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ABSTRACT

As the demand of information security increases, so does the attention paid to the biometrics-based,
automated person identification. Among current biometric approaches, iris recognition is known for an
inherently reliable technique to identify one’s identity. Empirical Mode Decomposition (EMD), a
multi-resolution decomposition technique, is adaptive for non-linear and non-stationary data analysis, and
therefore would be suitable for iris pattern extraction. This paper presents an effective approach for iris
recognition using the proposed scheme of Modified Empirical Mode Decomposition to analyze the iris signals
locally. Based on EMD that is a fully data-driven method and does not use any pre-determined filter or wavelet
function, an iris recognition scheme is presented by adopting Modified EMD as a low-pass filter for feature
extraction. To evaluate the proposed approach, three different similarity measures are used. Experimental results
show that those three metrics have achieved promising and similar performance. Therefore, the proposed method
demonstrates to be feasible for iris recognition and Modified EMD is suitable for feature extraction.

Keywords: biometrics, iris recognition, empirical mode decomposition (EMD), multi-resolution decomposition.
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I. INTRODUCTION

Biometrics is inherently a more reliable and
capable technique to identity one’s identity by his or
her own physiological or behavioral characteristics.
The features used for personnel identification by
current biometric applications include facial features,
fingerprints, iris, palm-prints, retina, handwriting
signature, DNA, gait, etc. The comparison among
those techniques were given in [1,2]. The lower error
recognition rate achieved by iris recognition has
been reported [3] and received increasing attention in
recent years.

The eye appearance consists of sclera, iris, and
pupil, and their boundaries are like circles with
varied radii. Sclera is the outside portion of the eye
occupying about 30% eye area. The central part of
the eye is the pupil including 5% area of the eye. Iris
is the colored portion of the exterior eye, which is
embedded with tiny muscles that affect the pupil size,
about 65% area of the eye [2], and is an annular part
between the black pupil and white sclera. It appears
that phenotypic random patterns are visible in the
human iris constituted of lots of irregular blobs, such
as freckles, coronas, stripes, furrows, crypts, etc.
Such iris pattern is a unique, stable, and non-invasive
biometric feature suitable for individual verification.

Nowadays, iris recognition approaches can be
roughly divided into four methods: phase-based
approaches [4-8], zero-crossing representation [9,
10], texture analysis [11-14], and intensity variation
analysis [15,16]. Daugman’s algorithm [4] adopted
the 2D Gabor filters to demodulate the iris phase
information. Each phase structure is quantized into
one of four quadrants in the complex plane. The
Hamming distance was further used to calculate the
distance between iris codes of 2048 bits. In the past
decade, Daugman had modified and improved his
recognition algorithms [5-7]. A recent paper [§]
presents alternative methods of segmentation based
on active contours, a way to transform an off-angle
iris image into a more frontal view, and a description
of new score normalization scheme to use when
computing Hamming distance that would account for
the total amount of unmasked data available in the
comparison. Boles and Boashash [9] presented the
zero-crossing of one-dimensional wavelet transform
to represent distinct levels of a concentric circle for
an iris image, and then two dissimilarity functions
were used for matching the obtained iris features. To
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extend the approach of Boles and Boashash,
Sanchez-Avila and Sanchez-Rellio [10] further
proposed using different distance measures (such as
Euclidean distance and Hamming distance) for
feature matching. Wildes et al. [11] used the
Laplacian pyramids to analyze the iris texture and
combine features from four different resolutions.
Then normalized correlation was selected to decide
whether the input image and the enrolled image
belong to the same class. Lim et al. [12] decomposed
an iris image into four levels with different
frequency components using two-dimensional Haar
wavelet transform and the fourth-level with high
frequency information was quantized to form an
87-bit code. Then a modified competitive learning
neural network (LVQ) was used for classification. L.
Ma et al. [13] proposed a well-known texture
analysis method (multi-channel Gabor filtering) to
capture both global and local details from an iris
image. Recently, Tisse et al. [14] constructed the
analytic image (a combination of the original image
and its Hilbert transform) to demodulate the iris
texture. L. Ma et al. proposed a local intensity
variation analysis-based method and adopted the
Gaussian-Hermite moments [15] and dyadic wavelet
[16] to characterize the iris image for recognition.
Feature extraction is a crucial processing stage
for pattern recognition [17]. Traditionally, basis
decomposition  techniques such as  Fourier
decomposition or Wavelet decomposition are
selected to analyze real world signals [18]. Also,
Fourier and Wavelet descriptors have long been used
as powerful tools for feature extraction [19-21].
However, the main drawback of those approaches is
that the basis functions are fixed, and do not
necessarily match varying nature of signals. The
Empirical Mode Decomposition (EMD) was firstly
proposed by Huang et al [22], with which any
complicated data set can be decomposed into a finite
and often small number of intrinsic mode function
(IMF) components, which become the basis
representing the data. Those extracted components
can match the signal itself very well. Motivated by
that EMD provides a decomposition method to
analyze the signal locally and separate the
component holding locally the highest frequency
from the rest into a separate IMF. In this paper, we
modified the EMD technique to extract the feature of
the iris images for two reasons. The first reason is
that modified EMD is a fully data driven method and



does not use any pre-determined filter [15], wavelet
function [16] or Fourier-wavelet basis [23]. For the
second reason, it can easily be implemented and
reduce the feature extraction and matching time.
Therefore, here the modified EMD approach is used
to extract residual components of the iris image as
the feature for recognition.

This paper is organized as follows. Section 2
introduces preprocessing procedures for iris images.
Section 3 and Section 4 describe the details of our
proposed approach for feature extraction and
matching. The experimental results are described
and discussed in Section 5, prior to Conclusions in
Section 6.

I1. IRIS IMAGE PREPROCESSING

The images of Human eye contain sclera, iris,
pupil, eyelids, eyelashes and some skin outside the
eye. To ensure that correct iris features can be easily
extracted from the eye image, it is essential to
perform preprocessing on the eye images. In this
paper, we regard the human iris as an annular portion
between the pupil (inner boundary) and the sclera
(outer boundary). The image preprocessing
procedures to extract the iris from the eye image are
operated by three steps. The first is to locate the iris
area. Then, the located iris is normalized and
converted to a rectangular window of a fixed size in
order to achieve the approximate scale invariance.
Finally, illumination and contrast problems are
eliminated from the normalized image through
image enhancement, and the most irrelevant parts
(such as eyelid, pupil, and eyelashes) are removed
from the normalized image as much as possible by
selecting an appropriate region of interest (ROI).

The iris image preprocessing procedures
utilized in this paper is well described in the work
[24, 25]. Generally speaking, we used only triad of
points for locating the inner and outer boundaries of
iris based on the Thales' theorem. The method does
not need to find all the points on the inner and outer
iris boundaries. Therefore, the computation process
is efficient. The normalization process involves
unwrapping the iris and converting it into its
equivalent polar coordinates. We transform the
circular iris area into a block with using Daugman’s
Rubber sheet model [5, 6]. The pupil center is
considered the reference point and a remapping
formula is used to convert the points from the
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Cartesian scale to the polar scale. In our experiment,
the radial resolution and the angular resolution are
set to 64 and 512 pixels, respectively. After the
normalization, iris templates would still have the
problems of low contrast and non-uniform
illumination. Here, the method proposed by L. Ma et
al. [15] is adopted to eliminate the background
brightness. Figure 1 illustrates the results of the
preprocessing process for the iris image.

Fig. 1. The results of the iris image preprocessing (a) the
original iris image, (b) the image with iris area
located, (c) the normalized iris image, and (d) the
ROI from the enhanced image.

III. FEATURE EXTRACTION

Despite all normalized iris templates have
the same size and uniform illumination, there would
be eyelashes and eyelids on the templates and those
will bring down the performance of iris recognition.
Therefore, the ROI is selected to remove the
influence of eyelashes and eyelids that are shown in
Fig. 1(d). The features are extracted only from the
upper half region (32x512) close to the pupil that
can provide the most discriminating information [26].
Doing this way can eliminate most of the
interferences and produce more precise iris templates
for feature extraction.

3.1 Empirical Mode Decomposition

The joint space-spatial frequency
representations have received special attention in the
fields of image processing, vision, and pattern
recognition. Huang ef al. [22] introduces a
multi-resolution  decomposition technique: the
Empirical Mode Decomposition (EMD), which is
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adaptive and appears to be suitable for non-linear,
non-stationary signal processing method. The EMD
method was originally proposed for the study of
ocean waves [22], and found potential applications
in geophysical exploration, underwater acoustic
signals, noise removal filter and biomedicine etc. [28,
29]. The major advantage of EMD is that the basis
functions are derived directly from the signal itself.
Hence, the analysis is adaptive while compared with
Fourier analysis, where the basis functions are linear
combinations of fixed sinusoids.

Huang’s solution [22] is to find a mean
envelope by creating maximum and minimum
envelopes around the signal using cubic spline
interpolation through the respective local extrema. It
can be argued that repeated iterations using cubic
splines in EMD cause the loss of amplitude and
frequency information [30]. In this paper, the
technique of Modified EMD is proposed to improve
EMD for iris feature extraction. The local mean of a
signal is accomplished by progressively smoothing
the signal using moving averaging. This averaging is
weighted using the distance between the successive
extrema of the signal by the following scheme. By
considering the sample portion of iris data shown in
Fig. 2, the local mean involves calculating the mean
of the maximum and minimum points of half-wave
oscillation of the signal. So the ith mean value m,
of each two successive extrema n, and n,, is
given by

= O
2

In Fig. 2, local means can be plotted as straight
blue lines computed from the mean of successive
extrema. Those local means are then smoothed using
moving averaging and displayed by a smoothly
varying continuous local mean function m(¢)

(shown as the red line in Fig. 2).

The EMD principle is to decompose a signal
into a sum of oscillatory functions, namely intrinsic
mode functions (IMFs), that:

(a) an IMF has exactly one zero between any
two consecutive local extremes.

(b) an IMF has a zero local mean.

The Modified EMD property is similar to EMD
that a signal is decomposed into a sum of intrinsic
mode functions (IMFs). The conditions satisfy the
physically necessary conditions to define a
meaningful instantaneous frequency. Otherwise, if

Iris Signal

blindly applied to any analytic signal, the
instantaneous frequency may result in a few
paradoxes [31, 32]: it may go beyond the band for
bandlimited signal or it may not represent one of the
frequencies in the Fourier spectrum in the global
sense. So, the two conditions of an IMF allow the
calculation of a meaningfully instantaneous
frequency. Specifically, the first condition is similar
to the narrow-band requirement, whereas the second
condition modifies a global requirement to a local
one by using the local mean of the envelopes defined
by the local maxima and the local minima, and is
necessary to certify that the instantaneous frequency
will not have unnecessary fluctuations as induced by
asymmetric waveforms. To make use of Modified
EMD for practical applications, the signal must have
at least two extrema—one maximum and one
minimum to be successfully decomposed into IMFs.
These IMF components are obtained from the signal
by the means of an algorithm called sifting process.
This algorithm extracts locally for each mode the
highest frequency oscillations out of the original
signal.
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Fig. 2. Sample portion of iris data is displayed as the black
line. The local means are shown by straight blue
lines computed from the mean of successive
extrema. The smoothed local mean is calculated
by moving averaging and shown in red.
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Given these two definitive requirements of an
IMF, the sifting process for extracting IMFs from a
given signal z(t) , t=1,..,T 1is described as
follows.

1) Identify all the maxima and minima of z(¢).

2) Calculate the local mean of each two successive
extrema using formula (1).

3) The local means are smoothed using moving

averaging from a smoothly varying continuous local

mean function m(¢).



4) Extract the detail by d(¢) = z(¢) - m(¢) .
5) Check the properties of d(¢):

* If d(¢) meets the above-defined two conditions,
an IMF is derived and replace z(¢#) with the
residual 7(¢)=z(t) - d(¢t);

o If d(r)
().

6) Repeat Steps 1)-5) until the residual satisfies

some stopping criteria.
At the end of this process, the original signal z(¢)

is not an IMF, replace z(t) with

can then be reconstructed, using the following
equation

2(0)= 26,0 +7,() @)

where n is the number of IMFs, r,(¢) denotes the

final residue which can be interpreted as the dc
component of the signal, and c¢;(tf) are nearly

orthogonal to each other, and all have nearly zero
means. Due to this iterative procedure, none of the
sifted IMFs is derived in closed analytical form.

In fact, after a certain number of iterations, the
resulting signals do not carry significant physical
information, because, if sifting is carried on to an
extreme, it could result in a pure frequency
modulated signal of constant amplitude. To avoid
this situation, we can stop the sifting process by
limiting the normalized standard deviation (SD),
computed from two consecutive sifting results. The
SD is defined as

2
Lz (0 =2,,()
m:Z% 3)

t=1

The SD is usually set between 0.2 and 0.3. By
construction, the number of extrema is decreased
when going from one residual to the next, and the
whole decomposition is ensured to be completed
with a finite number of modes. Figure 3 shows a
simulated example of Modified EMD decomposition,
where the analyzed signal (bottom left) is composed
of an amplitude-modulated linear chirp (top left) and
a triangular waveform (middle left). The Modified
EMD, when applied to the signal, brings two IMF
components and the final residual shown in Fig. 3
(right column). These two IMFs bear a striking
similarity to the signals shown in Fig. 3 (left column).
With the presence of the non-harmonic triangular
waveform, any harmonic analysis such as Fourier
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transform would end up with a much less compact
and physically less meaningful decomposition [33].

By the nature of the decomposition procedure,
the data is decomposed into »n fundamental
components, each with distinct time scale. More
specifically, the first component associates with the
smallest time scale which corresponds to the fastest
time variation of data. As the decomposition process
proceeds, the time scale increases, and hence, the
mean frequency of the mode decreases. Based on
this observation, we may devise a general purpose
time-space filtering as

h
ERGEDNAG (4)
i=l

where l,he[l,...,n],lsh. For example, when /=1

and h<n, it is a high-pass filtered signal, when
[>1 and h=n, it is a low-pass filtered signal;
when 1</<h<n, it is a band-pass filtered signal.
The above equation forms the basis for our
application of iris data described below, where we
use it as a low-pass filtering.

1

Sig1
- o
IMF1
[ ———

Sig 2
o
IMF2

(d)

Sig 1+Sig 2
4 o
Residue
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Fig. 3. A simulated example of Modified EMD
Decomposition. Left column: (a) a
amplitude-modulated linear chirp, (c) a triangular
waveform, and (e) their composite signal. Right
column: (b), (d) and (f) are two components (IMFs)
and the last final residue extracted by Modified
EMD revealing a striking agreement with the
signals.

The Modified EMD algorithm extracts the
oscillatory mode that exhibits the highest local
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information from the data (“detail” in the wavelet
context), leaving the remainder as a “residual”
(“approximation” in wavelet analysis). According to
the major advantage of Modified EMD that the
process of deriving the basis functions is empirical,
the basis functions are derived dynamically from the
signal itself. As shown in Fig. 4, the sample iris
images from [27], the irregular blocks of the iris are
slightly darker than their surroundings. Therefore, it
is reasonable to consider that the residual presents
the basic characteristics of the iris and the detail
denotes the variation of the noise represented by the
highest local information. That is the motivation we
use the Modified EMD as a low-pass filter and only
the distinct iris characteristics are utilized as
discriminating features for accurate iris recognition.
The Modified EMD method yields six IMF
components together with the final residual as shown
in Fig. 5.

Xesbr

Fig. 4. Samples of iris images from CASIA.
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Fig. 5. Six IMF components and the residual (C7 on the
bottom) of original iris signal obtained by
Modified EMD method.

To illustrate how the Modified EMD can be
used as a low-pass filter, we recover the iris original
data from the IMF components. The step-by-step
reconstruction is shown in Fig. 6 where the original
data is plotted in blue lines and partial sum of the
IMFs in red lines. The first plot shows the data and
the last component C7, the residue of the sifting,
which denotes the dc component in the data. The last
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plot shows the summation of all the IMFs, which
looks like the original data. The intermediate plots
show the progress of addition of the IMF
components. If we stopped at any step, the data was
filtered.

Data & IMF C7

Data & Sum IMF C5 to C7

Fig. 6. Illustration of the Modified EMD acting as a
low-pass filter through the reconstruction of the
original iris data from the IMF components.

To associate with iris recognition, we also
present the results of Modified EMD decomposition
for iris images, as shown in Fig. 7. Note that the ROI
of the normalized iris image is converted into a 1-D
feature sequence by concatenating its rows. For easy
comparison, Figure 7 shows only the first 500
components of their original feature sequences.
Figure 7(a) and 7(c) shows the Modified EMD
decomposition results of two iris images from the
same person. Figure 7(b) and 7(d) demonstrates the
Modified EMD results of two iris image from two
different persons. To demonstrate the similarity of
two iris images from the same person captured at
different time, it is easily proved by checking those
corresponding circles marked in Fig. 7(a) and 7(c).
Also, those circles marked in Fig. 7(b) and 7(d) point
out the differences of two iris images from two
different persons.

3.2 Feature Vector

For the ROI of each normalized iris image 7,
pixel sequences from different rows are concatenated
to form the 1-D vector V' represented by

V=il I Ib= vy, vt ()
where [/, denotes gray values of the xth row in
the image 7, v; defines the pixel value of position
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Fig. 7. (a) and (c) show the Modified EMD decomposition
results of two iris images from the same person. (b)
and (d) show the Modified EMD result of the iris
image from two different persons.

j inside the vector V', and n is the number of total
components, herein, n=32x512=16384 . After
concatenation and before performing Modified EMD,
the linear re-scaling [34] is applied to each vector to
adjust the average of each data set to zero and to
normalize the standard deviation to unity before
further using the ROI vector. By calculating the

— . 2 .
mean v and variance o, with respect to the

spatial template, the linear re-scaled V" can be
given by

A N . R S

o §
v

I )
where the mean Vv =—Zv and the variance

o
n‘s

1 <& .
afzn—Z(vj—V)z . After Modified EMD
S14

calculation, the feature vector of each Modified

EMD residual from the 1-D vector V" can be
obtained by

Rm:{RImaRéna'”R;’na”',R:,n} (7)
where R™ represents the mth residual of the
Modified EMD results and RA;” denotes the feature

from the jth position of the R . In our

experiments, the feature vector consists of 16384
components and the value of the m is one.

PIBEE Bz % B-9 @I
JOURNAL OF C.C.I.T., VOL.37, NO.1, NOV., 2008

3.3 Invariance

Invariant to translation, scale, and rotation is a
crucial factor while defining features to represent the
iris images. In this article, an iris image 1is
normalized to the polar coordinates and fixed to the
same size to achieve the scale invariance. The
translation invariance is associated with our
algorithm to extract the feature from the original
image. The rotation invariance can be achieved by

shifting R™ from the initial position of original 2D

polar coordinates. Therefore, the feature vector R”™
is reshaped to 2D polar coordinates and circularly

shifted. Due to that the size of R™ is same as the
1-D vector V, hence, the shift value is set to -12, -8,
-4, 0, 4, 8, 12, corresponding to rotating the original
iris image by -9°, -6°, -3", 0", 3, 6°, 9°,
respectively. Thus, seven templates with seven
rotation angles for each iris class are stored in the
database. When the input feature vector is matched
with the seven templates of a class, the minimum of
the seven scores is taken as the final matching score.

IV. MATCHING

It is important to choose a suitable similarity
measure between feature vectors. In this section, we
discuss how to evaluate the performance of our
proposed method. The main goal of iris recognition
is to match the unknown iris feature with those
known iris feature classes in the database and
determine whether the unknown feature comes from
the authentic one or the imposter. The matching
process is to be made with the unknown feature,
which will be calculated depending on different
metrics. In this article, three different similarity
measures used as the matching criterion are:
1)The mean of the Euclidean distances (MED)

measure: This metric gives a measure of how
similar a collection of values are between two
classes. The MED measure is specified as

M
)= 2> (-4 ®

where M =K x L is the dimension of the feature
vector, p, 1is the ith component of sample
feature vector, and ¢; is the ith component of

unknown sample feature vector.
2) Cosine Similarity: The idea is that two vectors p,
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g are more equal the closer they get i.e. the
smaller the angle. A similar definition can be used
in the vector space, whereby the cosine of the
angle between two vectors is defined as

dy(p.q)=1-L11
R P

where p and ¢ are two different feature

©)

vectors. ||0|| indicates the Euclidean norm. The

range of i[\i is [0,1]. The more similar the
] {4l

two vectors are, the smaller the d,(p,q) value
is.

3) Hamming distance: The distance of two
sequences with equal length are calculated by
counting the character positions in which they
differ. This can be found by using XOR operation.
The binary Hamming distance (HD) measure is
defined as

1 M
d,(p.q)=—>.p, ®g, (10)
M 5

@ denotes Exclusive-OR, M is the
length of the binary sequence. p, is the ith

where

component of the database sample feature vector,
and ¢; is the ith component of the unknown

sample feature vector. In our experiments, we
designed that each component value of the feature
vector is set to 1 while the value of the first
residual in the iris Modified EMD signature is
positive or null, otherwise 0.

V. EXPERIMENTAL RESULTS

This section describes the experimental results
obtained from the experiments performed by using
the proposed approach. In the verification mode, we
can obtain the receiver operating characteristic (ROC)
curve that depicts the relationship of false match rate
(FMR) and false non-match rate (FNMR). The area
under the ROC curve (denoted as Az) reflects how
well the intra-class and inter-class distributions can
be distinguished and the ranges are from 0.5 to 1.
For an ideal ROC curve, the value of Az should be 1.
It denotes that the intra- and inter-class are
inseparable while the Az value is equal to 0.5. Hence,
ROC curve is normally used to measure the accuracy
of the matching process, showing the achieved
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performance of an algorithm. Meanwhile, the equal
error rate (EER) is also used for performance
evaluation. In the recognition mode, the correct
recognition rate (CRR) is adopted to assess the
efficacy of the algorithm.

5.1 Iris Database

At present, most proposed methods for iris
recognition used small data sets to evaluate their
performance, and only the L. Ma et al. [13, 15, 16]
and Daugman’s approach [4-8] had been tested on a
large image set involving over 200 subjects. In our
experiments, the test data set is from the generally
used iris image database, CASIA Iris Database [27],
authorized from the Institute of Automation, Chinese
Academy of Science. Each image has the resolution
of 320x280 in 8-bit gray level. This database
includes 1992 iris images from 249 different eyes
(hence, 249 different classes) with 8 each. The
images are acquired during different sessions and the
time interval between two collections is at least one
month. Three images of each class are selected
randomly to constitute the training set and the
remaining images of each class are treated as the test
set. In the preprocessing stage, we checked the
segmentation accuracy of the iris boundaries
subjectively and obtained an accuracy rate of 95.9%
(81 images are not used) on 1992 images. Table 1
shows different causes of the iris locating failure.
Therefore, there are 747 images for training and
1164 images for testing. Using those 1911 different
iris images from the CASIA Iris Database, the
experiments conducted below are running on the
computing environment of 1.8GHz PC with 736MB
RAM using Matlab 6.5.

Table 1. Failure analysis of locating iris for different

causes
Cause of Failure ﬁlggsr(ggﬁ A)
Occlusion by eyelids 31
Inappropriate eye positioning 21
Occlusion by eyelash 23
Noises within iris 6
Total 81

5.2 Performance Evaluation of the Proposed
Method

To assess the accuracy of the proposed



algorithm, each iris test image in the database is
compared with all the other iris test images in the
database. In the CASIA iris database, the total test
number of comparisons is 1,350,819, where the total
test number of intra-class comparisons is 2,148 and
that of inter-class comparisons is 1,348,671. Table 2
demonstrates promising recognition results achieved
by our proposed method using three similarity
measures from (8)-(10). Note that performance
differences are not very significant while different
similarity measures are used. Only a slightly higher
recognition rate of 99.04% is accomplished by using
the MED similarity measure in the identification
tests. The verification results are shown in Figure 8.
It displays the ROC curve accomplished by the

proposed method under different similarity measures.

The Az value (the area under the ROC curve) is up to
0.9996 by the MED similarity measure. Therefore,
experimental results show that the proposed iris
representation is effective and the Modified EMD
approach can really extract the promising feature
from each iris image.

Table 2 Recognition rates of three similarity measures
achieved by Modified EMD with different
threshold values

Srﬁ:;l:;i‘;y Threshold Correct(lglg(l)gnoi/tion rate
MED 0.45 99.04
Cosine 0.38 98.78
HD 0.72 98.32
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Fig. 8. The ROC curve of Modified EMD method with
different similarity measures.
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5.3 Boundary Processing for Modified EMD

The EMD firstly proposed by Huang et al. [22]
is a method of breaking down a signal into a series of
zero-mean AM-FM components by iteratively
conducting the sifting process that we have
introduced in Section 3.1. As pointed out by [22],
“Serious problems of the spline fitting can occur
near the end points, where the cubic spline can have
large swings.” Hence, we adopt the method
introduced in [35] to eliminate the boundary effects
and evaluate the recognition results to see if it can be
improved in this experiment.

This simple boundary processing procedure is
performed by the even extension and the odd
extension. To construct a periodic signal from
arbitrary time series is easily accomplished by the
even extension. Near the end points, the outside of
the original data is spanned by the mirror image of
those inside. The odd extension also provides all
advantages which the even extension does. While the
fact that the mean of the even extension and the odd
extension is same as the original data series inside
the data span and zero outside the data span brings a
simple boundary processing technique for EMD
described in [35].

The verification results are shown in Table 3.
Compared to the results in Table 2, only a slightly
higher recognition rate is improved for the MED
similarity measure and a slightly lower recognition
rate is affected for the HD similarity measure. The
experimental results achieved in the ROC curve and
three operating states are the same as shown in Fig. 8.
Table 4 shows the feature extraction time with and
without considering the boundary condition. As
displayed in Table 4, the computation time without
considering the boundary condition is faster than that
of with considering the boundary condition almost
three times. Clearly, by using the Modified EMD
technique, the iris recognition performance does not
make apparent difference while considering the
boundary effect.

Table 3 Recognition rates achieved while considering the
boundary condition in Modified EMD with three
similarity measures

Similarity measure Correct recognition rate

MED 99.22%
Cosine 98.83%
HD 98.17%
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Table 4 Feature extraction time with and without
considering the boundary condition in Modified

EMD
Ignoring Considering
boundary(ms) boundary(ms)
245 706

5.4. Comparison and Discussion

Experimental results from previous paragraphs
reveal that the proposed technique is an effective
scheme for feature extraction and the MED
similarity measure can achieve a correct recognition
rate up to 99.04%. To compare with the other iris
recognition algorithms, we have also implemented
two methods, the approaches of the Fourier-wavelet

feature [23] and the Gaussian-Hermite moments [15].

Together with our proposed scheme, three
approaches are tested using the 249 classes of the
CASIA TIris Database and the cosine similarity
measure. Table 5 and Fig. 9 demonstrate the
experimental results. Table 5 illustrates that the Az
accomplished by each algorithm is greater than 0.9
and the CRR exceeds 90% as well. This implies that
the high accuracy can be achieved by those three
methods. Although a slightly lower recognition rate
than the approach of Gaussian-Hermite moments is
achieved, the proposed method still can fulfill the
demand of high accuracy suitable for very high
security environments. Figure 9 displays the ROC
curve of those three methods. From the results
shown in Table 5 and Fig. 9, we can find that the
method of Gaussian-Hermite moments achieves the
best performance, followed by the proposed method,
and then the method of Fourier-wavelet feature.

To evaluate the computation complexity, Table
6 shows the computational costs consumed by three
methods with cosine similarity measure, including
the CPU time for feature extraction and matching.
Our proposed method using the Modified EMD

Table 5 Recognition rates achieved by different methods
using the cosine similarity measure

Methods CRR % Az EER (%)
Fourier-wavelet
feature[23] 94.37 0.9888 5.24
Gaussian-Hermite 991 = 048
moments[15]
Proposed method 99.04 0.9993 1.82

%)

100-False Non-Match Rate(¥

—H— Fourier-wavelet feature[23]
9% — = — Proposed method 1
% 5[] —©— Gaussian-Hermite moments[15]

95 I I I I I I I I I
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Fig. 9. The ROC curve of different methods using the
cosine similarity measure.

Table 6 Comparison of the computational complexity

Methods extrlzl(e:';ait(l)l;?ms) M?Ifllsl)ing
e
e s s

method for feature extraction demonstrates the best

performance. This can be a potential advantage for

iris matching in a large database.
Based on the previous experimental results with
corresponding analysis, we can conclude:

1. The proposed method can achieve high accuracy
and fast performance for iris recognition. This
also indicates that the Modified EMD technique
can extract discriminating features suitable for
iris recognition.

2. Compared with the method of Gaussian-Hermite
moments [15], our proposed method still needs
to be improved in the performance. Therefore,
feature selection is an important research issue in
the near future.

VI. CONCLUSIONS

In this paper, a novel and effective method for
iris recognition is presented, which operates using
the Modified EMD technique. This paper also
evaluates the effect of the boundary processing for



iris recognition. The performance of iris recognition
achieved by the Modified EMD approach associated
with three different similarity measures has been
evaluated. Experimental results have shown that
without taking account the boundary effect still can
demonstrate eminent performance. The best metric is
the MED measure and the other two measures also
have achieved similar performance more than 95%.
Therefore, the proposed method has demonstrated to
be promising for iris recognition and Modified EMD
is suitable for feature extraction. In the future, we
will ameliorate the template processing method to
reduce the influence of light, eyelid, and eyelash. We
are also working at increasing the database in order
to further verify the performance and trying other
possible approaches to improve the classification
accuracy.
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