
中正嶺學報 第三十七卷 第二期 民國 98.05. 
JOURNAL OF C.C.I.T., VOL.37, NO.2, MAY, 2009 

   

 - 53 -

Numerical Study of Simulated Uniform Corrosion Tests 

Tsai-Fu Chuang* 

 
Assistant Professor of Department of Landscape Architecture, MingDao University 

 
ABSTRACT 

 
In this paper, a smeared crack model is used to model the behaviour of simulated corrosion tests. 

This model has been implemented into a FE program (LUSAS) [1] to investigate the expansion of the 
simulated bars and the failure pressures. This program (LUSAS) contains a material model interface 
(MMI) that allows users to develop computer code for material models then link the codes to the main 
program in such a way that the user code controls the material behaviour of the specified elements. A 
series of simulated corrosion experiments performed by Williamson and Clark [2] have been chosen 
for comparison. For the finite element calculation, a two-dimensional plane strain model and QPN8 
(LUSAS) elements was chosen. The numerical calculations show that the failure pressures obtained 
from the numerical analysis agree well with the experimental ones. Also, the numerical calculations 
show that the assumption of uniform bar expansion is reasonable.  
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摘要 
本文採用一個混凝土裂縫模型(cracking model)用來模擬混凝土鏽蝕試驗的行為。此一數值模

型以程式語言完成並經編譯無問題後，再連結於有限元素法軟體 LUSAS 之主程式上。

LUSAS 主程式中包含一個材料模式介面（MMI）允許使用者自行發展電腦材料副程式，

並可將此材料副程式與 LUSAS 主程式連結。以此種方式，使用者自行發展的材料副程式，

則可應用於使用者指定的材料元素上。而實驗數據則採用 Williamson 和 Clark 所進行的鏽蝕試

驗。本研究的數值分析中，採用了二維的平面應變 (Two-dimensional plane strain models)，而荷重

則採用位移控制(displacement control)來進行。研究結果顯示數值破裂壓力與實驗結果相當吻合。 
而數值分析結果亦顯示混凝土均勻膨脹為合理之假設。 
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I. INTRODUCTION 
 

A very early finite element codes to model 
the crack behaviour of concrete was that 
proposed by Bazant and Cedolin [3]. They also 
proposed a fracture energy criterion to analyse a 
rectangular reinforced concrete panel for crack 
propagation. Furthermore, they also explained 
the reason for the “mesh dependence”. The 
explanation given for this spurious mesh 
sensitivity, or inobjectivity, was that the value of 
the stress in an element ahead of a crack front 
depends on the width of the crack band. Also, 
the width depends on the element size because 
the crack width is the effective width of the area 
or volume associated with a particular element 
sampling point. Thus, the smaller the elements, 
the sharper the cracks and the higher the stress 
in the element ahead of the crack tip. 

The methods proposed by Bazant and 
Cedolin [3] drew attention to the fracture energy 
and suggested that the answer to the spurious 
mesh sensitivity was to apply fracture 
mechanics. 

Doubtless, these were problems that could 
be overcome, and, a fracture energy dependent 
softening model was then proposed by Bazant 
and Oh [4] for application to the smeared crack 
model. They suggested that cracks occurred in a 
band or zone rather than a line, and also, that 
over the zone, a fracture strain could be defined 
which was equal to the sum of the openings of 
the individual micro-cracks divided by the width 
of the fracture process zone. Thus, their crack 
criterion for governing the crack initiation was 
again assumed to be the tensile strength and 
once a crack had started, the stress was then 
followed by a decreasing linear function of the 
increasing fracture strain. The fracture energy, 
per unit area of crack, could then be equated to 
the area under the stress/fracture strain curve 
multiplied by the width of the fracture process 
zone. In the smeared crack approach, a crack is 
assumed to be spread over the width associated 
with a sampling position and thus the 
‘numerical’ crack process zone was assumed to 
depend upon the size of the element. Bazant and 
Oh [4] simply equated the ‘characteristic length’ 
of an element with the width of the crack 
process zone. 

 

This model was rapidly adopted by other 
investigators[5-7] and become a well-established 
way of modelling concrete fracture and this 
approach is also adopted in this paper.  

Reinforced concrete is a widely used, 
economical, versatile and generally durable 
construction material. Premature deterioration of 
reinforced concrete is, however, a subject which 
is currently of great concern with the major 
cause being corrosion of reinforcing steel which 
is caused by either carbonation or ingress of 
chlorides.  

Prior to the onset of corrosion of 
reinforcing steel some aggressive species must 
be transported through the concrete cover, 
termed ‘covercrete’, to the reinforcement [2]. 
The life of a structure in terms of time to 
replacement or repair may be defined as the time 
taken for this transport to occur and corrosion to 
commence. This is known as the initiation 
period after a model developed by Tuutti [8]. 
Alternatively life may be defined as the point 
when corrosion reaches some pre-determined 
unacceptable level which is generally the 
appearance of surface cracking. The time taken 
to reach this point from the onset of corrosion is 
known as the propagation period, again after 
Tuutti [8]. The length of the initiation period 
depends upon the thickness, permeability and 
porosity of the covercrete. Once corrosion has 
begun the time taken to crack the cover depends 
both upon the rate at which corrosion continues 
and the resistance to cracking of the cover. 
Corrosion behaviour of reinforced concrete is, 
therefore,a function of both the transport 
properties and cracking resistance of concrete in 
the cover zone [2]. 

In this paper, a fixed smeared crack model 
is used to model a series of simulated uniform 
corrosion experiments performed by Williamson 
and Clark[2]. The main purpose of this 
calculation is to provide further information to 
improve the understanding of this experiment. 
Main attentions have been paid to the 
relationship between the failure pressure and the 
c/d ratios (Cover(c)/Diameter(d)) and whether 
the assumption of uniform bar expansion is 
reasonable.  
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II. METHOD OF NUMERICAL 
ANALYSIS 

 

The basic fracture model used is the 
“smeared fixed crack model” which has a 
maximum tensile stress criterion for initial crack 
formation and subsequently the concrete is 
treated as orthotropic with the material strain 
softening in the direction normal to the crack. A 
second crack is permitted to form, orthogonal to 
the first, if the tensile stress in that direction 
exceeds the limiting value. The concept of fixed 
crack model is that this model has a memory of 
the angle of initial crack. No matter whether a 
subsequent principal stress has exceeded the 
ultimate fracture stress, this memory will not be 
erased. In this study, a flat stepped softening 
curve(Figure 1) is proposed which is inspired 
from that suggested by Nilsson and Oldenburg 
[9] (Figure 1). The advantage of using the flat 
stepped softening curve is that it can improve 
the stability of the strain softening problem [6]. 
One reason for the numerical instability of the 
strain softening problem is that when negative 
moduli are used, the structure stiffness matrix 
can become non-positive-definite. This implies 
that a unique solution is not guaranteed.  

 

tf

tε 0ε

Fig. 1. Flat stepped softening curve for tension. 
 
The shear modulus G, in the cracked 

D-matrix, is multiplied by a shear retention 
factor β (Figure 2) which is a function of the 
normal crack strain..  

 
The cracked compliance matrix for a single 

crack is  
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Hence the D matrix can be represented as  
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where )( 111 εD and )( 222 εD  are derived 
from the slope of the softening curve. 

)( 111 εD  = Tangential stiffness modulus in 
direction 1 i.e. normal to the crack plane. 

)( 222 εD = Tangential stiffness modulus in 
direction 2 i.e. perpendicular to direction 1. 

β = Shear retention factor which is a 
function of the normal crack strain (ε1 or ε2). 

G = Elastic shear modulus. 
ε11 = Total fracture strain in direction 1 i.e. 

normal to the crack plane. 
ε22 = Total fracture strain in direction 2 i.e. 

perpendicular to 1 direction. 
11εΔ = Concrete strain increment in 

direction 1 i.e. normal to the crack plane. 
22εΔ = Concrete strain increment in 

direction 2 i.e. perpendicular to direction 1. 
12γΔ = Shear strain increment. 

2211 , σσ ΔΔ = Principal stress increments. 
12τΔ = Shear stress increment. 

The mode I fracture energy can be derived 
by multiplying the area under the σ-ε curve with 
the characteristic length le. Therefore, the mode 
I fracture energy Gf can be represented as 
follows: 
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Fig. 2. shear retention facto.
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where le = characteristic length and is taken 
as the cubic root of the volume associated with 
an element sampling point. Gf = Fracture energy 
per unit volume; ε0 = ultimate fracture strain. 

 
In the current study, the equations of the 

softening curve (Figure 1) suggested by Nilsson 
and Oldenburg [9] is shown as bellows: 

)
-

exp(f t
t α

εε
σ ×=                   (4) 

)l)/(flf0.5-G( etettF ××××= εα    (5) 
where tf = uniaxial tensile strength, εt = 

elastic ultimate strain. The compressive 
behaviour of this model uses non-linear 
hardening plasticity theory with a yield criterion 
that is obtained by fitting biaxial experimental 
results.  
 
2.1 Yield Criterion 

In this paper, a yield criterion proposed by 
Owen et al. [10] was employed. This criterion is 
formulated in terms of the first two stress 
invariants and only two material parameters are 
involved in its definition. 
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where  , , 21 σσ and 3 σ  are the principal 
stresses referring to the principal stress axes, 1, 2, 
and 3. 

To fit the data of Kuper et. al [11], the 
parameters take the values:  

355.0=α σ ,  355.1=β  
Substituting the above two values into (7) 

and rearranging gives 
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where C = 0.1775, D = 4.065; σ  = 

equivalent yield stress. 
 
2.2 Flow Rule 

The flow rule is assumed to be associated 
to the compressive yield surface. The gradient of 
the yield surface is given by : 
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2. 3 Hardening Rule 

The hardening rule adopted in concrete is 
usually obtained by fitting the experimental data. 
In this study, the hardening rule proposed by 
Jefferson and Wright [6]. The hardening 
parameter is obtained from Saenz’s equation 
[12]. 

Saenz’s equation can be expressed as： 
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where oE = initial Young’s modulus, uε = 
uniaxial strain, '

cε = uniaxial strain at peak 
stress,  

cσ  = peak uniaxial stress. 
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parameter), the following equation can be 
obtained: 
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where σ = stress, ε = strain, pε = plastic 
strain, eε =elastic strain. 
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III. EXPERIMENT SETUP 
A series of experiments have been 

performed by Williamson and Clark [2] to 
investigate the effect of the cover concrete 
quality on the corrosion behaviour of reinforced 
concrete. In their tests hydraulic pressurisation 
of a hollow concrete specimen was used to 
simulate the expansive pressure created by 
uniform corrosion. Uniform corrosion pressure 
was modelled by using a hydraulic jack to 
pressurise a soft P.V.C tube inserted into the 
hollow concrete specimen. 

The specimens used by Williamson and 
Clark were 150 mm concrete cubes with 2 holes 
of 8 mm, or 16 mm in diameter on its side 
(testing one hole at a time), and the cover 
thickness were 4 mm, 8 mm and 16 mm. The 
concrete properties for the simulated corrosion 
test are shown in Table 1. The Material 
properties of the P.V.C tube are shown in Table 2, 
and the designation of the test is shown in Table 
3. Table 4 shows the range of the ultimate 
strengths of the experimental results and the 
experimental crack pattern is given in Figure 3 

 
Table. 1 Concrete properties for the simulated 

corrosion test 
Young’s modulus E = 28580N/mm2

Poisson’s ratio  ν   = 0.2 

Uniaxial compressive 
strength

fc = 21.6 N/mm2 

Uniaxial tensile strength ft = 2.16 N/mm2 

Uniaxial strain at peak 
compressive strength

εc’ = 0.0022 

Fracture energy  Gf = 0.1 N/mm 

Initial shear retention factor β = 0.1 

 

 

Fig. 3. Experimental arrangement and crack pattern of 
simulated.  

 
 
Table. 2 Material properties of the P.V.C tube 
Young’s modulus E = 2858 N/mm2

Poisson’s ratio  ν   = 0.2 

 
 
 

Table. 3 Designation of simulated corrosion test 
Test 

Designation

Ratio Cover 

(c) 

Diameter 

(d) 

C4D8S2 c/d=0.5 4 mm 8 mm 

C8D8S2 c/d=1 8 mm 8 mm 

C16D8S2 c/d=2 16 mm 8 mm 

 
Table. 4 Experimental results of C4D8S2, 

C8D8S2 and C16D8S2 
 
Experimental  
Designation 

Number of 
specimen 

Range of the 
ultimate strength  

applied by the 
hydraulic jack 

1. C4D8S2 6 4 ∼ 5 N/mm2 
2. C8D8S2 6 7 ∼ 8 N/mm2  
3. C16D8S2 6 12 ∼ 15 N/mm2 

 
IV. NUMERICAL ANALYSIS 

  
The corrosion test is analysed with the 

proposed fixed crack model. A two-dimensional 
plane strain model is chosen for simulating the 
concrete cubes. The reasons are shown as 
follows: 

For typical plane strain problems the 
thickness dimension normal to a certain plane 
(say the xy plane) is large compared with the 
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typical dimensions in the xy plane and the body 
is subject to loads in the xy plane only, Also, It 
may be assumed that the displacements in the z 
direction are negligible. For typical plane stress 
problems, the dimension in the out-of-plane 
should be very small relative with the plane 
dimensions in the xy plane. Stresses are assumed 
to be constant through the thickness of the 
out-of-plane. 

It can be seen that none of the above two 
selections are perfectly suitable with the 
concrete cubes. However, it is known that the 
concrete cubes are subject to loads in the 
in-plane direction only, therefore,the 
displacement in the out-of-plane direction is 
quite small and its magnitude is influenced by 
the Poisson’s ratio only. For this reason, a 
two-dimensional plane strain model is chosen 
for this study. 

The soft P.V.C. tube is modelled as an 
elastic material (see Table 2), and the arc-length 
method available in LUSAS is chosen for the 
simulation of softening behaviour.  

 
 

V. ANALYSIS RESULT 
 

5.1 Mesh dependency study 
For each cover thickness, i.e. 4 mm, 8 mm 

and 16 mm, two finite element meshes are 
employed to show the influence of mesh 
refinement on the pressure-displacement curves 
as shown in Figures 4 to 9. The position selected 
for plotting the pressure-displacement curve is 
the outside point of the concrete cover which 
lies on the middle of the edge line as shown in 
Figure 10.  

The pressure-displacement curves of the 
corrosion specimen obtained with the two 
meshes for each cover thickness are shown in 
Figures 11 to 13. It can be observed that the 
reasons the coarse and refined finite element 
meshes are in very good agreement. Based on 
this observation, all the subsequent studies are 
performed using only the coarse mesh. 

 

 

Fig. 4. Mesh I of case C4D8S2 with c/d=0.5. 

 

Fig. 5. Mesh II of case C4D8S2 with c/d=0.5. 

 

Fig. 6. Mesh I of case C8D8S2 with c/d=1.0. 
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Fig. 7. Mesh II of case C8D8S2 with c/d=1.0. 

 

Fig. 8. Mesh I of case C16D8S2 with c/d=2.0. 

 

Fig. 9. Mesh II of case C16D8S2 with c/d=2.0.  
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Fig. 10. The position, designation and direction of the 
selected points. 
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Fig. 11. Mesh dependency test with ratio c/d=0.5. 
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 Fig. 12. Mesh dependency test with ratio c/d=1.0. 

 

5.2 Displacement - pressure curves 
Figure 10 indicates that the selected points 

are marked as the Outside-point, Left-point, 
Up-point, Right-point and Down-point. In 
addition, the 4 points that are located on the 
edge of the simulated bar, i.e. Left-point, 
Up-point, Right-point and Down-point, are 
called Inside-points. The displacement-pressure 

curves for C4D8S2 (c/d=0.5) obtained from the 
numerical analysis are shown in Figures 14 ~ 
15.  

Figure 14 shows that all the selected points 
exhibit a positive correlation with the expansive 
pressure. When the result obtained from the 
Up-point is compared with that from the 
Down-point, it can be observed that the results 
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of the Up-point exhibit higher value than the 
Down-point. However, due to the symmetry of 
the specimen, the two points should exhibit the 
same results. The reason for the difference is 
that the deformation of the simulated bar, the 
whole specimen will move toward the roller side 
(refer to Figure 10).  

In order to obtain the net deformation at the 
Up-point and Down-point, the absolute 
displacement of the Up-point and Down-point is 
reduced by the displacement of the centre of the 
simulated bar and it is called net displacement. 

Figure 15 shows the net 
displacement-pressure curves of the selected 
points. Comparing the net displacement obtained 
from the 4 Inside-points, it can be seen that the 
Left-point has larger value than the Up-point 
and Down-point. Additionally, the Up-point and 
Down-point displace more than the Right-point. 
The reason for this can be considered from the 
view of resistant stiffness and thickness for the 4 
Inside-points. For the Left-point, the thickness 
of the cover is 4 mm. For the Up-point and 
Down-point, the thickness of the cover can be 

regarded as half of the length (i.e. mm 150
2
1
× ) 

of this specimen minus half the bar size. 
Additionally, the thickness of the cover for 
Right-point can be regarded as the total length of 
this specimen minus the bar size and concrete 
cover. Therefore, from the view of stiffness, 
since the Right-point has the bigger cover 
thickness, the net displacement at this point will 
have the smallest value. 

Figure 16 shows the reduction of the 
concrete cover and the expansion of the 
simulated bar in the x and y directions. It can be 

seen that the pressure increases with the 
reduction of cover. When the elongation of the 
simulated bar in the x direction is compared with 
the y direction, it can be seen that the result in 
the x direction exhibits a close result to that in 
the y direction. 

The displacement-pressure curves for 
C8D8S2 (c/d=1.0) obtained from the numerical 
analysis are next shown. The absolute 
displacement-pressure curves of the selected 
points are shown in Figure 17. Figure 18 shows 
the net displacement-pressure curves of the 
selected points. Figure 19 shows the reduction of 
the concrete cover and the expansion of the 
simulated bar in the x and y directions.  

The displacement-pressure curves for 
C16D8S2 (c/d=2.0) obtained from the numerical 
analysis are next shown. The absolute 
displacement-pressure curves of the selected 
points are shown in Figure 20. Figure 21 shows 
the net displacement-pressure curves of the 
selected points. Figure 22 shows the reduction of 
the concrete cover and the expansion of the 
simulated bar for x and y direction. Again, these 
results show similar behaviour as test C4D8S2 
(c/d=0.5). 

The comparison of the elongation of the 
simulated bar in x direction between various 
cover concrete ratio, i.e. c/d=0.5, 1.0 and 2.0, is 
shown in Figure 23 and the comparison in y 
direction is shown in Figure 24. It can be 
observed that the elongations of the simulated 
bar in both directions reduce with increasing 
concrete ratio. Additionally, it can be seen that 
elongations for c/d= 1.0 and 2.0 are very similar.
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Fig. 13. Mesh dependency test with ratio c/d=2. 

Simulated corrosion test  (C4D8S2)

0.000

0.002

0.004

0.006

0.008

0 1 2 3 4 5 6 7

pressure (N/mm 2̂)

di
sp

la
ce

m
en

t (
m

m
) outside

left
up
right
down

 

Fig. 14. Displacement-pressure curves from numerical 
result (c/d=0.5). 
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Simulated corrosion test (C4D8S2)
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Fig. 15. Net displacement-pressure curves from 
numerical result (c/d=0.5).  
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Fig. 16. The reduction of the cover and elongation of 

the simulated bar. 
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Fig..17. Displacement-pressure curves of numerical 
result (C8D8S2). 
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Fig. 18. Net displacement -pressure curves of 
numerical result (C8D8S2). 
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Fig. 19. The reduction of the cover and elongation of 

the simulated bar. 
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Fig. 20. Displacement-pressure curves of    

 numerical result (C16D8S2).  
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Fig. 21. Net displacement -pressure curves of 

numerical result (C16D8S2). 
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Fig. 22. The reduction of the cover and elongation  

of the simulated bar.
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Elongation of the simulated bar in x direction
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Fig. 23. The elongation of the simulated bar in x 

direction. 

Elongation of the simulated bar in y direction
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Fig. 24. The elongation of the simulated bar in y 

direction.

5.3 Crack pattern and internal pressure 
The crack pattern obtained from the 

numerical analysis for C4D8S2, i.e. c/d=0.5, are 
shown in Figures 25 ~ 27. 

Figure 25 shows that the cracks appeared at the 
internal surface and the external surface of the 
concrete cover at the same load increment when 
the thickness of the concrete cover is smallest (4 
mm). The magnitude of the internal pressure is 
3.347 N/mm2 and the number of the load 
increment is = 3. As the internal pressure increase, 
the cracks from outside of the concrete cover 
progressed to join up with those from the inside of 
the concrete cover, which eventually penetrated 
the concrete cover as shown in Figure 26. The 
internal pressure increased to 4.147 N/mm2 . 
When the number of the load increment is 30, it 
can be observed that more cracks have appeared 
around the simulated bar and the concrete cover 
(Figure 27). After that, the arc-length method [5] 

used in this investigation failed to trace further 
response due to convergence difficulties. An 
attempt was made in order to solve this 
convergence problem. However, as the source 
code of the arc-length method contained in 
LUSAS was not available, an examination on the 
source code was not possible. Nevertheless, the 
Author had taken various necessary steps in order 
to solve this problem that included reducing the 
load increment, increasing the number of iteration, 
adjusting the control parameters, etc. (see LUSAS 
User Manual). However, none of these steps were 
able to solve this problem.  

The crack patterns obtained from the numerical 
analysis for C8D8S2, i.e. c/d=1.0, are shown in 
Figures 28 ~ 31.  

 

 

 

 
Fig. 25. Internal and external crack patterns of C4D8S2  

(Increment = 3 ; Pressure = 3.35 N/mm2). 

 
Fig. 26. Penetrating crack pattern of C4D8S2 (Increment 

= 4 ; Pressure = 4.15 N/mm2). 
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Fig. 27. Final crack pattern of C4D8S2  

              (Increment = 30 ; Pressure = 6.36 
N/mm2). 

 
Fig. 28. Internal crack pattern of C8D8S2 

            (Increment = 2 ; Pressure = 3.44 
N/mm2). 

 
Fig. 29. External crack pattern of C8D8S2  

(Increment = 6 ; Pressure = 7.9 
N/mm2). 

 
Fig. 30. Penetrating crack pattern of C8D8S2  

(Increment = 7 ; Pressure = 8.18). 

 
Fig. 31. Final crack pattern of C8D8S2  

             (Increment = 38 ; Pressure = 9.22 
N/mm2). 

 
Fig. 32. Internal crack pattern of C16D8S2  

(Increment = 2 ; Pressure = 3.89 
N/mm2). 

 
Fig. 33. External crack pattern of C16D8S2  

           (Increment = 18 ; Pressure = 15.48 
N/mm2). 

 
Figures 28 and 32 show that the cracks first 

appear at the internal surface of the concrete 
when the thickness of the concrete cover is 8 
mm and 16 mm. The crack patterns follow 
similar progress as in test C4D8S2. 
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Fig. 34. Penetrating crack pattern of C16D8S2  

(Increment = 21 ; Pressure = 15.93 N/mm2). 

 
Fig. 35. Final crack pattern of C16D8S2  

(Increment = 91 ; Pressure = 16.36 
N/mm2) c/d=2.0, are shown in Figure 
32 ~ 35. 

 
Figures 31 and 35 show the final crack 

pattern at the load increment where the 
arc-length method failed to converge. Similar 
steps have been taken in order to solve this 
problem as given in C4D8S2, but these steps 
also failed. 

For the three cover concrete ratios, i.e. 
c/d=0.5, 1.0 and 2.0, the arc-length method is 
not able to trace the ultimate pressure. However, 
when the internal pressure in which the crack 
pattern has penetrated the concrete cover is used 
to compare with the failure pressure obtained 
from the experiment, it can be seen that the 
internal pressure obtained from the numerical 
analysis shows good agreement with the 
experiment, as shown in Figure 36. It is possible 
that when the crack pattern penetrates the 
concrete cover, the specimen is not able to resist 
further pressure. A further increment of internal 
pressure would split the concrete cover and lead 
to a release of all of the internal pressure. This is 
supported by the experimental result (for 
c/d=2.0) where a splitting crack pattern around 
the concrete cover (Figure 3) is seen. 

 
Figure 36 also shows that, in both the 

experimental and the numerical results, the 
failure pressure increases with c/d ratio. 

Figure 37 shows the comparison of the 
results of the internal pressures which include 
the internal pressures at which the cracks were 
predicted to appear at the internal surface, 
external surface and penetrated the concrete 
cover with concrete cover = 4, 8 and 16 mm. It 
can be seen that both the internal pressures at 
which the cracks appeared at the external 
surface and at which they penetrated the 
concrete cover show that the internal pressure 
increases with c/d ratio. However, the internal 
pressure at which the cracks appeared at the 
internal surface is independent of the c/d ratio. 
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Fig. 36. The failure pressure of the numerical       

and experimental result with concrete cover 
= 4, 8 and 16 mm. 
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Fig. 37 The internal pressure of the numerical result 
with concrete cover = 4, 8 and 16 mm. 
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Fig. 38.Load increment = 2 
       Stress distributions of C4D8M2 

Principal stress = 1.50 - 2.16 N/mm2. 
 

5.4 Stress distribution 
The stress distribution of C4D8S2 obtained 

from the numerical analysis are plotted in Figures 
38 ~ 41. Only the area that contains the higher 
principal stress is plotted. Figures 38 ~ 41 show 
that the area with higher principal stress is almost 
the same with the numerical crack patterns 
(Figures 25 to 27). The reason is that the 
maximum principal stress criterion is used in this 
crack model. 
  The stress distribution of C8D8S2 and 
C16D8S2 are not shown as again, the area with 
higher principal stress is almost the same with the 
numerical crack patterns.  

 
Fig. 39.Load increment = 3 

Stress distributions of C4D8M2. 

 
Fig. 40.Load increment = 4 

Stress distributions of C4D8M2. 
 

       Fig. 41. Load increment = 30 
       Stress distributions of C4D8M2 

Principal stress = 1.50 - 2.16 N/mm2. 
 

5.5 The influence of the boundary 
condition  

In order to investigate how the boundary 
condition could affect the behaviour of the 
corrosion specimen, another set of numerical 
analysis was carried out which altered the roller 
support of the specimen to a hinge support 
(Figure 10).  

The crack patterns, stress distributions, 
internal pressures, reduction of the concrete 
cover and the expansion of the simulated bar for 
x and y directions obtained from this case (hinge 
support) were used to compare with the previous 
case (roller support). The numerical results of 
the above issues obtained from these two 
boundary conditions are almost identical. Figure 
42 showed the deformed meshes of the two 
boundary conditions. It confirmed that the 
expansion with the simulated bar of the two 
boundary conditions are almost identical. 

 

 

 Boundary: Free(Roller)   Boundary: Fixed(Hinge) 

Fig. 42. Deformed mesh of C4D8M2. 
 

Nevertheless, there are significant 
differences in the displacement-pressure curves 
obtained from the two boundary conditions. 
Figures 43 to 45 show the displacement-pressure 
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curves obtained by plotting the displacement of 
the outside point (see Figure 10) vs. the internal 
pressure. It can be seen that, for the three c/d 
ratios, the case I (roller support) has a higher 
displacement than the case II (hinge support). 
Figures 46 to 48 show the displacement-pressure 
curves obtained by plotting the displacement of 
the center point (see Figure 10) in the x direction 
vs. the internal pressure. Again, it can be seen 
that, for the three c/d ratios, the case I (roller 
support) has a higher displacement than the case 
II (hinge support). Figures 49 to 51 show the 
displacement-pressure curves obtained by 
plotting the displacement of the center point (see 
Figure 10) in the y direction vs. the internal 
pressure. Only the results for the case I (roller 
support) are plotted because the displacements 
in the y direction for case II (hinge support) are 
almost zero. 

Simulated corrosion test (C4D8S2)
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Fig. 43. Displacement-pressure curves of different 

boundary conditions (C4D8S2). 
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Fig. 44. Displacement-pressure curves of different 

boundary conditions (C8D8S2). 
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Fig. 45. Displacement-pressure curves of different 

boundary conditions (C16D8S2) 
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Fig. 46. Displacement-pressure curves of different 

boundary conditions (C4D8S2). 
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Fig. 47. Displacement-pressure curves of different 

boundary conditions (C8D8S2). 
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Fig. 48. Displacement-pressure curves of different 

boundary conditions (C16D8S2). 
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Fig. 49. Displacement-pressure curve for roller  

support (C4D8S2). 
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Simulated corrosion test (C8D8S2)
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Fig. 50. Displacement-pressure curve for roller support 

(C8D8S2). 
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Fig. 51. Displacement-pressure curve for roller support 

(C16D8S2). 
 

VI. CONCLUSION 
 

1. The failure pressures obtained from the 
numerical analysis agree well with the 
experiment. In addition, both the experiment 
and the numerical simulation showed that 
the failure pressure increases with increasing 
c/d ratio. 

2. The results of the numerical analysis show 
that the assumption of uniform bar 
expansion is reasonable.In addition, the 
crack patterns, stress distributions, internal 
pressures, reduction of the concrete cover 
and the expansion of the simulated bar for x 
and y directions are almost identical with the 
two boundary conditions.  

3. The direction of the movement of the 
simulated bar is not the same with the two 
boundary conditions. The simulated bar in 
case I (roller support) appears to move 
larger distance than that of the case II (hinge 
support). Nevertheless, the numerical results 
show that the failure mechanics of these two 
boundary conditions are identical. 
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