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Numerical Studies on Crack Dilatancy of Concrete
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ABSTRACT

In this paper, a simple smeared crack dilatancy model is proposed. This model has been
implemented into a FE program (LUSAS [1]) to investigate the influence of dilatancy effect. A single
notched beam and a simple supported reinforced concrete beam subjected to transient impulsive loading
were chosen for comparison. The numerical results have provided reasonable agreement with the
experimental data. For the monotonic case, the influence of the dilatancy effect is more significant in the
post-peak regime than in the pre-peak regime. For the impulsive loading case, the fundamental period
increases when the dilatancy effect is considered.
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I. INTRODUCTION

In this study, a single notched beam that is
expected to have significant dilatancy effect was
selected. This example was performed by
CMSD-controlled (the CMSD is the Crack Mouth
Sliding Displacement).The load-CMSD curves
and the crack patterns obtained from experiment
and numerical analysis are compared. The
numerical crack patterns was also plotted to be
further investigated. The second example relates
to the mixed mode fracture test of a simple
supported beam subject to transient impulsive
loading. This work is intended to conduct a
further investigation and gather more information
of the dilatancy behaviour.

II. FINITE ELEMENT ANALYSIS

The LUSAS [1] finite element analysis
package was used in this study. This program
contains a material model interface (MMI) that
allows users to develop computer code for
material models then link the codes to the main
program in such a way that the user code controls
the material behaviour of the specified elements.
With the help of this advanced package, the
iterative scheme (i.e. Newton-Raphson or
Modified  Newton-Raphson  method), the
convergence criterion, and the arc-length method
[2] needed to trace the softening curve can be
easily adopted without expensive programming
and testing. In this study, the iterative scheme
adopted is the Newton-Raphson or Modified
Newton-Raphson method, and the convergence
criterion is the Euclidian residual norm [1]. Both
of them are available in LUSAS and can directly
be used without any programming. In LUSAS [1],
the Euclidian residual normr, is defined by the

norm of the residuals y as a percentage of the
norm of the external forces R and is written as

_|wl,

73
],
where R contains the external loads and reactions.
Owing to the inconsistency of the units of

displacement and rotation, usually only
translational degrees of freedom are considered

x100 (1)

although all freedoms may optionally be included.
In this study, a default value of r, =0.1

suggested by LUSAS user’s manual is adopted.
2.1 Single notched beam

Among the experiments on mixed-mode
concrete fracture, a single notched beam, tested by
Arrea & Ingraffea [3], is selected for analysis. The
supports and the loading conditions are
non-symmetric with respect to the notch, as given
in Fig. 1. The typical crack pattern is also given in
Fig. 1. The test was performed by
CMSD-controlled (the CMSD is the Crack Mouth
Sliding Displacement). The material properties for
the test are given in Tables 1.

The single notch beam is analysed with the
fixed crack model first without and then with the
dilatancy effect to investigate the influence of the
dilatancy effect. Two-dimensional plane stress
model with eight-noded plane stress elements
(type QPMS) and six-noded plane stress element
(type TPM6), see LUSAS User’s Manual, were
used to analyse the test specimens. The finite
element mesh employed is this analysis is shown
in Fig. 2 and 3.

Table 1 Concrete properties of single notch beam

E = 24800 N/mm”
=0.2
£, = 28.0 N/mm>

Young’s modulus
Poisson’s ratio \Y%

Uniaxial compressive

strength

Uniaxial tensile strength  f, = 2.8 N/mm’
Uniaxial strain at peak g =0.0022
compressive strength

Fracture energy G¢=0.07 N/mm
Initial shear retention B =0.1

factor
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Table 2 Load increment and iteration of single

l notch beam
R o Load Number Load Number
0137 increment | . Of. increment | . Of.
T 1teration iteration
224 m\}n <4—— Crack pattern 1 1 1 6 3
! 2 1 17 3
f 3 1 18 2
2 mp 4 1 19 2
N ORI ST ¢ 5 2 20 3
397 mm 61mm ' 61m: 397 mm 6 2 2 1 3
7 2 22 6
) ] ) 8 3 23 6
Fig. 1. The typical crack pattern of experiment 9 D 24 9
10 2 25 9
11 3 26 9
IEEEE 12 4 27 6
B 13 5 28 6
14 10 29 6
15 3 30 6
Fig. 2. Single notched beam. Mesh I 160 oinele foten Beam :xz: :I
1.40
Z 120
g 100
T 080
T 060
S o040
0.20
0.00
0.00 0.03 0.05 0.08 0.10 0.13 0.15
CMSD (mm.)

——

Fig. 3. Single notched beam. Mesh II

2.1.1 Mesh dependency study

The load-CMSD curves of the single notch
beam obtained with the two meshes are shown in
Fig. 4. It can be seen that the two finite element
meshes give similar results. Based on this
observation, all subsequent studies are performed
using only mesh 1. In the numerical analysis, the
number of load increment is 30 and the number of
iteration at each load step is shown in Table 2.

Fig. 4. Mesh dependency test (1 = 0.0)

2.1.2 Load-CMSD curves

Two different values of the dilatancy
parameter (i; = 0.3 and 0.5) are used to show the
influence of dilatancy effect on the load-CMSD
curves. The load-CMSD curves obtained with
non-dilating (i; = 0.0), simple dilatancy model
and experimental results are shown in Fig. 5.

Fig. 5 shows that the load-CMSD curves
obtained from the experiment and the numerical
model (u; = 0.0, 0.3 and 0.5) are in reasonable
agreement. In addition, it can be seen that the
influence of the dilatancy effect is more
significant in the post-peak regime rather than that
of the pre-peak regime as expected. Additionally,
in the post-peak regime, it can be observed that
the dilatancy effect has the obvious influence.
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Single Notch Beam | ~7°°°°° Non-orth.
—a—Exp. |
e — A Exp2
14 | —o—u=0.0
Z 12t A u=03
g 1| —%—u=05
o8t
§ 06 |
a 04 -
0.2 |
0 t L L L L
0 0.025 0.05 0.075 0.1 0.125 0.15
CMSD (mm.)

Fig. 5. Load F versus CMSD of single notch beam
(“u” represents dilatancy parameter ( L, ))

2.1.3 Non-orthogonal crack model

In order to compare the results obtained
from the simple dilatancy model (fixed crack)
with other crack models, the non-orthogonal
crack model [4] available in LUSAS is also
used with the same material parameters used
by the simple dilatancy model. Fig. 5 also
provides a load-CMSD curves obtained from
the non-orthogonal model. By comparing the
results obtained from the non-orthogonal
model and the experiment, it can be seen that
the non-orthogonal model shows a reasonable
agreement with one of the experimental
results. However, by comparing the results
obtained from the fixed crack model (n; = 0.0)
and the non-orthogonal model (non-dilatat), it
can be seen that the results differ greatly. The
main reason could be that the criteria to
account for shear transfer to cracked surfaces
employed in these two models are different
and therefore, lead to a different result.

2.1.4 Crack pattern

Since the influence of the dilatancy effect on
the numerical crack pattern is very minor, only the
crack pattern obtained from the non-dilating
model is given, as shown in Fig. 6.

In the pre-peak regime, i.e. from 1* load
increment to 20™ load increment, the cracks
initially appeared on the above right of the notch.
With the increase of loading, the cracks
propagate in a curvilinear way and then
continues to propagate in a vertical direction.
The numerical crack pattern obtained in this

study shows good agreement with other smeared
crack model [5]. However, the experimental
crack pattern (Fig. 1) shows a larger change in
propagating direction than the numerical crack
pattern.

The comparison between the numerical and
experimental crack patterns shows that the
maximum principal stress criterion adopted in the
current crack model can predict the crack
initiation well but needs to be improved in the
prediction of the crack propagation.

Increment=10

SSs==)
|

Increment=30
Fig. 6. Numerical crack patterns

2.2 Simply Supported beam

A simply supported reinforced concrete
beam investigated by Beshara and Virdi [6] is
selected for analysis. This reinforced concrete
beam shown in Fig 7 is subjected to two
symmetrically applied concentrated loads which
are applied as step loads with a zero rise time
(Fig. 8). The beam is reinforced in the lower

-08 -



PR S22 d Fo8 AR 97.05
JOURNAL OF C.C.I.T, VOL.36, NO.2, MAY, 2008

position by 1290 mm®. The material properties os ose
are listed in Tables 3 and 4 1270 mm o4 mm 1270

Two-dimensional plane stress models are .
used to analyse the test specimens. Due to the

symmetry, only one half of the specimen was —
modeled using eight-noded isoparametric o [« o )
elements (QPMS8) with axial bars (BAR3) to

simulate the reinforcing steel. The dynamic

analysis is performed with a time step of 0.002 Fig. 7. Beam geometry and dimensions (mm.)

SEC. x10

Table 3 Concrete properties

Load P (KN)

- b bae u o
T

Initial Young’s modulus Eo =42059 B
N/mm?® L
Poisson’s ratio v =02 5 ume(l:sec.> o
Mass density 1932 kg /m’ Fig. 8. Loading time history
Uniaxial compressive f, =25.8 N/mm’
strength 2.2.1 Step-by-step dynamic analysis
Uniaxial tensile strength | f, = 3.2 N/mm” In this study, both the linear and non-linear
. . " step-by-step dynamic analyses have been
Uniaxial strain at peak & =0.0023 selected. The incremental equations of dynamic
compressive strength equilibrium can be presented as
Fracture energy Gr=0.1 N/'mm ) 4
Initial shear retention B=0.1 M Ad+CAd+ KpAd = A0 2)
factor _ )
where Ad ,Ad and Ad, and are the
increments of displacement, velocity and
acceleration vectors during the time step Af,
Table 4 Steel properties respectively. M, C and K, are the mass,

damping, and tangent stiffness matrix,

Initial Y ’ dul E, =206850
fiftat YOUng s moduius ‘ respectively. AQ are the increments of

2
N/mm external loads during the time step Af.

Poisson’s ratio v =02 No viscous damping has been considered
by Beshara and Virdi [6] and this study;

- 3

Mass density 6535 kg/m therefore, equation (2) can be simplified to be:

Yield stress or= 303 N/ mm>

Hardening parameter H=15000 M Ad+ K, Ad = AQ 3)
N/mm?®

2.2.2 Mesh dependency study

Two finite element meshes are used to show
the influence of mesh refinement on the nonlinear
response curves of the simple supported beam
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which are shown in Figs. 9 and 10. The nonlinear
response curves obtained with the two meshes are
shown in Fig. 11. It can be seen that the two finite
element meshes give similar results. In the
numerical analysis, the number of time step is 25
and the number of iteration at each time step is
shown in Table 5. In this study, the iterative
scheme adopted is the Newton-Raphson or
Modified Newton-Raphson method, and the
convergence criterion is the Euclidian residual
norm [1]. Both of them are available in LUSAS
and can directly be used without any
programming.

Table 5 Time step and iteration of simple
supported beam

Time Number of | Time Number of
step iteration step iteration
1 1 14 2
2 1 15 2
3 1 16 2
4 1 17 1
5 1 18 1
6 4 19 1
7 4 20 1
8 3 21 1
9 2 22 1
10 3 23 2
11 2 24 1
12 2 25 1

13 2

Fig. 9. Simple supported beam. Mesh I

Fig. 10. Simple supported beam. Mesh II

Simple supported beam

——mesh|

—A—mesh |l

central deflection

0 0.01 0.02 0.03 0.04 0.05
time (sec)

Fig. 11. Mesh dependency study

. Linear
Simple supported beam | —a— Non-dilatant
12 —o0— Dilatant
—>— Beshara and Virdi

central deflection
(mm.)

0 0.01 0.02 0.03 0.04 0.05
time (sec)

Fig. 12. The linear and nonlinear response
(Non-dilatant and Dilatant) of the beam

2.2.3 Span-deflection response

An elastic analysis was first carried out as a
check, and the results were found to be in
excellent agreement with those given by Beshara
and Virdi [5]. Fig. 12 shows the time history of
the mid-span deflection for the linear case and
the nonlinear analysis cases representing the
proposed model and that given by Beshara and
Virdi [5]. The central deflection history of the
nonlinear case of this study was found to be
reasonable agreement with that given by
Beshara and Virdi [5].

Fig. 12 also shows that the amplitude is not
affected by the dilatancy effect. However, the
fundamental period increases when the dilatancy
effect is considered.

In order to trace the possible reason to
explain this behaviour, the dynamic equilibrium
equations (Eq.4) used for the step-by-step analysis
is reviewed. In a step-by-step dynamic analysis,
the stiffness matrix [K], mass matrix [M] and
damping matrix [C] are the three properties of a
structure which potentially affect the whole
dynamic behaviour. In this study, a constant mass
density is used and this will lead to a constant
mass matrix [M]. Additionally, as reported in the
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previous section, the viscous damping is not
considered in this study. Therefore, it is obvious
that a possible reason can be that the magnitude of
the stiffness matrix [K] is affected when the
dilatancy effect is taken into account. Since the
geometrical nonlinearity is not considered in this
study, the strain-displacement matrix [B] is kept
as a constant matrix. It is known that the stiffness
matrix K] can be represented

as [K ]:J‘ [B]T [D][B]dQ ; therefore, the only

component which will affect the value of the

stiffness matrix is the tangential D-matrix. One

possible explanation is that when the dilatancy

effect is taken into account, it will lead to a

different tangential D-matrix, and therefore, lead

to a different stiffness matrix [K]. This should be
further investigated in future work.

From Fig. 12, the following conclusions
can be drawn regarding the linear and nonlinear
responses:

1. An increase of the maximum deflection in the
nonlinear case by almost 50% than in the
linear elastic case (i.e. 9.3mm/6.2mm=1.5).

2. An elongation of the fundamental period in
the nonlinear case by almost 50% than in the
linear elastic case (i.e. 0.03sec/0.02sec=1.5).

2.2.4 Numerical Crack pattern

The crack patterns obtained from the
numerical analysis of mesh II are given in Fig
13.

It can be seen that the cracks initially
appeared at the middle-bottom area of the beam.
This is because the flexural deformations
produce the cracks which are all perpendicular
to tension face at initiation. As the cracks
propagate further into the beam, the compressive
strain, combined with the shear strain, alters the
inclination of the principal strain so that they
incline towards the horizontal. The predicted
patterns in the present analysis were found to be
in good agreement with that given by Beshara
and Virdi [5].
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Time=0.01 sec

Time=0.02 sec

Time=0.05 sec

Time=0.10 sec

Fig. 13. Simple supported beam. Crack pattern of Mesh
I

III. CONCLUSION

In this paper, the performance of the
dilatancy effect in concrete cracking is assessed
by analysing a single notch beam and a
reinforced concrete beam. Several conclusions
can be drawn regarding the numerical analysis
and the experimental result.

1. For the monotonic case, the influence of the
dilatancy effect is more significant in the
post-peak regime than in the pre-peak
regime. This is because not many cracks
occur at the pre-peak zone and therefore
dilatancy is not active.

2. The crack patterns obtained from the
non-dilatant model and simple dilatancy
model do not differ much. The reason is that
the maximum principal stress criterion
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(1]
[2]

governs the crack initiation and propagation.
Although the dilatancy law will begin to be
active after crack initiation, the results show
that it does not affect the crack propagation.
For the impulsive loading case, an increase
of the maximum deflection in the nonlinear
case by almost 50% than in the linear elastic
case. Also, an elongation of the fundamental
period in the nonlinear case by almost 50%
than in the linear elastic case. In addition,
the fundamental period increases when the
dilatancy effect is considered.
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