

美軍未來戰鬥系統——多功能 /通用/後勤與裝備/無人載具簡介

作者簡介

林士偉上尉,中正理工學院專31期,曾任排長、 後勤官、教官,現任職於步兵學校軍聯組聯第2小 組。

提要》》

- 一、美軍「未來戰鬥系統」——多功能(通用/後勤與裝備)無人載具為一種 重約2.5噸的地面無人載具,有運輸型、掃雷型和突擊型等3種類型。
- 二、多功能無人載具之預期作戰效能有(一)減輕人員負擔,增強部隊戰力;(二)可於污染區實施化學偵測;(三)掩護部隊實施攻堅;(四)有效支援城鎮作戰;(五)具強大反裝甲效能;(六)提供潔淨飲水,避免肇生疫病;(七)提供通信中繼,協助指揮掌握;(八)具戰鬥識別能力,減少戰場誤傷;(九)具有半自動作戰能力;(十)能實施戰場救濟。
- 三、國軍部隊人員不斷精簡,除賡續推動部隊數位化以提升戰力外,更應實施 長遠規劃,建議未來可規劃研製地面無人載具,協助實施後勤輸運、海岸 防禦、情資監偵、城鎮肅敵掃蕩等戰鬥任務,除可增強部隊作戰能力,並 能減少人員傷亡。

關鍵詞:無人載具、未來戰鬥系統、騾子

美軍未來戰鬥系統——多功能(通用

/後勤與裝備)無人載具簡介

前 言

美軍「未來戰鬥系統」(Future Combat Systems, FCS) 將由一系列先進、 網狀化之空中與地面戰鬥、戰鬥支援與戰 力維持系統所組成。該系統運用一種革命 性整合架構,以滿足未來聯合作戰與地面 部隊指揮官之要求。這些能力包含網狀化 通信、網狀化作戰、感測裝置、戰場指揮 系統、訓練平臺、有人與無人偵察監視能 力、有人與無人後勤支援力等,這些戰力 將使戰況體認與作戰效能,提升到前所未 有的同步化程度❶。美軍在《聯合作戰後 勤支援教則》中明確指出一個部隊在沒有 後勤支援時,將無法持續作戰,且沒有能 力完成任務②;為使基層部隊能獲得持續 戰力,美軍在「未來戰鬥系統」發展時, 也相當重視後勤戰力之規劃。本文即針對 美軍之多功能(通用/後勤與裝備)無人 載具發展與戰鬥效能實施探討,俾供建軍 備戰參考。

緣 起

1944年美軍登陸諾曼第時,步兵背負 36公斤的裝備,從登陸艇躍入波濤洶湧 的奥哈瑪海灘時,部分士兵因沉重裝備進 水後更加吃重的因素, 導致體力衰竭而溺 斃,縱使勉強上岸卻已體力不支。1983 年美軍在格瑞那達戰役中, 步兵深受負荷 過重之苦,尤其在長途行軍後,有些人每 跑10碼就要休息一次3。隨著科技不斷發 展,美軍單兵配賦的裝備越多,在2002年 阿富汗戰爭中,士兵平均每人負重47公斤 母,在2003年第二次波灣戰爭中,士兵攜 帶近50公斤個人武器裝備投入戰場每。此 一趨勢顯示高科技戰爭,士兵固然因為科 技之運用,得以增加戰力,提高戰場存活 率,相對的個人武器裝具之攜行,已有超 出人體負荷之現象,如未能妥善解除隨身 裝具過重的問題,高科技的武器裝具,不 但不能發揮應有的功能,反而有降低作戰 效能之虞。為解決此一潛在問題,並減輕 士兵負擔,美軍除開發塑膠彈藥6、利用 高科技合金減輕裝備重量外,並積極研發 多功能(通用/後勤與裝備)無人載具, 以協助士兵載運裝備減輕其負擔,使連

註❶: 黃淑芬譯, 〈未來戰鬥系統 —— 推向現有部隊走向未來〉《國防譯粹》,第33卷第2期,民國95年2月,頁89。

註②: 李成禎譯,《美軍聯戰準則4-0,聯合作戰後勤支援教則》(臺北:國防部參謀本部作戰及計畫參謀次長室聯合作戰演訓中心,民國94年11月16日),頁37。

註❸: 祈先覺,〈從第二次波灣戰爭美軍個人負重,探討陸軍部隊訓練〉《步兵學術季刊》,第210期,民國 92年4月1日,頁3~4。

註❹:中國公眾科技網,〈未來單兵裝備發展方向〉,http://arm.cpst.net.cn/zbdg/2002_06/1025078150.html

註**⑤**: 古是三春,宋一之譯,〈伊拉克地面與裝甲部隊〉《國防譯粹》,第30卷第4期,民國92年11月1日, 頁3~4。

註**6**: Cetin網,〈美國陸軍為"目標部隊"開發輕兵器用塑膠彈藥〉,http://express.cetin.net.cn:8080/cetin2/servlet/cetin/action/HtmlDocumentAction;jsessionid=4F5BDEA60F2226FECACB6E22497D1EC8?baseid=108&docno=16353

級部隊能自主、適時調動後勤資源,擴大其戰場範圍及作戰持續力,以利戰鬥遂行⑦。同時可以協助部隊於城鎮戰中執行突擊與掃雷任務,減少人員傷亡。

多功能(通用/後勤與 裝備)無人載具簡介

多功能(通用/後勤與 裝備)無人載具(Multifunction Utility/Logistics Equipment, MULE , 簡稱多功能無人載具, 三軍稱 為「騾子」)(如圖一),它是一 種2.5噸重的無人駕駛地面載具, 用於支援徒步步兵作戰行動。它由 機動平臺或通用底盤、自主導航系 統、操作人員控制系統和3種任務 設備組件等4部分組成。採油電混 合驅動,每側各有3個路輪,而每 個路輪的輪轂內均裝有獨立的伺服 馬達,讓整顆路輪可以繞著輪軸軸 心360度轉動,以通過或攀越各種 地形障礙(如圖二)。共用機動 平臺並配有中央輪胎充氣系統, 可配合地形或在輪胎中彈時調整 胎壓。

自主導航系統是一套任務負載組件, 能夠裝配在多功能/後勤與裝備載具和 戰鬥機械載具上;使它們具備半自主作戰 能力;還能夠裝配在系列有人駕駛地面車 輛上,對其他無人駕駛地面載具有導引作 用。另其機動平臺搭配模組化任務設備組 件(Mission Equipment Package,MEP),就

圖一 FCS系統中的多功能/無人載具構想圖

資料來源: http://jczs.sina.com.cn/p/2006-01-23/0745346287.html

圖二 美軍多功能/後勤與裝備無人載具越障驗證

資料來源:http://www.fyjs.cn/bbs/htm_data/26/0806/146662.html

可執行其他作戰任務。「騾子」可由軍用 旋翼機吊運,它有3種類型:運輸型、掃 雷型和突擊型;三者的底盤通用③,其諸 元與性能如附表一。簡介如後:

一、運輸型「騾子」

安裝在運輸型「騾子」的任務設備 組件包括有3種MEP套件,有自主導航系

註 ⑦: 同註 ②, 頁 61。

註❸:新浪網,〈美國陸軍FCS載人戰鬥系統>,http://jczs.sina.com.cn/p/2006-01-23/0745346283.html

美軍未來戰鬥系統——多功能 (通用

/後勤與裝備)無人載具簡介

附表一 美軍多功能無人載具諸元及性能

型式	諸元性	.能	諸元 (任務套件)	性能	備考
運	輸	型	可折疊/可移除式側邊 欄杆、多功能基座與束 縛裝置、外接電源插座 及整合式飲水儲存、配 送與轉移系統	可運輸874公斤的裝備,未來可提升至1,342公斤。擁有良好的機動性和穩定性,能伴隨徒步部隊通過複雜的地形。	
掃	歌	型	統、感測器陣列部署次系統、地雷感測器組、	採用外覆式橡膠履帶,將6個輪胎包覆起來,使其看起來似一種履帶式車輛,履帶每平方公分的接地壓力將小於140公克,可避免不慎引爆地雷。	可清掃雷型、 數量、 動間等數據待 查。
突	擊	型	可連續360度旋轉的小型 砲塔、武器/感測器穩 定系統、2座雙聯裝「標 槍」飛彈發射器、40榴 彈槍、同軸機槍、突擊 感測器組。	能運用車載火力,如40榴彈槍 、同軸機槍、小型砲塔,掩護 步兵班、排前進;且可適時提 供彈藥支援,以利攻堅任務遂 行,並具強大反裝甲能力。	
說		明 三種型式之「騾子」均具備的共用供應裝備,計有主導航系統、戰鬥識別 感測器相列天線與化學戰劑偵測系統。			

資料來源:一、張立德,〈能載又能打的「騾子」——MULE多功能通用/後勤與裝備無人載具〉《尖 端科技》,第260期,2006年4月1日,頁17。

- 二、王軍,〈吃苦耐勞的「騾子」〉《坦克裝甲車輛》,2006年,第7期,http:// www.51dh.net/magazine/article/1001-8778/2006/07/372393.html
- 三、〈正在研製中的無人駕駛地面車輛UGV〉《美陸軍雜誌》,2005年7月號,頁23。

統、戰鬥識別感測器與相列天線、化學戰 劑偵測系統。其他尚包括:可折疊/可移 除式側邊欄杆、多功能基座與束縛裝置、 外接電源插座及整合式飲水儲存、配送 與轉移系統等❷。運輸型「騾子」可運輸 874公斤的裝備(如圖三),相當於運載2 個步兵班進行24小時作戰所需的裝備、重 武器及額外的食物與飲用水。待未來「共

用機動平臺」重量提升至3噸時,載重能 力還可進一步提升至1,342公斤●;它的 高機動平臺是特別設計的,以滿足「未 來部隊」士兵徒步軍事行動需要。平臺 將能夠翻越至少1.5公尺高的高牆,跨過 1.5公尺寬的壕溝,橫越懸空超過40%車 身的道路, 涉水深度大於1.25公尺, 擁有 良好的機動性和穩定性,能伴隨徒步部隊

註❸:張立德,〈能載又能打的「騾子」——MULE多功能通用/後勤與裝備無人載具〉《尖端科技》,第 260期,2006年4月1日,頁17。

註❶:王軍,〈吃苦耐勞的「騾子」〉《坦克裝甲車輛》,2006年,第7期,http://www.51dh.net/magazine/ article/1001-8778/2006/07/372393.html

通過複雜的地形(如圖四),如 越過岩石和廢墟路面,通過城鎮 內阻絕路障⑪,且亦適合支援傷 亡人員撤離戰場。

二、掃雷型「騾子」

掃雷型「騾子」專用的任務 裝備組件為「地面地雷偵測系 統」,包括:化學戰劑偵測系 統、固定式地雷偵測感應系統、 感 測 器 陣 列 部 署 次 系 統 、 地 雷 感測器組、(偵雷)通道標定次系 統等。掃雷型「騾子」的輪胎與 其他兩種「騾子」不同,它採用 外覆式橡膠履帶,將6個輪胎包 覆起來,使其看起來似一種履帶 式車輛,履帶每平方公分的接地 壓力將小於140公克,可避免不 慎引爆地雷。另外,掃雷型「騾 子」車身也可防禦砲彈碎片與輕 兵器射擊,以便能在敵人砲火之 下作業№。

三、突擊型「騾子」

圖三 運輸型「騾子」能運輸874公斤的裝備 資料來源: http://www.fyjs.cn/bbs/htm data/26/0806/146662.Html

圖四 運輸型「騾子」具有越野性能 資料來源: http://www.fyjs.cn/bbs/htm_data/26/0806/146662.Html

註❶:〈正在研製中的無人駕駛地面車輛UGV〉《美陸軍雜誌》,2005年7月號,頁23。

註(B): 同註(B)。 註(B): 同註(B)。

美軍未來戰鬥系統——多功能(通用

/後勤與裝備)無人載具簡介

動目標識別系統)。在支援突擊攻堅時, 車身側邊可防護迫砲彈片與輕兵器射擊 **1**4 °

多功能無人載具之作戰效能

一、減輕人員負擔,增強部隊戰力

現代的戰爭,為減少人員傷亡與透明 戰場,單兵個人攜帶裝備越趨多樣化, 重量一直持續增加,對作戰人員是一沉重 負擔。運輸型「騾子」可負載2個步兵班 (半個步兵排)實施24小時戰鬥時,所需 的武器裝備、彈藥,使人員不再因背負過 重裝備而影響戰力,增強部隊戰力之持續 / 。

二、可於污染區實施化學偵測

遭敵化學戰劑攻擊對作戰心理影響極 大。在核生化環境下,戰鬥人員為確保 生命安全, 將穿著全身防護裝備進行戰

門,以致部隊戰力大幅下降。 化學 戰劑污染區若派遣人員實施偵檢與 消除,不但耗費時間而且人員易遭 敵火力危害。「騾子」裝備有化學 戰劑偵測系統,可於無人狀況下, 遥控車輛進入污染區,避免偵檢人 員傷亡,迅速、準確的偵測出毒劑 種類、濃度與污染範圍等, 俾採取 有利之戰術行動。

三、掩護部隊實施攻堅

「騾子」側邊可防護迫砲彈片 與輕兵器射擊,住民地戰鬥時可提 供步兵部隊攻堅時之掩護,並能運 用車載火力,如40榴彈槍、同軸 機槍,掩護步兵班、排前進,及適 時提供彈藥支援,以利攻堅任務遂

行,減少人員傷亡(如圖五)。

四、有效支援城鎮作戰

城鎮地區地形複雜,防禦方易於隱蔽 與掩蔽,且利用熟悉地形之利,不斷實 施伏擊性襲擊行動,常令攻擊兵部隊遭 致較大之傷亡。另城鎮中倒塌的建築物 與樹木、瓦礫、碎玻璃等,易形成車輛 行駛障礙,促使步兵作戰人員提早下車投 入戰鬥,在缺少火力掩護下,較易造成傷 亡。「騾子」良好的機動性和穩定性,可 輕易越過障礙,有效支援城鎮作戰,掃 雷型「騾子」可於部隊攻堅前,先行實 施探測雷區、標明雷區位置, 及先期化 學污染偵測等任務,增加步兵的安全和 機動性,確保後續部隊行動安全; 突擊 型「騾子」可利用本身配置之火力,如 「標槍」飛彈發射器、40榴彈槍、同軸 機槍等, 掩護步兵部隊實施攻堅戰鬥;

圖 五 多功能 (通用/後勤與裝備) 載具能掩護部隊 實施攻堅

資料來源:http://www.fyjs.cn/bbs/htm_data/26/0806/146662.Htmlhtml

註(1):同註(1)。

運輸型「騾子」可載運後勤物資,提供部隊作戰持續力。

五、具強大反裝甲效能

一般而言,基層步兵部隊主要反裝甲武器為單兵攜行式反裝甲武器,射程短、機動性差,反裝甲效能受限。突擊型「騾子」裝備有2座雙聯裝「標槍」飛彈發射器,使基層部隊具有射程遠與機動力佳之反裝甲武器。

六、提供潔淨飲水,避免肇生疫病

七、提供通信中繼,協助指揮掌握

「作戰靠指揮、指揮靠通信」,作戰之成敗以及指揮官能否有效的掌握部隊, 主賴靈活而有效之通信。基層部隊之通信 裝備通常功率較小,通信距離相對也較 短,且易受地障影響,通信效能常受限 制。運輸型「騾子」裝備有相列天線,可 提供基層部隊通信中繼,延伸通信距離, 有利部隊指揮掌握。

八、具戰鬥識別能力,減少戰場誤傷

現代的戰爭是高科技的戰爭,武器較已往快速與精準,但誤傷事件依舊發生。第二次波灣戰爭中,由於誤傷,美英聯軍共有30多人死亡,幾乎占全部傷失並動的20%,還有60多人受傷動,顯示出高科技武器存在的諸多缺陷。「騾子」裝備有先進的友軍追蹤系統⑩(戰鬥識別感測器),能即時辨別出敵我,有效防制戰場誤傷。

九、具有半自動作戰能力

美國陸軍迄今所用的無人載具,不論有無武裝都是以遙控為主,換言之,就是必須由士兵來作最後決定;但是多功能無人載具可自主行駛,或由人員在後方遙控作戰,具一定程度內之半自動作戰能力仍。

十、能實施戰場救濟

當連隊作戰車輛、裝備損壞時,「騾子」可將故障車輛或戰損裝備拖至安全 地帶、拖離主要道路或修理場所(如圖 六),避免主要道路阻塞,影響部隊機 動之順暢。

多功能無人載具的未來發展

後勤與裝備無人載具已具備載運士兵裝備、協助小部隊攻堅、掃雷、反裝甲、

註**⑥**:培森,〈伊戰持續44天美軍空中力量投入多少〉,http://www.gf81.com.cn/11/11_25_19.htm

註**⑥**:利用L波段超視距衛星中繼站建立追蹤網絡,經由雙向訊息傳遞,對友軍實施定位追蹤,從而降低錯誤 識別目標之機率。

註❶: 黃偉傑, 〈自由伊拉克作戰檢討報告-輪車與無人載具〉《全球防衛誌》,第254期,2005年10月, http://www.diic.com.tw/mag/mag254/254-52.htm。

美軍未來戰鬥系統——多功能(通用

/後勤與裝備)無人載具簡介

戰場救濟等作戰效能,然美軍並不以此為 滿足,未來將透過螺旋式發展方式持續改 良,其開放式架構設計更有利於未來新技 術的引進。它未來可能發展的附加功能 有:改裝成戰地應急救護車,以強化第 一線部隊傷員後送能力;以其運輸力、 火力支援能力、半自動作戰能力,作為 基地與補給站巡邏使用,降低人員巡邏任 務時,遭受應急爆炸裝置之傷害;架設無 線網路●,使其能將未來戰鬥系統的各個 次系統鏈結在一起,發展並分享共同作戰 圖像,強化橫向與縱向的協同作為,有效 發揮統合戰力。另現行後勤與裝備無人 載具在核生化偵測能力方面,僅裝備有 化學戰劑偵測系統,缺乏核子與生物戰 劑偵測能力,判斷未來將加裝核子與生物 偵測系統,以完善其於污染地區之作戰能 力。

對我之啟示

一、無人載具協助基層部隊作戰為未來趨 勢

美軍新數位化部隊史崔克旅編制人 數約為3.800人,與傳統旅相當,而美軍 未來作戰行動單位規劃編制人數約2.500 ~3.000人,不足人數將裝備1.700具無人 載具與設備予以補足®,人數雖然減少近 1/4,但由於無人載具的加入,戰力反而 更強大。

二、減少單兵負重,可增進部隊戰力

一個士兵所攜帶之裝備必須能應付各 種可能發生的狀況,故單兵裝備負荷沉

> 重,美國陸軍作戰發展中 心曾蒐集與分析第二次世 界大戰與韓戰中,有關步 兵負重的統計數值,其結論 是:負荷量對士兵作戰的表 現有直接影響,在規定的負 荷量下,他們機動力降至令 人無法接受的程度20。如何 減少單兵負重, 已為各國研 究重點,高科技的確能將裝 備重量減輕,但為增強步兵 戰力,提升存活率,又增加 新式裝備,如夜視裝備、單 兵通信裝備等,重量不減反 增,使現代士兵負荷過重。 美軍發展之多功能無人載具

圖六 多功能(通用/後勤與裝備)載具實施戰場救濟驗證 資料來源:http://www.fyjs.cn/bbs/htm data/26/0806/146662.html

註18:同註9,頁18。

註❶:大饅頭,〈未來作戰系統FCS〉《全球防衛雜誌》,第252期,2005年8月1日,頁90。

註⑩:同註6,頁6。

三、裝備設計採模組化設計,減少後勤負 擔

多功能無人載具採模組化設計,以共 同機動平臺搭配模組化任務裝備組件, 執行運輸、掃雷、突擊等任務;模組化 設計能減少研發經費,同時能減低後勤 負擔。未來國軍研發各式裝備時,也應 以模組化為設計主體,搭配不同組件,便 能執行各種戰術任務;如此,可節約訓練 成本與週期,且可降低基層維修人員負 擔。

多功能無人載具系統本軍適用 可行性評估與建議

一、可行性評估

根據敵情研析,現今共軍建有2個兩 棲機械化步兵師,其海軍陸戰隊亦已機械 化,並積極推動步兵部隊機械化,顯見其 部隊已全面朝機械化發展。未來我軍防 衛作戰將面對的是共軍機械化部隊,其 火力凶猛、行動快速,且具備防護輕兵 器射擊能力,對我地面部隊形成重大威 脅。就我地面部隊而言,除機動打擊部隊 已機械化外,其餘部隊監偵力、機動力、 防護力與火力、反裝甲能力皆不足,是為 未來建軍備戰極須補強之重點,茲將多功 能無人載具於防衛作戰適用可行性探討如 後:

一可強化監偵能力

現行連隊部隊缺乏監偵能力,當面 敵情掌握不易,易處於被動狀態,突擊 型「騾子」具有偵察、監視與目標獲得系 統,可強化連隊監偵能力;若能結合營級 配套規劃之無人機偵察系統,將能為地面 建構完整的地空偵察體系。

仁可補足地面部隊反裝甲能力之不足 地面部隊現行之反裝甲武器不足, 須仰賴作戰區反裝甲部隊支援,然現共 軍部隊已大量機械化,反裝甲部隊之 援力,已無法滿足地面部隊之需求 擊型「騾子」裝設有2座雙聯裝「標館 飛彈發射器,可對共軍海軍陸戰隊與 最機械化步兵師之主力登陸裝備M63A1 式水陸坦克、86B式兩棲步兵戰鬥車; 機 械化部隊之96式戰車、92式輪型步兵戰 輔實施摧毀性攻擊,有效達成防衛作戰使 命。

(三)地面部隊可增進作戰力

多功能無人載具具有機動力,可越 過鹽田、水稻田、損壞之道路等障礙,伴 隨地面部隊越過複雜地形,輸送所需作戰 物資,為部隊提供持續戰力。

四可彌補兵力之不足

國軍兵力不斷精簡,海岸線狹長、 道路網四通八達,守備不易,突擊型「騾 子」具有強大火力,且有半自動作戰能

註②:同註②,頁37。

美軍未來戰鬥系統——多功能(通用

/後勤與裝備)無人載具簡介

力,海岸守備時,據點可搭配突擊型「騾 子」,強化灘岸作戰攻擊力;運用於城鎮 防衛作戰時,可搭配封鎖重要道路及重要 據點之防護,另可配合城鎮守備部隊肅清 殘餘之敵。

五可強化連隊核生化防護能力

現行連隊執行核生化偵檢,須由人 員攜帶M8A1毒氣警報器、M8偵檢紙、 ANVDR2野戰輻射偵測器至污染區執 行,而多功能無人載具現裝備有化學戰 劑偵測器,未來也可加裝核子與生物偵 測儀器,人員不必深入污染區,即能偵 測出污染程度,有效提升連隊核生化防護 力。

(六)有效提升基層部隊通信力

臺灣城鎮密布,建築物密集,致部 隊通連常受限制,影響部隊指揮與掌握, 多功能無人載具裝備有相列天線,可作為 通信中繼臺,提升城鎮作戰時之部隊通信 力,以有效發揮統合戰力,摧破敵之攻 勢。

綜上所述,以臺澎防衛作戰而言,運 輸型「騾子」與突擊型「騾子」,若能 研配於基層地面部隊,可提升其監偵力、 機動力、作戰持續力、反裝甲能力、火 力、通信力與核生化防護力,而掃雷型 「騾子」較不適於防衛作戰,未來可將 其研轉為機動布雷型「騾子」,有利於 對預期或不預期突入之敵,實施機動阻 絕,使其戰力前後分離,難以統合,癱 **痪敵作戰節奏,為打擊部隊創造有利之態** 勢。

二、建議

現行國軍正隨時代潮流實施「軍事事

務變革」,人員不斷實施精簡,除賡續 建設部隊數位化以提升戰力外,更應實施 中、長遠規劃,建議未來應規劃研製多功 能無人載具(包括運輸型、突擊型與機 動佈雷型),協助執行海岸防禦、情資監 偵、反裝甲作戰、機動阻絕、城鎮肅敵掃 蕩等任務,以增強部隊作戰能力,減少人 員傷亡。

結 語

現代高度重視人命價值,英、美等 國在近幾次戰爭中追求零傷亡目標。無 人偵察機,能有效協助透明戰場,減少 傷亡,證明無人載具有其實質之效果; 隨著科技的進步,無人駕駛車輛也已納 入研發要項。據美國2001年度的《國防 授權法案》,到2015年之前,美國軍方 將有1/3的軍用地面車輛是無人駕駛的, 由此可見,無人地面車的發展歷程雖然 不長,但其未來的發展前景無可限量❷。 判斷其未來將成為步兵部隊基本配賦裝 備,有效支援基層部隊作戰物資載運、 核生化偵測、掃雷或標示地雷、反裝甲 作戰、城鎮戰鬥、通信中繼等,使部隊 能於少傷亡狀況下達成作戰任務。現今 我國之科技與國防經費,在短期內尚無 法達成此類建案構想,但仍應實施中、 長期規劃,以有效減輕步兵負重,並 能協助執行各種戰術任務,達成作戰使 命。

收件:97年7月23日

第1次修正:97年10月2日 第2次修正:97年10月9日

接受:97年11月17日

註四:同註四。