美國未來戰鬥系統 一火力分系統發展簡介

作者 步兵學校上尉教官 曾溫龍

提要》》

- 一、美國陸軍目前積極發展「非直射發射系統」(Non Line of Sight-Launching System/NLOS-LS),簡稱「網路火力」(Netfires)系統,將對美軍與全球未來作戰方式產生重大影響。
- 二、「網路火力」採用「網絡中樞」(network-centric)理念,以及模組化的設計架構,將「火力」、「輸運」、「感測」分散到一系列個別較小、較輕的載臺上,以能適時發揮機動火力支援作戰。
- 三、正值國軍建構未來新一代兵力之際,應整合射擊平臺、監偵系統與資傳系統,並發展智能化彈藥,加強武器系統的互通性,提高武器反應速度及精 準打擊能力,以有效支援地面部隊作戰。

關鍵詞:網絡中樞、網路火力、未來戰鬥系統、非直射發射系統

前 言

美陸軍之「未來戰鬥系統」(Future Combat Systems,FCS)乃是「由多系統組成的革命系統」(revolutionary system of

system),並將成為美陸軍2020年「目標兵力」的作戰基礎。其是由美陸軍與美國「國防先進研究計畫署」(Defense Advanced Research Projects Agency, DARPA)負責發展的系統,包括未來戰

科技新知

美國未來戰鬥系統

-火力分系統發展簡介

鬥載具、未來地面戰鬥系統、多任務戰鬥 系統與火力分系統等,並由後者主導❶。 FCS是以網狀化理念為基礎所設計的,由 多種系統集成的高度資訊化武器系統,係 由18個核心次系統包括1種自主性地面感 測裝置、2種非視線發射系統、3種無人駕 駛地面載具、4種建制無人機與8種有人駕 駛地面車輛❷。本文旨在探討美陸軍「未 來戰鬥系統」之火力分系統發展與戰鬥效 能,提供國軍幹部新視野,啟發新思維。

美軍「未來戰鬥系統」 ——火力分系統發展

美陸軍已全面規劃將全軍網路化,以 便將地理分散的作戰要素連接起來,有 效發揮統合戰力。由於網路科技發展, 使指揮官更能藉由數位化裝備,有效指 揮掌握部隊,加上部隊機甲化,機動轉 换快速,使得部隊作戰縱深較以往有數倍 增長。美軍針對其未來的旅級戰鬥群,所 規劃的作戰範圍高達50公里。美軍無論 在現有或研發中的管型火砲系統,均無 法在這麼遼闊的正面上,提供有效的密 接支援火力,也缺乏提供縱深支援所需 的射程與精度。因此,從1997年展開「網 路火力」的研發工作,原先名為「先進 火力支援系統」(Advanced Fire Support System/AFSS),後才改名為「非直射發 射系統」。此系統乃為滿足美國陸軍「目 標兵力」的規劃需求而發展,它率先採用 「網絡中樞」(network-centric)理念, 應用模組化的架構,將原本集中在少數 幾種較大、較重型武器的主要戰術功能, 分散到一系列載臺較小、較輕的系統上, 以一套精準導引的火力支援系統,提供 對長程、點目標的有效攻擊能力3,以支 援其地面部隊作戰。在此系統發展方面, 已於2001年完全併入FCS的整體發展規劃 之中。2003年度的研發經費有一半用於發 展指揮管制技術架構,另外的5.700萬美 元則用於發展該系統所屬飛彈的雛形❹。 美聯合防衛公司已在2003年開始製造「非 直射火砲系統」試驗車輛,並在同年8月 實施試射,2005年4月已試射1.000發,預 計「網路火力」系統第一批3輛樣車將於 2008年出廠;2010年第二批3輛樣車將採 用有人地面車輛的標準底盤6。美國陸軍 計畫在2010年開始部署非直射發射系統, 並可能會購買900套箱式發射箱和3萬枚巡 弋攻擊飛彈和精確攻擊飛彈6。

註❶:Scott R. Gourley,余忠勇譯,〈未來戰鬥系統〉《國防譯粹》,第27卷第11期,民國89年11月1日,頁

註❷:嶽松堂,〈美陸軍未來戰鬥系統的18個分系統〉《現代軍事》,第336期,2005年1月1日,頁21~24。

註❸:幼獅網站,〈美國陸軍未來戰鬥系統——網路火力〉,http://www.youth.com.tw/joanna/Military/ M93.03.08-C.htm

註❹:軍事新聞網,〈網路火力美陸軍未來戰鬥系統〉,http://news.gpwb.gov.tw/Prosubpage.asp?DPT= %B7s%BBD%B1M%C3D&DBT=%ADx%AAZ%A4j%C6[&Nno=325

註❺:鍾振才,〈美陸軍未來戰鬥系統〉《國外坦克》,第330期,2006年6月1日,頁23~24。

註❻:林海,〈網路時代武器新概念——網路火力精確打擊系統〉《中國航太》,第6期,2004年,,http:// www.space.cetin.net.cn/docs/ht0406/ht0406ddwq01.htm

「網路火力」系統簡介

「網路火力」也稱非直射發射系統 (NLOS-LS),是美國陸軍「未來戰鬥系 統」(FCS)的火力支援規劃系統。該計畫 由美國「國防先進研究計畫署」(DARPA) 負責管理,由洛馬和雷聲兩家廠商進行 實際設計、研發與測試及驗證等事項。 系統由洛馬公司的巡弋攻擊飛彈(LAM)、 雷聲公司的精確攻擊飛彈(PAM)、箱式發 射單元(C/LU)以及嵌入「未來戰鬥系統」 的指揮、管制、通信、電腦、偵察、資訊 與監視,可用高機動性多用途輪式車輛運 輸。巡弋攻擊飛彈和精確攻擊飛彈系統 (C⁴ISR)的數位化系統組成。箱式發射單 元由兩家公司聯合研製具有對各種威脅目 標的高毀傷攻擊能力。「網路火力」系統 的基本設計需求是能夠攻擊整個作戰區域 的靜止和運動目標。發射後,精確攻擊飛 彈直接飛向準備打擊的目標,而巡弋攻擊 飛彈可在戰場上空巡弋,直到發現它能打 擊的目標,再進行攻擊與壓制行動,以有 效支援作戰行動。「網路火力」系統又被 稱為「箱裝飛彈」②,茲將該系統介紹如 下:

一、發射系統

採用車輛獨立設計,可裝載於「目標部隊」的各式有人與無人駕駛平臺、悍馬戰甲車、水準臺架上或直接放置於地面上和水上船艦上發射,具有無人遙控發射能力;每個發射箱由4×4的16個發射管組成,其中15個裝飛彈,1個裝發射/控制

電子裝置及獨立的供電系統,可進行再裝 填;飛彈在包裝箱中密封儲存,垂直發射 8;飛彈及發射管制採用「網絡中樞」進 行分配與管制。作為「未來戰鬥系統」網 戰化作戰的一個分系統, 箱式發射系統可 向「未來戰鬥系統」的網路火力,提供共 用目標數據圖像,同時還提供可發射攻擊 彈藥數量,精算攻擊能力與效能。非直射 發射系統具有相當靈活可變性,可影響與 整合不同層級指揮機構的射擊指令,或是 來自感測器與第一線觀測員的攻擊命令, 同時可藉由與「未來戰鬥系統」網路的互 聯,即時對攻擊目標的方位進行調整與更 正,使飛行中的飛彈能夠重新被導引,以 打擊更高價值目標。箱式發射系統的彈藥 在未發射完之前,具有獨立且長時間保護 能力,可不需要操作人員或後勤支援。當 置於運輸平臺時,並不需要與運輸車輛相 連接,如果箱式發射系統的能量不足,能 即時藉由北約標準轉換器從主機車上獲得 補給能量⑨,使火力支援力能不中斷,有 效壓制敵作戰火力。

二、滯空攻擊飛彈

此系統是一種一次性使用的巡弋攻擊 飛彈,直徑178公厘,長152公厘,重約45 公斤,射程70公里;採用具有自動目標識 別能力的雷射導引彈頭,可實施大範圍搜 索;採用微型渦噴發動機,可進行30分 鐘的巡弋飛行;採用網路技術的箱式發射 單元和飛彈機動/控制單元;可以改變方 向,進行目標捕獲和傳送圖像資料鏈。飛 彈採用的雷射雷達導引彈頭能將即時的資

註**7**:同註**6**。 註**8**:同註**6**。

註9:李偉,〈非直射發射系統〉《國外坦克》,第330期,2006年6月1日,頁33。

科技新知

美國未來戰鬥系統

-火力分系統發展簡介

訊和圖像傳輸給地面管制站。雷射雷達將 確保發現與識別目標的精度,降低連帶毀 傷。飛彈配用多功能彈頭部,可用於攻擊 輕型裝甲目標和軟目標。操作人員可將任 務資料登錄至飛彈上,或在飛彈飛行過程 中變更攻擊資訊。若須執行戰鬥毀傷評估 任務,巡弋攻擊飛彈即會有一段「滯空時 間」,並在此時向地面站發送攻擊後之圖 像,有助於提高再次打擊的精度⑩。由於 具有單砲多發同時彈著能力和極高的持續 射速,所以使用少量的火砲平臺,便可對 目標產生巨大毀傷效果。

三、精準攻擊飛彈

此為一種低成本直接攻擊飛彈,直徑 178公厘,長152公厘,重約45公斤,射程 40~60公里;採用推力可變的固體火箭發 動機、雙模精確末段導引彈頭(或非致冷 紅外線導引彈頭)及大型多模彈頭,主用 於攻擊戰車等高價值目標;具有目標感測 單元網路。精確攻擊飛彈可經由資料鏈與 戰術網路鏈結,在飛行中可獲得及時更新 資訊。該彈在發射後仍可重新設定攻擊目 標,或傳送用於目標比對的影像。精確攻 擊飛彈採用的針閥式發動機,是一種推力 可變的固體燃料火箭發動機,為飛彈提 供可變化的毀傷概率。飛彈配裝多功能彈 頭,用於攻擊重型裝甲目標或者軟目標。 發射前,飛彈已接收到有關目標位置、特 性等資訊,並利用具有高度抗干擾能力的 GPS/INS 導航飛行到目標的原始位置。此 時,操作人員通過雙向資料鏈結,將活動 目標移動資訊傳送給飛行中之飛彈,使飛 彈能攻擊運動中的目標❶,具有反應快速 及時,可靠性、精度、持續射速和殺傷率 高,能在全天候、全地形條件下對遠距離 目標實施連續打擊能力。

「網路火力」系統 預期戰鬥效能

一、部署容易,機動力強

每套「網路火力」系統全重2,850磅 (1.295公斤),可用悍馬車以上的任何 載重車底盤做為機動工具, 戰術機動性良 好,且不受載臺限制。該系統可以C-130 運輸機空運,戰略機動力強。以悍馬車為 載臺時,更可直接駛入駛出C-130貨艙, 裝卸極為便利⑩。此外,它也可直接應用 在瀕海戰鬥艦上,還可由直升機空投至所 需作戰地點。另可在運輸車輛或地面陣地 上從箱式發射單元垂直發射飛彈,操作人 員無需重新瞄準即能實施全方位攻擊,特 別是在建築物密集區和叢林地區以及遮蔽 陣地上,能垂直發射使攻擊更具彈性。

二、降低後勤負擔

根據美陸軍指參學院的統計文獻資 料,輸運火砲用彈藥所需資源,大約占一 個師所有後勤需求的70%。這對於遠征作 戰中的先期進駐部隊之影響尤大。「網路 火力」系統後勤支援負擔較小,不需配備 粗重、昂貴和需大量人員的發射平臺。另 巡弋飛彈帶有先進的感測器, 具攻擊和監 視雙模式工作。

三、射程遠,攻擊精準

滯空攻擊飛彈射程可達70公里;精準

註⑩:同註6。 註①:同註6。

註⑫:同註3。

攻擊飛彈可達40~60公里,較現今之火 砲、迫砲射程遠達數倍。該系統之終端導 引採用無需冷卻的紅外線暨半主動雷射雙 模式尋標器,具有自動目標辨識(ATR) 能力。PAM飛彈透過資料鏈與戰術網 能力,在飛行中可獲得及時的資擊目標 該彈在發射後仍可重新設定攻擊師時 或傳送目標比對所用之影像,實施即改 重 前進觀測管制員或無人飛行載具(以雷射 指示器)照明目標導引,以彈性運用 調 同,增加命中目標的精度®。

四、具智慧攻擊力,有效節約彈藥

該系統基本運用概念是:LAM飛彈先行發射,接受GPS/慣性導引,飛至指定目標區上空盤旋滯留,並使用雷射雷達搜索目標。一旦發現敵蹤,即發射成本較低的PAM飛彈將目標摧毀。如果目標的優先順序高、時效性緊迫或是LAM飛彈燃料即將耗盡而墜落時,則可以LAM飛彈直接攻擊區。其具智慧攻擊能力,可判斷目標之價值性,選擇適合與適當之彈藥實施制壓與摧毀性攻擊,有效節約彈藥,提升火力支援作戰效率。

火力分系統將結合未來戰鬥系統規劃 配備之多種感測器,如將微小型無人機配 備於營或連級單位,戰鬥時可藉由此類感 測器即時掌握敵情、地形、氣候和環境條 件等問題,並能隨時掌握高價值目標,發 揮火力支援最大效能。

六、全面網狀化,有效提升火力支援效能 該火力分系統能為行動單位指揮官提 供前所未有的反應能力和殺傷能力。在支援行動單位時,能使用網路系統對目標統對單位時,能使用包括特種彈藥對點之實施精確打實施精確對點之後,其實性火力。由於此區外進域性火力。由於於是性人力。與對於於是性人力。與對於於是性人力。於對於於是一個網狀化,並藉由戰場管理,統對是於時間大幅縮短,有效提升火力支援效能。

對我之啟示

美軍向來為全球部隊之先驅,藉由不 斷檢討作戰經驗,提升其作戰力,如其 為最早體驗以「空間換取時間」的思維逐 漸過時,戰爭將朝「以速度爭取時間」、 「以時間掌握空間」的方向來發展,於是 積極建構數位化部隊。在近幾次戰爭中, 美軍憑藉著數位化變革所展現的軍事力 量,創造出輝煌戰果,不僅出平世人之意 料,也遠超過美軍自己戰前預期。各國有 鑑於此,也全力投入「軍事事務革命」, 期能集「指揮、管制、通信、資訊、情 報、監視、偵察」於一體,使作戰反應 速度有效提升。美軍為持續維持其戰力優 勢,又不斷研發新式武器,建立「小而 精、反應快、效率高」之精準打擊戰力, 提升地面部隊效能戰力。現今美軍已在 驗證未來作戰系統,該系統之火力分系統 已見雛形,其未來作戰效應對我之啟示如 下:

一、射程增遠化為必然趨勢

註**B**:同註**3**。 註**Q**:同註**3**。

科技新知

美國未來戰鬥系統

-火力分系統發展簡介

火力支援系統係追求以研製射程更 遠、精度更高、殺傷力更大之武器。近年 來隨科技發展,火(迫)砲之射擊距離也 越增遠化,與1970年代比較,目前砲兵裝 備的有效射程和射高一般增加30%圓,未 來將朝視距外發展,運用武器射程上的優 勢,以非接觸的方式對敵進行火力打擊。 這種打擊方式不僅可有效地減少自身傷 亡,且具有較高的作戰效費比。面對未來 之戰爭,我應密切注意中共火(迫)砲系 統之射程增遠發展,並積極提升我地面部 隊火力支援系統射程,以有效壓制敵火力 攻擊。

二、火力自動化大勢所趨

從第一次波灣戰爭、科索沃戰爭、第 二次波灣戰爭證明,盟軍火力支援係以數 位化資訊技術貫穿整個戰場,使武器裝備 產生橫向技術協通合作,形成整體作戰, 以取得戰場優勢。作戰部隊可藉由各監偵 系統獲得情資,經過判斷分析,指揮官確 定攻擊目標後,再結合全球定位系統與精 密火力武器系統等實施攻擊,可立即摧毀 所望目標,攻擊過後,可即時實施偵察, 若未達所望效果,可再實施攻擊,直至摧 毀目標為止。中共近年來不斷增加國防經 費,持續建構其火力支援武器系統數位化 發展,提升火力效能,故我應賡續推動迫 砲自動化,期能以精確、快速之火力,支 援地面部隊達成作戰任務。

三、智能化武器將主宰未來戰場

未來戰鬥系統之火力分系統,本身即 具有監控與攻擊能力,已屬智能化之火力

系統,未來作戰時將能夠實現「點對點」 攻擊與摧毀效果,即一個武器平臺發射多 枚飛彈準確擊毀與監控多個目標。智慧化 指揮控制將能夠實現在最有利的時間、地 點集中各種作戰力量,合理有效地打擊 敵方。因此,智慧化作戰將使「集中」、 「機動」的內涵變新。變集中兵力、火力 為集中戰鬥力效能;變兵力機動為火力機 動,使未來作戰向精確化、靈巧化、節約 化方向發展❶。現正值我建構未來新一代 兵力,我應整合射擊平臺、監偵系統與資 傳系統, 並發展智能化彈藥, 將火力系統 朝智能化發展,使火力系統具備戰場全縱 深準確打擊敵人能力。

結 語

美軍研製非直射火砲,主在運用反應 靈活的火力,支援FCS協同兵種營、連部 隊的作戰行動。每發砲彈均可提供不同 的作戰效果,因而具有靈活的火力支援 能力,期能在遠程和近戰中壓制並消滅 敵軍及其系統。現我步兵(機、裝步)部 隊火力支援仍是以迫擊砲為主,不論在射 程、精準度與即時支援能力上都與美軍 規劃之「網路火力」系統有極大差距, 建議應藉新一代甲車發展之際,提升步 兵(機、裝步)營火力支援武器效能,並 賡續建構網狀化作戰基礎建設,以實現從 具體的武器系統到不同層次級別的作戰體 系之間,形成一個有機整體,加強武器系 統的互通,提高武器反應速度及精準打擊 能力。

註❶:陸寧,〈當今砲兵裝備發展的主旋律〉,中國工程技術資訊網,http://home.cetin.net.cn/storage/cetin2/pl/ pl1/zb-79.htm

註❶:劉愛民,〈智能化作戰向我們走來〉,解放軍報網,http://www.pladaily.com.cn/site1/big5/jsslpdjs/2005-01/13/content_117767.htm