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ABSTRACT 

    As the demand of information security increases, so does the attention paid to the biometrics-based, 
automated person identification. Among current biometric approaches, iris recognition is known for an 
inherently reliable technique to identify one’s identity. Empirical Mode Decomposition (EMD), a 
multi-resolution decomposition technique, is adaptive for non-linear and non-stationary data analysis, and 
therefore would be suitable for iris pattern extraction. This paper presents an effective approach for iris 
recognition using the proposed scheme of Modified Empirical Mode Decomposition to analyze the iris signals 
locally. Based on EMD that is a fully data-driven method and does not use any pre-determined filter or wavelet 
function, an iris recognition scheme is presented by adopting Modified EMD as a low-pass filter for feature 
extraction. To evaluate the proposed approach, three different similarity measures are used. Experimental results 
show that those three metrics have achieved promising and similar performance. Therefore, the proposed method 
demonstrates to be feasible for iris recognition and Modified EMD is suitable for feature extraction. 

Keywords: biometrics, iris recognition, empirical mode decomposition (EMD), multi-resolution decomposition. 
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摘      要 

    隨著資訊安全需求資加，越來越多安全機制傾向於運用生物認證於人類身分認證，而現在生物認證

的方法中，虹膜識別是一種非常可靠技術。經驗模態分解法(Empirical Mode Decomposition , EMD)是一種多

解析分析技術，非常適合非線性及非穩態的資料分析，它分析訊號的局部性以及分離剩餘的訊號並擷取

出高頻的訊號。基於經驗模態分解法是一種完全靠本身訊號而獲取所需資料的方法，不需任何前置處理

過濾器或者小波等功能，本篇論文因此運用修改的經驗模態分解法為一低通濾波器分析虹膜影像後實施

虹膜識別。提出的方法運用三種相似度量測方法評估，實驗證明三種相似度量測方法均達到卓越及相似

的識別率，也顯示出修改的經驗模態分解法適合運用於虹膜識別。 

關鍵詞：生物認證，虹膜識別，經驗模態分解，多解析分析 
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І. INTRODUCTION 

Biometrics is inherently a more reliable and 
capable technique to identity one’s identity by his or 
her own physiological or behavioral characteristics. 
The features used for personnel identification by 
current biometric applications include facial features, 
fingerprints, iris, palm-prints, retina, handwriting 
signature, DNA, gait, etc. The comparison among 
those techniques were given in [1,2]. The lower error 
recognition rate achieved by iris recognition has 
been reported [3] and received increasing attention in 
recent years. 

The eye appearance consists of sclera, iris, and 
pupil, and their boundaries are like circles with 
varied radii. Sclera is the outside portion of the eye 
occupying about 30% eye area. The central part of 
the eye is the pupil including 5% area of the eye. Iris 
is the colored portion of the exterior eye, which is 
embedded with tiny muscles that affect the pupil size, 
about 65% area of the eye [2], and is an annular part 
between the black pupil and white sclera. It appears 
that phenotypic random patterns are visible in the 
human iris constituted of lots of irregular blobs, such 
as freckles, coronas, stripes, furrows, crypts, etc. 
Such iris pattern is a unique, stable, and non-invasive 
biometric feature suitable for individual verification. 

 Nowadays, iris recognition approaches can be 
roughly divided into four methods: phase-based 
approaches [4-8], zero-crossing representation [9, 
10], texture analysis [11-14], and intensity variation 
analysis [15,16]. Daugman’s algorithm [4] adopted 
the 2D Gabor filters to demodulate the iris phase 
information. Each phase structure is quantized into 
one of four quadrants in the complex plane. The 
Hamming distance was further used to calculate the 
distance between iris codes of 2048 bits. In the past 
decade, Daugman had modified and improved his 
recognition algorithms [5-7]. A recent paper [8] 
presents alternative methods of segmentation based 
on active contours, a way to transform an off-angle 
iris image into a more frontal view, and a description 
of new score normalization scheme to use when 
computing Hamming distance that would account for 
the total amount of unmasked data available in the 
comparison. Boles and Boashash [9] presented the 
zero-crossing of one-dimensional wavelet transform 
to represent distinct levels of a concentric circle for 
an iris image, and then two dissimilarity functions 
were used for matching the obtained iris features. To 

extend the approach of Boles and Boashash, 
Sanchez-Avila and Sanchez-Rellio [10] further 
proposed using different distance measures (such as 
Euclidean distance and Hamming distance) for 
feature matching. Wildes et al. [11] used the 
Laplacian pyramids to analyze the iris texture and 
combine features from four different resolutions. 
Then normalized correlation was selected to decide 
whether the input image and the enrolled image 
belong to the same class. Lim et al. [12] decomposed 
an iris image into four levels with different 
frequency components using two-dimensional Haar 
wavelet transform and the fourth-level with high 
frequency information was quantized to form an 
87-bit code. Then a modified competitive learning 
neural network (LVQ) was used for classification. L. 
Ma et al. [13] proposed a well-known texture 
analysis method (multi-channel Gabor filtering) to 
capture both global and local details from an iris 
image. Recently, Tisse et al. [14] constructed the 
analytic image (a combination of the original image 
and its Hilbert transform) to demodulate the iris 
texture. L. Ma et al. proposed a local intensity 
variation analysis-based method and adopted the 
Gaussian-Hermite moments [15] and dyadic wavelet 
[16] to characterize the iris image for recognition. 

Feature extraction is a crucial processing stage 
for pattern recognition [17]. Traditionally, basis 
decomposition techniques such as Fourier 
decomposition or Wavelet decomposition are 
selected to analyze real world signals [18]. Also, 
Fourier and Wavelet descriptors have long been used 
as powerful tools for feature extraction [19-21]. 
However, the main drawback of those approaches is 
that the basis functions are fixed, and do not 
necessarily match varying nature of signals. The 
Empirical Mode Decomposition (EMD) was firstly 
proposed by Huang et al. [22], with which any 
complicated data set can be decomposed into a finite 
and often small number of intrinsic mode function 
(IMF) components, which become the basis 
representing the data. Those extracted components 
can match the signal itself very well. Motivated by 
that EMD provides a decomposition method to 
analyze the signal locally and separate the 
component holding locally the highest frequency 
from the rest into a separate IMF. In this paper, we 
modified the EMD technique to extract the feature of 
the iris images for two reasons. The first reason is 
that modified EMD is a fully data driven method and 



中正嶺學報 第三十七卷 第一期 民國 97.11. 
JOURNAL OF C.C.I.T., VOL.37, NO.1, NOV., 2008 

 

133 

does not use any pre-determined filter [15], wavelet 
function [16] or Fourier-wavelet basis [23]. For the 
second reason, it can easily be implemented and 
reduce the feature extraction and matching time. 
Therefore, here the modified EMD approach is used 
to extract residual components of the iris image as 
the feature for recognition. 

This paper is organized as follows. Section 2 
introduces preprocessing procedures for iris images. 
Section 3 and Section 4 describe the details of our 
proposed approach for feature extraction and 
matching.  The experimental results are described 
and discussed in Section 5, prior to Conclusions in 
Section 6. 

ІІ. IRIS IMAGE PREPROCESSING 

The images of Human eye contain sclera, iris, 
pupil, eyelids, eyelashes and some skin outside the 
eye. To ensure that correct iris features can be easily 
extracted from the eye image, it is essential to 
perform preprocessing on the eye images. In this 
paper, we regard the human iris as an annular portion 
between the pupil (inner boundary) and the sclera 
(outer boundary). The image preprocessing 
procedures to extract the iris from the eye image are 
operated by three steps. The first is to locate the iris 
area. Then, the located iris is normalized and 
converted to a rectangular window of a fixed size in 
order to achieve the approximate scale invariance. 
Finally, illumination and contrast problems are 
eliminated from the normalized image through 
image enhancement, and the most irrelevant parts 
(such as eyelid, pupil, and eyelashes) are removed 
from the normalized image as much as possible by 
selecting an appropriate region of interest (ROI). 

    The iris image preprocessing procedures 
utilized in this paper is well described in the work 
[24, 25]. Generally speaking, we used only triad of 
points for locating the inner and outer boundaries of 
iris based on the Thales' theorem. The method does 
not need to find all the points on the inner and outer 
iris boundaries. Therefore, the computation process 
is efficient. The normalization process involves 
unwrapping the iris and converting it into its 
equivalent polar coordinates. We transform the 
circular iris area into a block with using Daugman’s 
Rubber sheet model [5, 6]. The pupil center is 
considered the reference point and a remapping 
formula is used to convert the points from the 

Cartesian scale to the polar scale. In our experiment, 
the radial resolution and the angular resolution are 
set to 64 and 512 pixels, respectively. After the 
normalization, iris templates would still have the 
problems of low contrast and non-uniform 
illumination. Here, the method proposed by L. Ma et 
al. [15] is adopted to eliminate the background 
brightness. Figure 1 illustrates the results of the 
preprocessing process for the iris image. 

 

 
Fig. 1. The results of the iris image preprocessing (a) the 

original iris image, (b) the image with iris area 
located, (c) the normalized iris image, and (d) the 
ROI from the enhanced image. 

 

ІІІ. FEATURE EXTRACTION 
      Despite all normalized iris templates have 

the same size and uniform illumination, there would 
be eyelashes and eyelids on the templates and those 
will bring down the performance of iris recognition. 
Therefore, the ROI is selected to remove the 
influence of eyelashes and eyelids that are shown in 
Fig. 1(d). The features are extracted only from the 
upper half region ( 32 512× ) close to the pupil that 
can provide the most discriminating information [26]. 
Doing this way can eliminate most of the 
interferences and produce more precise iris templates 
for feature extraction. 

3.1 Empirical Mode Decomposition 

The joint space-spatial frequency 
representations have received special attention in the 
fields of image processing, vision, and pattern 
recognition. Huang et al. [22] introduces a 
multi-resolution decomposition technique: the 
Empirical Mode Decomposition (EMD), which is 
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adaptive and appears to be suitable for non-linear, 
non-stationary signal processing method. The EMD 
method was originally proposed for the study of 
ocean waves [22], and found potential applications 
in geophysical exploration, underwater acoustic 
signals, noise removal filter and biomedicine etc. [28, 
29]. The major advantage of EMD is that the basis 
functions are derived directly from the signal itself. 
Hence, the analysis is adaptive while compared with 
Fourier analysis, where the basis functions are linear 
combinations of fixed sinusoids. 

Huang’s solution [22] is to find a mean 
envelope by creating maximum and minimum 
envelopes around the signal using cubic spline 
interpolation through the respective local extrema. It 
can be argued that repeated iterations using cubic 
splines in EMD cause the loss of amplitude and 
frequency information [30]. In this paper, the 
technique of Modified EMD is proposed to improve 
EMD for iris feature extraction. The local mean of a 
signal is accomplished by progressively smoothing 
the signal using moving averaging. This averaging is 
weighted using the distance between the successive 
extrema of the signal by the following scheme. By 
considering the sample portion of iris data shown in 
Fig. 2, the local mean involves calculating the mean 
of the maximum and minimum points of half-wave 
oscillation of the signal. So the thi  mean value im  
of each two successive extrema in  and 1in +  is 
given by 

1

2
i i

i
n nm ++

=              (1) 

    In Fig. 2, local means can be plotted as straight 
blue lines computed from the mean of successive 
extrema. Those local means are then smoothed using 
moving averaging and displayed by a smoothly 
varying continuous local mean function ( )m t  
(shown as the red line in Fig. 2). 

The EMD principle is to decompose a signal 
into a sum of oscillatory functions, namely intrinsic 
mode functions (IMFs), that: 

(a) an IMF has exactly one zero between any 
two consecutive local extremes. 
(b) an IMF has a zero local mean. 

The Modified EMD property is similar to EMD 
that a signal is decomposed into a sum of intrinsic 
mode functions (IMFs). The conditions satisfy the 
physically necessary conditions to define a 
meaningful instantaneous frequency. Otherwise, if 

blindly applied to any analytic signal, the 
instantaneous frequency may result in a few 
paradoxes [31, 32]: it may go beyond the band for 
bandlimited signal or it may not represent one of the 
frequencies in the Fourier spectrum in the global 
sense. So, the two conditions of an IMF allow the 
calculation of a meaningfully instantaneous 
frequency. Specifically, the first condition is similar 
to the narrow-band requirement, whereas the second 
condition modifies a global requirement to a local 
one by using the local mean of the envelopes defined 
by the local maxima and the local minima, and is 
necessary to certify that the instantaneous frequency 
will not have unnecessary fluctuations as induced by 
asymmetric waveforms. To make use of Modified 
EMD for practical applications, the signal must have 
at least two extrema—one maximum and one 
minimum to be successfully decomposed into IMFs. 
These IMF components are obtained from the signal 
by the means of an algorithm called sifting process. 
This algorithm extracts locally for each mode the 
highest frequency oscillations out of the original 
signal.  
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Fig. 2. Sample portion of iris data is displayed as the black 

line. The local means are shown by straight blue 
lines computed from the mean of successive 
extrema. The smoothed local mean is calculated 
by moving averaging and shown in red. 

 
Given these two definitive requirements of an 

IMF, the sifting process for extracting IMFs from a 
given signal ( )z t , 1,...,t T=  is described as 
follows. 
1) Identify all the maxima and minima of ( )z t . 
2) Calculate the local mean of each two successive 

extrema using formula (1). 
3) The local means are smoothed using moving 
averaging from a smoothly varying continuous local 
mean function ( )m t . 
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4) Extract the detail by ( ) ( ) - ( )d t z t m t= . 
5) Check the properties of ( )d t : 

• If ( )d t  meets the above-defined two conditions, 
an IMF is derived and replace ( )z t  with the 
residual ( ) ( ) - ( )r t z t d t= ; 

• If ( )d t  is not an IMF, replace ( )z t  with 
( )d t . 

6) Repeat Steps 1)–5) until the residual satisfies 
some stopping criteria. 

At the end of this process, the original signal ( )z t  
can then be reconstructed, using the following 
equation 

1

( ) ( ) ( )
n

i n
i

z t c t r t
=

= +∑          (2) 

where n  is the number of IMFs, ( )nr t  denotes the 
final residue which can be interpreted as the dc 
component of the signal, and ( )ic t  are nearly 
orthogonal to each other, and all have nearly zero 
means. Due to this iterative procedure, none of the 
sifted IMFs is derived in closed analytical form. 
   In fact, after a certain number of iterations, the 
resulting signals do not carry significant physical 
information, because, if sifting is carried on to an 
extreme, it could result in a pure frequency 
modulated signal of constant amplitude. To avoid 
this situation, we can stop the sifting process by 
limiting the normalized standard deviation (SD), 
computed from two consecutive sifting results. The 
SD is defined as 

2
1

2
1

( ) ( )
SD

( )

T
j j

t j

z t z t

z t
+

=

−
=∑         (3) 

   The SD is usually set between 0.2 and 0.3. By 
construction, the number of extrema is decreased 
when going from one residual to the next, and the 
whole decomposition is ensured to be completed 
with a finite number of modes. Figure 3 shows a 
simulated example of Modified EMD decomposition, 
where the analyzed signal (bottom left) is composed 
of an amplitude-modulated linear chirp (top left) and 
a triangular waveform (middle left). The Modified 
EMD, when applied to the signal, brings two IMF 
components and the final residual shown in Fig. 3 
(right column). These two IMFs bear a striking 
similarity to the signals shown in Fig. 3 (left column). 
With the presence of the non-harmonic triangular 
waveform, any harmonic analysis such as Fourier 

transform would end up with a much less compact 
and physically less meaningful decomposition [33]. 
    By the nature of the decomposition procedure, 
the data is decomposed into n fundamental 
components, each with distinct time scale. More 
specifically, the first component associates with the 
smallest time scale which corresponds to the fastest 
time variation of data. As the decomposition process 
proceeds, the time scale increases, and hence, the 
mean frequency of the mode decreases. Based on 
this observation, we may devise a general purpose 
time-space filtering as 

( ) ( )
h

lh i
i l

z t c t
=

=∑              (4) 

where [ ], 1,..., , .l h n l h∈ ≤  For example, when 1l =  
and h n< , it is a high-pass filtered signal; when 

1l >  and h n= , it is a low-pass filtered signal; 
when 1 l h n< ≤ < , it is a band-pass filtered signal. 
The above equation forms the basis for our 
application of iris data described below, where we 
use it as a low-pass filtering. 
 

 
Fig. 3. A simulated example of Modified EMD 

Decomposition. Left column: (a) a 
amplitude-modulated linear chirp, (c) a triangular 
waveform, and (e) their composite signal. Right 
column: (b), (d) and (f) are two components (IMFs) 
and the last final residue extracted by Modified 
EMD revealing a striking agreement with the 
signals. 

 
The Modified EMD algorithm extracts the 
oscillatory mode that exhibits the highest local 
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information from the data (“detail” in the wavelet 
context), leaving the remainder as a “residual” 
(“approximation” in wavelet analysis). According to 
the major advantage of Modified EMD that the 
process of deriving the basis functions is empirical, 
the basis functions are derived dynamically from the 
signal itself. As shown in Fig. 4, the sample iris 
images from [27], the irregular blocks of the iris are 
slightly darker than their surroundings. Therefore, it 
is reasonable to consider that the residual presents 
the basic characteristics of the iris and the detail 
denotes the variation of the noise represented by the 
highest local information. That is the motivation we 
use the Modified EMD as a low-pass filter and only 
the distinct iris characteristics are utilized as 
discriminating features for accurate iris recognition. 
The Modified EMD method yields six IMF 
components together with the final residual as shown 
in Fig. 5. 
 

 
Fig. 4. Samples of iris images from CASIA. 

 

 
Fig. 5. Six IMF components and the residual (C7 on the 

bottom) of original iris signal obtained by 
Modified EMD method. 

 
    To illustrate how the Modified EMD can be 
used as a low-pass filter, we recover the iris original 
data from the IMF components. The step-by-step 
reconstruction is shown in Fig. 6 where the original 
data is plotted in blue lines and partial sum of the 
IMFs in red lines. The first plot shows the data and 
the last component C7, the residue of the sifting, 
which denotes the dc component in the data. The last 

plot shows the summation of all the IMFs, which 
looks like the original data. The intermediate plots 
show the progress of addition of the IMF 
components. If we stopped at any step, the data was 
filtered. 

 
Fig. 6. Illustration of the Modified EMD acting as a 

low-pass filter through the reconstruction of the 
original iris data from the IMF components. 

 
    To associate with iris recognition, we also 
present the results of Modified EMD decomposition 
for iris images, as shown in Fig. 7. Note that the ROI 
of the normalized iris image is converted into a 1-D 
feature sequence by concatenating its rows. For easy 
comparison, Figure 7 shows only the first 500 
components of their original feature sequences. 
Figure 7(a) and 7(c) shows the Modified EMD 
decomposition results of two iris images from the 
same person. Figure 7(b) and 7(d) demonstrates the 
Modified EMD results of two iris image from two 
different persons. To demonstrate the similarity of 
two iris images from the same person captured at 
different time, it is easily proved by checking those 
corresponding circles marked in Fig. 7(a) and 7(c). 
Also, those circles marked in Fig. 7(b) and 7(d) point 
out the differences of two iris images from two 
different persons. 

3.2 Feature Vector 

   For the ROI of each normalized iris image I , 
pixel sequences from different rows are concatenated 
to form the 1-D vector V  represented by 

1 1 2{ } { , , , , }x K j nV I I I v v v v= =L L L L   (5) 
where xI  denotes gray values of the thx  row in 
the image I , jv  defines the pixel value of position  
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Fig. 7. (a) and (c) show the Modified EMD decomposition 

results of two iris images from the same person. (b) 
and (d) show the Modified EMD result of the iris 
image from two different persons. 

 
j inside the vector V , and n  is the number of total 
components, herein, 32 512 16384n = × = . After 
concatenation and before performing Modified EMD, 
the linear re-scaling [34] is applied to each vector to 
adjust the average of each data set to zero and to 
normalize the standard deviation to unity before 
further using the ROI vector. By calculating the 
mean v  and variance 2

vσ  with respect to the 
spatial template, the linear re-scaled NV  can be 
given by 

1 2{ , , , , }N N N N N
j n

v

V vV v v v v
σ
−

= = L L    (6) 

where the mean 
1

1 n

j
j

v v
n =

= ∑ , and the variance 

2 2

1

1 ( )
1

n

v j
j

v v
n

σ
=

= −
− ∑ . After Modified EMD 

calculation, the feature vector of each Modified 
EMD residual from the 1-D vector NV  can be 
obtained by 

1 2{ , , , , }m m m m m
j nR R R R=R L L      (7) 

where mR  represents the thm  residual of the 
Modified EMD results and m

jR  denotes the feature 

from the thj  position of the mR . In our 
experiments, the feature vector consists of 16384 
components and the value of the m  is one. 

3.3 Invariance 

    Invariant to translation, scale, and rotation is a 
crucial factor while defining features to represent the 
iris images. In this article, an iris image is 
normalized to the polar coordinates and fixed to the 
same size to achieve the scale invariance. The 
translation invariance is associated with our 
algorithm to extract the feature from the original 
image. The rotation invariance can be achieved by 
shifting mR  from the initial position of original 2D 
polar coordinates. Therefore, the feature vector mR  
is reshaped to 2D polar coordinates and circularly 
shifted. Due to that the size of mR  is same as the 
1-D vector V , hence, the shift value is set to -12, -8, 
-4, 0, 4, 8, 12, corresponding to rotating the original 
iris image by 9− o , 6− o , 3− o , 0o , 3o , 6o , 9o , 
respectively. Thus, seven templates with seven 
rotation angles for each iris class are stored in the 
database. When the input feature vector is matched 
with the seven templates of a class, the minimum of 
the seven scores is taken as the final matching score. 

ІV. MATCHING 

    It is important to choose a suitable similarity 
measure between feature vectors. In this section, we 
discuss how to evaluate the performance of our 
proposed method. The main goal of iris recognition 
is to match the unknown iris feature with those 
known iris feature classes in the database and 
determine whether the unknown feature comes from 
the authentic one or the imposter. The matching 
process is to be made with the unknown feature, 
which will be calculated depending on different 
metrics. In this article, three different similarity 
measures used as the matching criterion are: 
1)The mean of the Euclidean distances (MED)     

measure: This metric gives a measure of how 
similar a collection of values are between two 
classes. The MED measure is specified as 

2
1

1

1( , ) ( )
M

i i
i

d p q p q
M =

= −∑        (8) 

  where M K L= ×  is the dimension of the feature 
vector, ip  is the thi  component of sample 
feature vector, and iq  is the thi  component of 
unknown sample feature vector. 

2) Cosine Similarity: The idea is that two vectors p, 
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q are more equal the closer they get i.e. the 
smaller the angle. A similar definition can be used 
in the vector space, whereby the cosine of the 
angle between two vectors is defined as 

2 ( , ) 1 p qd p q
p q

= −          (9) 

where p  and q  are two different feature 
vectors. •  indicates the Euclidean norm. The 

range of p q
p q
  is [0,1] . The more similar the 

two vectors are, the smaller the 2 ( , )d p q  value 
is. 

3) Hamming distance: The distance of two 
sequences with equal length are calculated by 
counting the character positions in which they 
differ. This can be found by using XOR operation. 
The binary Hamming distance (HD) measure is 
defined as 

3
1

1( , )
M

i i
i

d p q p q
M =

= ⊕∑      (10) 

   where ⊕  denotes Exclusive-OR, M  is the 
length of the binary sequence. ip  is the thi  
component of the database sample feature vector, 
and iq  is the thi  component of the unknown 
sample feature vector. In our experiments, we 
designed that each component value of the feature 
vector is set to 1 while the value of the first 
residual in the iris Modified EMD signature is 
positive or null, otherwise 0. 

V. EXPERIMENTAL RESULTS 

    This section describes the experimental results 
obtained from the experiments performed by using 
the proposed approach. In the verification mode, we 
can obtain the receiver operating characteristic (ROC) 
curve that depicts the relationship of false match rate 
(FMR) and false non-match rate (FNMR). The area 
under the ROC curve (denoted as Az) reflects how 
well the intra-class and inter-class distributions can 
be distinguished and the ranges are from 0.5 to 1. 
For an ideal ROC curve, the value of Az should be 1. 
It denotes that the intra- and inter-class are 
inseparable while the Az value is equal to 0.5. Hence, 
ROC curve is normally used to measure the accuracy 
of the matching process, showing the achieved 

performance of an algorithm. Meanwhile, the equal 
error rate (EER) is also used for performance 
evaluation. In the recognition mode, the correct 
recognition rate (CRR) is adopted to assess the 
efficacy of the algorithm. 

5.1 Iris Database 

   At present, most proposed methods for iris 
recognition used small data sets to evaluate their 
performance, and only the L. Ma et al. [13, 15, 16] 
and Daugman’s approach [4-8] had been tested on a 
large image set involving over 200 subjects. In our 
experiments, the test data set is from the generally 
used iris image database, CASIA Iris Database [27], 
authorized from the Institute of Automation, Chinese 
Academy of Science. Each image has the resolution 
of 320 280×  in 8-bit gray level. This database 
includes 1992 iris images from 249 different eyes 
(hence, 249 different classes) with 8 each. The 
images are acquired during different sessions and the 
time interval between two collections is at least one 
month. Three images of each class are selected 
randomly to constitute the training set and the 
remaining images of each class are treated as the test 
set. In the preprocessing stage, we checked the 
segmentation accuracy of the iris boundaries 
subjectively and obtained an accuracy rate of 95.9% 
(81 images are not used) on 1992 images. Table 1 
shows different causes of the iris locating failure. 
Therefore, there are 747 images for training and 
1164 images for testing. Using those 1911 different 
iris images from the CASIA Iris Database, the 
experiments conducted below are running on the 
computing environment of 1.8GHz PC with 736MB 
RAM using Matlab 6.5. 

Table 1. Failure analysis of locating iris for different 
causes 
Cause of Failure Number of 

images (CASIA) 
Occlusion by eyelids 31 
Inappropriate eye positioning 21 
Occlusion by eyelash 23 
Noises within iris 6 

Total 81 

5.2 Performance Evaluation of the Proposed 
Method 

    To assess the accuracy of the proposed 
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algorithm, each iris test image in the database is 
compared with all the other iris test images in the 
database. In the CASIA iris database, the total test 
number of comparisons is 1,350,819, where the total 
test number of intra-class comparisons is 2,148 and 
that of inter-class comparisons is 1,348,671. Table 2 
demonstrates promising recognition results achieved 
by our proposed method using three similarity 
measures from (8)-(10). Note that performance 
differences are not very significant while different 
similarity measures are used. Only a slightly higher 
recognition rate of 99.04% is accomplished by using 
the MED similarity measure in the identification 
tests. The verification results are shown in Figure 8. 
It displays the ROC curve accomplished by the 
proposed method under different similarity measures. 
The Az value (the area under the ROC curve) is up to 
0.9996 by the MED similarity measure. Therefore, 
experimental results show that the proposed iris 
representation is effective and the Modified EMD 
approach can really extract the promising feature 
from each iris image. 
 
Table 2 Recognition rates of three similarity measures 

achieved by Modified EMD with different 
threshold values  

Similarity 
measure Threshold Correct recognition rate 

(CRR) % 
MED 0.45 99.04 

Cosine 0.38 98.78 
HD 0.72 98.32 

 
 
Fig. 8. The ROC curve of Modified EMD method with 

different similarity measures. 

5.3 Boundary Processing for Modified EMD 

    The EMD firstly proposed by Huang et al. [22] 
is a method of breaking down a signal into a series of 
zero-mean AM-FM components by iteratively 
conducting the sifting process that we have 
introduced in Section 3.1. As pointed out by [22], 
“Serious problems of the spline fitting can occur 
near the end points, where the cubic spline can have 
large swings.” Hence, we adopt the method 
introduced in [35] to eliminate the boundary effects 
and evaluate the recognition results to see if it can be 
improved in this experiment. 
    This simple boundary processing procedure is 
performed by the even extension and the odd 
extension. To construct a periodic signal from 
arbitrary time series is easily accomplished by the 
even extension. Near the end points, the outside of 
the original data is spanned by the mirror image of 
those inside. The odd extension also provides all 
advantages which the even extension does. While the 
fact that the mean of the even extension and the odd 
extension is same as the original data series inside 
the data span and zero outside the data span brings a 
simple boundary processing technique for EMD 
described in [35]. 
    The verification results are shown in Table 3. 
Compared to the results in Table 2, only a slightly 
higher recognition rate is improved for the MED 
similarity measure and a slightly lower recognition 
rate is affected for the HD similarity measure. The 
experimental results achieved in the ROC curve and 
three operating states are the same as shown in Fig. 8. 
Table 4 shows the feature extraction time with and 
without considering the boundary condition. As 
displayed in Table 4, the computation time without 
considering the boundary condition is faster than that 
of with considering the boundary condition almost 
three times. Clearly, by using the Modified EMD 
technique, the iris recognition performance does not 
make apparent difference while considering the 
boundary effect. 

Table 3 Recognition rates achieved while considering the 
boundary condition in Modified EMD with three 
similarity measures 

Similarity measure Correct recognition rate 
MED 99.22% 

Cosine 98.83% 
HD 98.17% 
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Table 4 Feature extraction time with and without 
considering the boundary condition in Modified 
EMD 

Ignoring 
boundary(ms) 

Considering 
boundary(ms) 

245 706 

5.4. Comparison and Discussion 

    Experimental results from previous paragraphs 
reveal that the proposed technique is an effective 
scheme for feature extraction and the MED 
similarity measure can achieve a correct recognition 
rate up to 99.04%. To compare with the other iris 
recognition algorithms, we have also implemented 
two methods, the approaches of the Fourier-wavelet 
feature [23] and the Gaussian-Hermite moments [15].  
Together with our proposed scheme, three 
approaches are tested using the 249 classes of the 
CASIA Iris Database and the cosine similarity 
measure. Table 5 and Fig. 9 demonstrate the 
experimental results. Table 5 illustrates that the Az 
accomplished by each algorithm is greater than 0.9 
and the CRR exceeds 90% as well. This implies that 
the high accuracy can be achieved by those three 
methods. Although a slightly lower recognition rate 
than the approach of Gaussian-Hermite moments is 
achieved, the proposed method still can fulfill the 
demand of high accuracy suitable for very high 
security environments. Figure 9 displays the ROC 
curve of those three methods. From the results 
shown in Table 5 and Fig. 9, we can find that the 
method of Gaussian-Hermite moments achieves the 
best performance, followed by the proposed method, 
and then the method of Fourier-wavelet feature. 
    To evaluate the computation complexity, Table 
6 shows the computational costs consumed by three 
methods with cosine similarity measure, including 
the CPU time for feature extraction and matching. 
Our proposed method using the Modified EMD 

Table 5 Recognition rates achieved by different methods 
using the cosine similarity measure 

Methods CRR % Az EER (%)

Fourier-wavelet 
feature[23] 94.37 0.9888 5.24 

Gaussian-Hermite 
moments[15] 99.21 1≅  0.48 

Proposed method 99.04 0.9993 1.82 

 
Fig. 9. The ROC curve of different methods using the 

cosine similarity measure. 

Table 6 Comparison of the computational complexity 

 
method for feature extraction demonstrates the best 
performance. This can be a potential advantage for 
iris matching in a large database. 
    Based on the previous experimental results with 
corresponding analysis, we can conclude: 
1. The proposed method can achieve high accuracy 

and fast performance for iris recognition. This 
also indicates that the Modified EMD technique 
can extract discriminating features suitable for 
iris recognition. 

2. Compared with the method of Gaussian-Hermite 
moments [15], our proposed method still needs 
to be improved in the performance. Therefore, 
feature selection is an important research issue in 
the near future. 

VI. CONCLUSIONS 

In this paper, a novel and effective method for 
iris recognition is presented, which operates using 
the Modified EMD technique. This paper also 
evaluates the effect of the boundary processing for 

Methods Feature 
extraction(ms) 

Matching 
(ms) 

Fourier-wavelet 
feature[23] 1297 76 

Gaussian-Hermi
te moments[15] 426 34 

Proposed 
method 245 56 
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iris recognition. The performance of iris recognition 
achieved by the Modified EMD approach associated 
with three different similarity measures has been 
evaluated. Experimental results have shown that 
without taking account the boundary effect still can 
demonstrate eminent performance. The best metric is 
the MED measure and the other two measures also 
have achieved similar performance more than 95%. 
Therefore, the proposed method has demonstrated to 
be promising for iris recognition and Modified EMD 
is suitable for feature extraction. In the future, we 
will ameliorate the template processing method to 
reduce the influence of light, eyelid, and eyelash. We 
are also working at increasing the database in order 
to further verify the performance and trying other 
possible approaches to improve the classification 
accuracy. 
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