精進120(42)迫擊砲射擊精度--火砲校正法之研究

作者簡介:

服務單位:鳳山郵政90680附11號信箱

級 職:上尉教官

姓 名:鄭維順

學經歷:陸官專24期、曾任排長、副連長、教官、現任職步兵學校兵

四小組

提要:

- 一、現行準則採遠方瞄準點法進行火砲之方向校正,但此法仍有其條 件限制。
- 二、本論文利用雙瞄準具之設置,實現迫砲砲身軸線與瞄準裝置視軸線之標定,並可兼具射角校正之能力,方便操作人員實施校正 靶法。
- 三、根據聯勤 402 兵工廠所量測,火砲瞄準具視軸線位置與砲身軸線之距離,其數據來訂定火砲校正靶之規格。
- 四、雙瞄準具校正法不僅適用於車、地裝迫砲,簡化了迫砲校正之複雜度,也可消除各種天候、場地之限制性,完成火砲校正,提升射擊精度,達成所望之支援效果。

壹、前言:

120(42) 迫擊砲目前是本軍機(裝)步營,口徑最大、殺傷力最強之營建制火力,亦為營級火力骨幹。迫擊砲戰力之發揮端賴即時而精確之火力,故應不斷提昇射擊精度與速度,俾能對第一線步兵提供適時、有效的支援火力,以制壓、摧毀或破壞目標。決定火砲射擊精度的因素包括:天候、火砲校正、射向賦予、射擊指揮所作業以及觀測員修正等。本篇就現行120(42) 迫擊砲火砲校正之方法作一探討,進而提出雙瞄準具校正法之原理與實施步驟,以期克服自然、機械與人為等影響因素,創新更快速、簡單而有效的火砲校正法,供相關單位參考使用。

貳、現行火砲校正之作法及研析:

火砲校正的目的,確使砲身軸線、射角和瞄準具之方向、射角一致,期使射彈能精準擊中目標。若火砲校正不確實,將產生不規則之彈著點¹,造成觀測員不易正確判定回報修正,不僅影響射擊效果, 更易造成危安事件,故火砲校正確實與否,影響射擊效果至鉅。

依迫擊砲射擊教範(三),現行火砲射角校正是利用象限儀為工具;方向校正是採遠方瞄準點法,以方向盤為主要校正工具,其相關要領如下:

1、 射角校正:

(一) 作法:

首先將火砲架設於平坦之地面,並將方向機之T型螺母居中, 於座鈑左右兩側放置兩只大小相同之沙袋,裝上瞄準具,象限 儀置於砲身之象限儀座上,並裝訂「800」密位,打動火砲高低 機,使砲身射角昇高,直至象限儀之水準氣泡居中為止,再轉 動水平調節器,使方向水準氣泡居中。旋轉高低手輪,使瞄準 具之高低水準氣泡居中,此時高低本分劃指標應對正「800」密 位,高低補助分劃指標應對正「0」,如有誤差則按下列方式校 正:

(1) 先校正高低本分劃: 鬆開連接高低本分劃盤與瞄準具座之

陳明華〈精進120 迫砲射擊精度研究之(一)火砲校正及射向賦予〉《步兵學術雙月刊》· 民國87年4月16日·頁26

兩螺絲,並轉動分劃盤,使「800」密位刻線對正指標,然 後再緊定兩螺絲。

(2)再校正高低補助分劃:握住高低手輪,鬆開固定螺絲但勿轉動手輪,調整高低補助分劃,使「①」刻線對正指標,然後再緊定兩螺絲。

(二)研析:

象限儀為瞄準具檢查及校正時必須使用之器材,其本身是否精確,影響射角精度至鉅。在器材部分及人為使用方面實施分析。

(1) 在器材方面:

象限儀經強烈震動,磨損及撞擊所產生的空迴其誤差量, 如超過0.4密位時²,必須送廠維修。

在象限儀檢查上,目前各單位迫砲排操作人員大多不會檢查其誤差量。在使用此器材上本身差值將無法求取,而產生火砲射擊之基本差異。

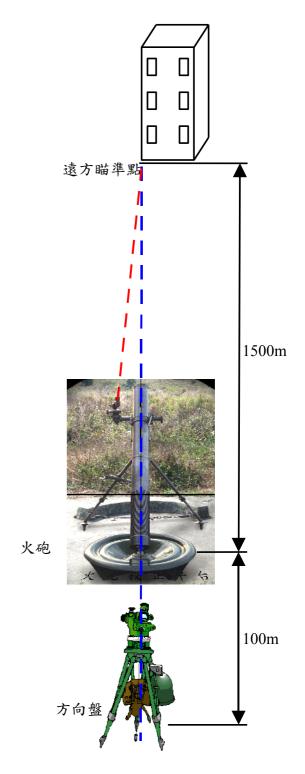
(2) 在人為使用方面:

目前 120 迫擊砲砲身上雖具有象限儀座,但無法固定象 限儀,必須由操作人員微扶象限儀,穩定性則易受操作 人員影響(如圖一)。

圖一、象限儀設置圖 資料來源:作者拍攝

二、方向校正

(一)遠方瞄準點法之作法:


² 吳又淦〈精實 120 迫砲射擊訓練之我見〉《步兵學術雙月刊》·民國 83 年 8 月 16 日·頁 44

(1)方向本分劃校正: 鬆開固定方向本分劃盤

怒用固定为向本分劃盤 上之兩個螺絲,使指 標對正 3200 刻線,然 後緊定螺絲。

(2)方向輔助分劃校正:

握住方向手輪,鬆開固 定螺絲,轉動方向輔助 分劃,使0刻線對正指 標,然後緊定螺絲。

圖二、遠方瞄準點法示意圖資料 來源:作者自繪

(二)研析:

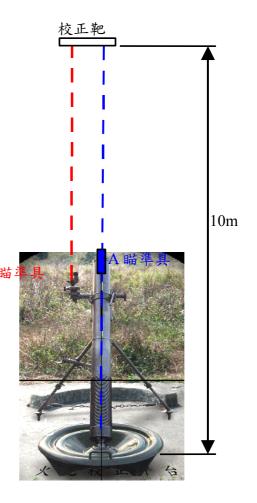
就筆者實際參與部隊輔訪及實彈演訓的經驗得知,現行部隊對火砲校正的實施仍有其條件限制。

- (1) 須於視野遼闊之場地實施、且在火砲前方1500公尺(含以上) 有一獨立明顯物體以供瞄準。目前步兵基層單位無配置雷觀 機,無法準確判定之其距離。
- (2) 必須在白天實施校正,夜間或視線不良時無法實施。
- (3) 遠方瞄準點法將瞄準具視軸線至遠方獨立物體與砲身軸線 至遠方獨立物體兩線合一來校正。兩者之夾角隨遠方獨立物 體之遠近而定,距離越近越不精準,而且此夾角無法消除。
- (4)將火砲移至方向盤視軸線內使火砲砲身軸線與視軸線相重疊,操作人員可能因凝視遠方火砲產生視覺疲勞造成人為誤差。
- (5) 依據筆者參與多次實彈演訓得知,此法用於車裝砲上使用 有諸多條件,方向盤位置需有制高點俯視方能通視火砲, 但僅能覘視部份砲身,無法對準整段砲身軸線。

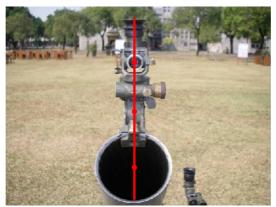
參、雙瞄準具校正法之作法:

一、使用工具:

- (一)A(瞄準具)基準瞄準具:M1 瞄準具³(如圖三)。
- (二)B(瞄準具)校正瞄準具:M53A1/M34A2式瞄準具。
- (三)迫砲校正靶:校正靶規格如後文所述。



圖三、MI瞄準具 資料來源:作者拍攝


³ 〈國軍地面部隊輕兵器射擊訓練—四二迫砲(下)〉·民國61年9月·頁725~742

二、雙瞄準具校正法之原理:

- (一)有鑒於火砲機械結構之設計, 火砲瞄準具的位置和砲身軸 線間存有一定之間距,本法 乃運用兩線平行之原理實施 校正,使瞄準具本分劃歸 3200時視軸線與砲身軸線平 行(如圖四)。
- (二)當A瞄準具安置於砲口上, 其視軸線即與砲身軸線相平 行;當水準氣泡居中時,A 瞄準具、A瞄準具對物鏡、砲 身軸線三者將位於相同之垂 直面上,亦即,A瞄準具之 視軸線和砲身軸線一致4(如 圖五)。

圖四、雙瞄準具法示意圖 資料來源:作者拍攝

圖五、瞄準具、瞄準具對物鏡、砲身軸線三者位於相同之垂直面上。 資料來源:作者拍攝

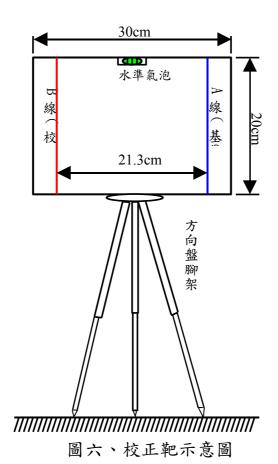
⁴ 美軍教則 FM23-92 4.2 Inch Mortar M30, Headquarters, Department of the Army, Feb. 1961, 頁 26~29

- (三)因 A 瞄準具之射角水準氣泡設定為 800 密位,故當其射角水準氣泡居中時,該火砲之射角亦為 800 密位。
- (四)當A瞄準具方向及射角水準氣泡皆居中時,可方便同時用 於火砲方向及射角校正。

三、雙瞄準具校正法之實施步驟如下:

(一)射角校正

- 1. 先將火砲架設於平坦地面,將方向機T型螺母居中,裝上B瞄準具,使方向水準氣泡居中。
- 2. 於砲口安裝 A 瞄準具,沿砲口外緣緩緩旋轉微調,使其方向水準氣泡居中。打動火砲高低機,使砲身射角升高,直至 A 瞄準具射角水準氣泡居中,並同時確認方向水準氣泡及射角水準氣泡居中。
- 3. 旋轉 B 瞄準具高低手輪,使瞄準具之射角水準氣泡居中, 此時高低本分劃指標應對正 800 密位,高低輔助分劃指標 應對正 0,如有誤差則同校正高低本分劃及輔助分劃動作 要領。


(二)方向校正

- 1. 經火砲射角校正後, A 瞄準具之視軸線與砲身軸線將位於 同一垂直面上。
- 2. 確認 A 瞄準具與 B 瞄準具兩者之高低及方向水準氣泡都維持在居中位置。
- 3. 移動校正靶(可直接依標桿設置之手勢指揮),將靶上之A 線段與A瞄準具之視軸線重疊。
- 4. 轉動 B 瞄準具之方向手輪,使 B 瞄準具之視軸線重疊於 B 線段上。此時 B 瞄準具之方向本分劃指標應對正「3200」方向輔助分劃指標應對正「0」;如有誤差同校正方向本分劃及輔助分劃動作要領,校正時應注意視軸線,必須對正 B 線段上,如有移動,則需重新校正。

四、校正靶之設計:

校正靶(如圖六)採用 30×20 公分之壓克力板,其下附有螺孔可以與方向盤腳架相結合,便於車、地裝迫砲於不同高度下之進行校正。且壓克力板上端附有一水準氣泡可供調整校正靶維持水平之依據,壓克力板上繪有 2 條垂直線:基準線(A 線段)與校正線(B 線段),分別供 A、B 瞄準具之十字刻劃標定使用。

以國軍120 迫砲為例:根據聯勤402 兵工廠所量測之數據,火砲瞄準具視軸線位置與砲身軸線之距離為21.3公分;故火砲校正靶上基準線與校正線兩者相距亦設計為21.3公分;換言之,當砲身軸線和火砲瞄準具分別對到校正靶基準線與校正線時,即表示瞄準具的視軸線在正確的位置。若能量取60、81及42迫砲之瞄準具視軸線位置與砲身軸線之距離,則可分別製作各式迫砲之校正靶,供各單位火砲校正使用。

資料來源:作者自繪

伍、現行作法與雙瞄準具校正法差異性之分析:

筆者由器材、場地、天候、精度、人為因素等角度來探討現行 120(42) 迫擊砲火砲校正法與雙瞄準具校正法之差異性,分析如 下。

現行作法與雙瞄準具校正法差異性之分析					
區分	現行作法	雙瞄準具校正法			
器材	象限儀、十字起子、方向盤	十字起子 \h 瞄準具 校正靶			
場地	需大於1500公尺之開闊地且 須明顯之瞄準點	僅需 10 公尺			
夜間校正	無法實施	可實施			
天候	需天候良好 ,能見度佳	不受天候影響			
誤差與距離	誤差值隨距離而變動	誤差固定於極小值內			
操作程序	較繁複	較簡便			
人為因素	操作繁雜,人為因素影響	步驟簡單,人為因素影響 較小			
	較大				

陸、結論:

綜觀砲兵現行火砲校正法中,以校正靶法之精度最高。校正靶法係依據各式火砲之瞄準具和砲身軸線的位置,定出校正靶的規格。因此,當各式火砲之瞄準具和砲身軸線對到各式火砲校正靶的刻線時,即表示瞄準裝置的視軸線是在正確位置。然而,120(42)迫砲的構造與砲兵之火砲大不相同,無法直接由"後膛覘視",完成砲身軸線的標定,以致校正靶法無法應用於迫砲之方向校正。

本論文利用雙瞄準具之設置,克服上述困難,實現迫砲砲身軸線與瞄準裝置視軸線之標定。再者,本裝置上設置800密位之射角水準氣泡,當氣泡居中時砲身仰度即為800密位,可同時校正射角。且本論文亦提出適用於120(42)迫砲的校正靶,不僅適用於車、地裝迫

砲,簡化了迫砲方向校正之複雜度,亦可消除各種天候、場地之限制, 完成火砲校正,提升射擊精度,達成所望之支援效果。若能量取 60 和 81 迫砲之瞄準具視軸線位置與砲身軸線之距離,則可分別製作各 式迫砲之校正靶,供各單位火砲校正使用。