+Δ
...

        (2) 
 

where dΔ ,
.
dΔ  and 

..
dΔ , and  are the 

increments of displacement, velocity and 
acceleration vectors during the time step tΔ , 
respectively. M, C and TK  are the mass, 
damping, and tangent stiffness matrix, 
respectively. QΔ  are the increments of 
external loads during the time step tΔ . 

No viscous damping has been considered 
by Beshara and Virdi [6] and this study; 
therefore, equation (2) can be simplified to be: 

 

QdKdM T Δ=Δ+Δ
..

         (3) 
 

2.2.2 Mesh dependency study 
 

Two finite element meshes are used to show 
the influence of mesh refinement on the nonlinear 
response curves of the simple supported beam 



T. F. Chuang. 
Numerical Studies on Crack Dilatancy of Concrete II: Example of Practical Applications 
 

 - 100 -

which are shown in Figs. 9 and 10. The nonlinear 
response curves obtained with the two meshes are 
shown in Fig. 11. It can be seen that the two finite 
element meshes give similar results. In the 
numerical analysis, the number of time step is 25 
and the number of iteration at each time step is 
shown in Table 5. In this study, the iterative 
scheme adopted is the Newton-Raphson or 
Modified Newton-Raphson method, and the 
convergence criterion is the Euclidian residual 
norm [1]. Both of them are available in LUSAS 
and can directly be used without any 
programming.  

 
 
Table 5 Time step and iteration of simple 

supported beam 
Time 
step 

Number of 
iteration 

Time 
step 

Number of 
iteration 

1 1 14 2 
2 1 15 2 
3 1 16 2 
4 1 17 1 
5 1 18 1 
6 4 19 1 
7 4 20 1 
8 3 21 1 
9 2 22 1 

10 3 23 2 
11 2 24 1 
12 2 25 1 
13 2   

 

Fig. 9. Simple supported beam. Mesh I 
       

 

Fig. 10. Simple supported beam. Mesh II 
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Fig. 11. Mesh dependency study 

 

Simple supported beam
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Fig. 12. The linear and nonlinear response 

(Non-dilatant and Dilatant) of the beam 
 
2.2.3 Span-deflection response 

 
An elastic analysis was first carried out as a 

check, and the results were found to be in 
excellent agreement with those given by Beshara 
and Virdi [5]. Fig. 12 shows the time history of 
the mid-span deflection for the linear case and 
the nonlinear analysis cases representing the 
proposed model and that given by Beshara and 
Virdi [5]. The central deflection history of the 
nonlinear case of this study was found to be 
reasonable agreement with that given by 
Beshara and Virdi [5].  

Fig. 12 also shows that the amplitude is not 
affected by the dilatancy effect. However, the 
fundamental period increases when the dilatancy 
effect is considered.  

In order to trace the possible reason to 
explain this behaviour, the dynamic equilibrium 
equations (Eq.4) used for the step-by-step analysis 
is reviewed. In a step-by-step dynamic analysis, 
the stiffness matrix [K], mass matrix [M] and 
damping matrix [C] are the three properties of a 
structure which potentially affect the whole 
dynamic behaviour. In this study, a constant mass 
density is used and this will lead to a constant 
mass matrix [M]. Additionally, as reported in the 
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previous section, the viscous damping is not 
considered in this study. Therefore, it is obvious 
that a possible reason can be that the magnitude of 
the stiffness matrix [K] is affected when the 
dilatancy effect is taken into account. Since the 
geometrical nonlinearity is not considered in this 
study, the strain-displacement matrix [B] is kept 
as a constant matrix. It is known that the stiffness 
matrix [K] can be represented 

as [ ] [ ] [ ][ ]∫ Ω= dBDBK T ; therefore, the only 

component which will affect the value of the 
stiffness matrix is the tangential D-matrix. One 
possible explanation is that when the dilatancy 
effect is taken into account, it will lead to a 
different tangential D-matrix, and therefore, lead 
to a different stiffness matrix [K]. This should be 
further investigated in future work. 

From Fig. 12, the following conclusions 
can be drawn regarding the linear and nonlinear 
responses: 
1. An increase of the maximum deflection in the 

nonlinear case by almost 50% than in the 
linear elastic case (i.e. 9.3mm/6.2mm=1.5). 

2. An elongation of the fundamental period in 
the nonlinear case by almost 50% than in the 
linear elastic case (i.e. 0.03sec/0.02sec=1.5).  

 
2.2.4 Numerical Crack pattern  
 

The crack patterns obtained from the 
numerical analysis of mesh II are given in Fig 
13.  

It can be seen that the cracks initially 
appeared at the middle-bottom area of the beam. 
This is because the flexural deformations 
produce the cracks which are all perpendicular 
to tension face at initiation. As the cracks 
propagate further into the beam, the compressive 
strain, combined with the shear strain, alters the 
inclination of the principal strain so that they 
incline towards the horizontal. The predicted 
patterns in the present analysis were found to be 
in good agreement with that given by Beshara 
and Virdi [5].  

 
 

 
Time=0.01 sec 

 

Time=0.02 sec 

 
Time=0.05 sec 

 
Time=0.10 sec 

Fig. 13. Simple supported beam. Crack pattern of Mesh 
II 

 
 

III. CONCLUSION 
 
In this paper, the performance of the 

dilatancy effect in concrete cracking is assessed 
by analysing a single notch beam and a 
reinforced concrete beam. Several conclusions 
can be drawn regarding the numerical analysis 
and the experimental result. 
1. For the monotonic case, the influence of the 

dilatancy effect is more significant in the 
post-peak regime than in the pre-peak 
regime. This is because not many cracks 
occur at the pre-peak zone and therefore 
dilatancy is not active.  

2. The crack patterns obtained from the 
non-dilatant model and simple dilatancy 
model do not differ much. The reason is that 
the maximum principal stress criterion 
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governs the crack initiation and propagation. 
Although the dilatancy law will begin to be 
active after crack initiation, the results show 
that it does not affect the crack propagation. 

3. For the impulsive loading case, an increase 
of the maximum deflection in the nonlinear 
case by almost 50% than in the linear elastic 
case. Also, an elongation of the fundamental 
period in the nonlinear case by almost 50% 
than in the linear elastic case. In addition, 
the fundamental period increases when the 
dilatancy effect is considered. 
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