

Malignant Peripheral Nerve Sheath Tumor (MPNST) Involving the Sacrum

Jiann-Her Lin, Chi-Hsieh Lu, Tong-Han Tsai, and Hsin-I Ma*

Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China

Peripheral nerve sheath tumor (PNST) involving the sacrum occurs rarely, and malignant PNST is even rarer. These tumors are usually of considerable size at the time of diagnosis. We report on a 65-year-old woman with a rare malignant PNST in the sacral region who had complained of severe right hip pain and urinary and fecal incontinence for years. The lumbar magnetic resonance imagines showed a large pelvic mass. The tumor mass was completely removed through the posterior approach, and the pathological report showed this to be a highly aggressive malignant PNST, which usually has a poor prognosis. We discuss the therapeutic modalities and prognosis.

Key words: malignant peripheral nerve sheath tumor, sacrum

INTRODUCTION

Nerve sheath tumors that involve the sacrum are rare¹, and comprise only a small portion of the wide variety of lesions that occur in the sacral region^{2,3}. Malignant peripheral nerve sheath tumors (MPNST) are extremely rare in this region, affecting 0.001% of the general clinic population⁴. MPNST are defined as any malignant tumor arising from or differentiating toward cells of the peripheral nerve sheath⁵. MPNST are high-grade malignant tumors⁶ comprising 5-10% of soft tissue sarcomas⁷. The symptoms depend on the anatomical location of the lesion within the sacrum, its extension, and whether it compresses or invades neighboring structures, such as the sacral nerve roots or intrapelvic organs⁸. Herein, we reported on a patient with a rare MPNST involving the sacrum.

CASE REPORT

A 65-year-old woman suffered from severe electricshocking pain over the right hip that radiated to the anterior and lateral aspect of the right lower leg for one month. She had experienced mild low back pain on and off during her fourth decade, and difficulty in defecation and urgency in

Received: August 21, 2006; Revised: November 8, 2006; Accepted: December 11, 2006

*Corresponding author: Hsin-I Ma, Department of Neurological Surgery, Tri-Service General Hospital, No, 325, Sec. 2, Cheng-Gong Road, Taipei 114, Taiwan, Republic of China. Tel:+886-2-8792-7177; Fax:+886-2-8792-7178; Email: uf004693@mail2000.com.tw

urination developed one year before this admission. She had recurrent urinary tract infections and constipation during that period. An ovary cyst was found on the right side in a routine pelvic sonography. Exploratory laparotomy performed by a gynecologist at another hospital found a large presacral mass. No definite diagnosis was reported except for fibrosis. She had not sought any medical help for more than 10 years until she developed intractable pain over the right hip that radiated to the right lower leg.

No palpable mass over the abdomen or remarkable skin lesions over the trunk and extremities were noted on physical examination. The neurological examination disclosed decreased sensation at the L5 and S1 dermatomes, decreased deep tendon reflex, and bilateral weakness in dorsiflexion of the big toes and plantar flexion. The anal tone appeared flaccid and saddle anesthesia presented.

The plain radiograph demonstrated an osteolytic lesion associated with enlarged sacral foramina and remodeled sacrum bony structure (Fig. 1). MR imaging identified a large, intense, enhanced soft tissue mass involving the sacral body measuring $15.3 \times 12.3 \times 10$ cm. The tumor extended posteriorly to the lumbar spinal canal and lamina (Fig. 2A) and protruded into the presacral and pelvic cavity, causing compression and displacement of the uterus and urinary bladder anteriorly, and the retrosigmoid colon left laterally (Fig. 2B). The sacral mass appeared as a Ushape on the sagittal MR imaging and contained internal areas of necrosis (or cysts). The large tumor was destroying the entire sacrum and only the distal coccyx remained.

A posterior approach was taken through a reverse Ushaped incision to avoid the risk of wound infection from the anus. After sacral laminectomy, the tumor was re-

Fig. 1 An anterior-posterior plain radiograph of the pelvis demonstrating an osteolytic lesion enlarging the sacral foramina and remodeling the sacrum bony structure.

moved meticulously, with special care taken to remove the intraspinal canal portion of the tumor to preserve as much of the nerve roots as possible. Near total resection of the intrapelvic portion of tumor was carried out. To preserve function and avoid the need for a colostomy, a small part of the tumor adhering to the rectum was left. The pathological report showed a neurofibroma with focal malignant change. Microscopically, the tumor grew in a fasciculated pattern of tightly packed hyperchromatic spindle cells with abundant, faintly eosinophilic cytoplasm in alternating loose and dense cellular areas (Fig. 3A). The tumor also showed mild pleomorphism, the presence of collagen by immunoreactivity to Masson stain, and a focally increased mitotic index (Fig. 3B). MPNST was diagnosed. The patient reported great relief of her right hip pain after the operation. She did not complain of urgency or frequency of urination anymore, but her anal tone remained flaccid, possibly because of long-term nerve injury. She walked normally without sensory or motor deficits. A course of radiotherapy with 4140 cGy in 23 fractions followed.

DISCUSSION

Almost two-thirds of MPNST arise from neurofibromas in patients with von Recklinghausen disease, or neurofibromatosis^{4,9,10}. The neoplasm is usually noticed around the fourth decade of life, although it may appear earlier in patients who have von Recklinghausen disease^{9,11}. The mean age of presentation of MPNST in patients with von Recklinghausen disease is 28.7 years compared with 39.7 years in patients free of this disease¹². The estimated incidence of MPNST that develop in patients with von

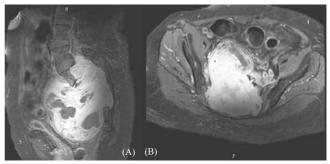


Fig. 2 (A) and (B) The T1-weighted MR imaging with contrast identified a large, intense, enhanced soft tissue mass involving the sacral body. The tumor extended posteriorly to the lumbar spinal canal and lamina, and protruded into the presacral and pelvic cavity, causing compression and displacement of the uterus and urinary bladder anteriorly, and the retrosigmoid colon to the left laterally.

Recklinghausen disease is 2-5% compared with 0.001% in the general population⁴. Large- and medium-sized nerves are distinctly more prone to involvement than are small nerves. The most common sites are the buttock and thigh, the brachial plexus and upper arm, and the paraspinal region. The sciatic nerve is affected most frequently⁶.

Because of the potential space in the presacral space, tumors in the presacral and sacral regions tend to grow to a considerable size before detection. The duration of symptoms before diagnosis ranged from one month to nine years (mean, 2.6 years) in one review¹³; the mean duration of symptoms is generally 1-7 years^{1,13,14}. Clinical manifestations depend on the anatomical location of the lesion within the sacrum, the extent of the lesion, and whether it compresses or invades neighboring structures8. Histological type plays only a minor role in this issue. The most common initial symptoms of a sacral tumor are local pain because of its mass¹⁴. Neurological deficits develop as the nerve roots become increasingly compressed or even infiltrated by the tumor. The pain may radiate unilaterally or bilaterally into the buttocks, posterior thigh or leg, external genitalia, and perineum¹⁵. The natural neurological history of an expanding sacral lesion is characterized by a single but usually multiradicular sensory deficit, and at a later stage, motor deficit; involving eventually the bladder, bowel, and sexual dysfunction^{8,15}. A digital rectal examination is one of the most important physical examinations in patients with a suspected sacral mass⁸. The mass is often palpable and may help the physician narrow the differential diagnosis16.

A plain pelvic radiography provides an initial assessment. Features such as lytic lesions, distortion, expansion of the

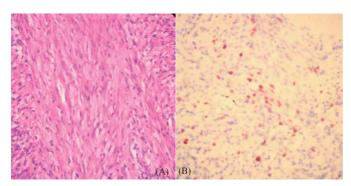


Fig. 3 (A) Hematoxylin and eosin stain of the tumor showing a fasciculated pattern of tight packed hyperchromatic spindle cells with abundant, faintly eosinophilic cytoplasm with alternating loose and dense cellular areas. (B) The Ki-67 stain showed a focal increased mitotic index.

normal sacral anatomy, enlargement of the sacral neural foramina, and abnormal calcifications are present in almost all patients. Computed tomography can help characterize the lesion further and assess its relationship with other pelvic structures. It provides the surgeon with details about bone involvement, especially when the tumor causes erosion of both the anterior and posterior sacral borders as well as expansion of the sacrum¹⁶. Peripheral nerve sheath tumors have several characteristic features on MR imaging, such as a fusiform shape, entering and exiting tails representing the host nerve^{17,18}, typically eccentrical placement, the split-fat sign¹⁹, the target sign¹⁷, and the fasicular sign. However, the enormous size, secondary bone involvement, and potential space in the sacral area cause sacral or presacral peripheral nerve sheath tumors to have different features on MR imaging. Sacral nerve sheath tumors are large, eccentric, well-defined heterogeneous, enhancing masses^{1,3}. Degenerative changes, such as cystic formation, hemorrhage, necrosis, and calcification¹, are known as "ancient changes" in the histological literature²⁰. These features are common in schwannomas but rare in neurofibromas. In addition, only 30% of neurofibromas have a pseudocapsule, which is often visible in schwannonmas³. Large size (> 5 cm), heterogeneity, satellite lesion, and lack of pseudocapsule are more suggestive of MPNST, but they could also be present in benign tumors. Further biopsy is needed to differentiate these tumors.

According to the history and physical examination, our patient did not have von Recklinghausen disease. The disease has a 20-year latency from the initial onset of symptoms to definite diagnosis. At the time of admission, the tumor had grown to a large size and had caused neurological deficits. Large size, heterogeneous enhancement, and lack of a pseudocapsule presented in the radio-

logical studies and suggested that the tumor was malignant.

Plexiform neurofibromas, neurofibromas of major nerves, and clinical association with neurofibromatosis type I are considered precursor lesions to most MPNST⁶. MPNST occur rarely in the sacrum^{4,21}. The hallmark features of MPNST include an association with von Recklinghausen disease¹⁰, intrafascicular spread within or beyond the main tumor mass, and invasion of the surrounding tissue¹. The use of immunohistochemical stains may also help to confirm the diagnosis. Markers such as S-100 protein, neurofilament, epithelial membrane antigen, and Leu-7 (CD57) are used frequently to assess neural differentiation of a neoplasm. In addition to the spindle cell pattern, MPNST may also display an epithelioid pattern, or even rarer, glandular MPNST²², or include muscle in triton tumors^{23,24}. In more unusual cases, cartilage, adipose tissue, and even bone are present²⁵. Interestingly, there was cartilage within the tumor in our patient.

En bloc or radical resection is the treatment of choice. The main aim is to achieve surgical excision with negative margins and to control systemic spread with adjuvant treatment⁵. Unfortunately, the involvement of the critical neurovascular structures, intrapelvic organs, and the stability of sacroiliac structures limit the extent of excision²⁶. The approaches to these tumors may be anterior or posterior, or a combination, depending on the amount of intrapelvic and intrasacral involvement¹. Klimo et al. described a straightforward classification system to determine the best surgical approach.

Radiotherapy is generally avoided in the treatment of benign peripheral nerve sheath tumors because of the risk of malignant transformation²⁷⁻³¹. However, postoperative radiation therapy reported in three patients with orbital MPNST produced a good response and nine-year survival^{32,33}. A large MPNST of the proximal sciatic nerve in the thigh was removed subtotally from the sciatic nerve after administration of adjuvant radiation therapy³⁴. Vauthey et al. used adjuvant radiotherapy in deep and high-grade MPNST of the extremities and achieved a local disease-free survival of 70% in three years³⁵.

Although one patient with MPNST of the sciatic nerve treated with high-dose chemotherapy demonstrated a complete response⁷, the benefits of adjuvant chemotherapy remain controversial³⁶. Adjuvant radiation or chemotherapy does not appear to affect survival^{4,9}. Concurrent adjuvant therapy with radiation and chemotherapy should be suboptimally individualized³⁷.

Although the sacrum was destroyed by the tumor in our patient, the bilateral alar and the sacroiliac joints remained intact. Accordingly, we thought the lumbar-sacral junction was stable and no internal fixation was necessary. The tumor was subtotally removed because of its tight adhesion to the pelvic vital organs, and the patient was treated with a course of radiotherapy.

The five-year survival in patients with MPNST is around 33-39%^{38,39}. Doorn and coworkers reported median disease-free survival of 14 months and median overall survival of 24 months⁴⁰. Large tumor size^{9,41}, the presence of neurofibromatosis⁴¹, and total resection³⁸ are the most important prognostic indicators⁴. Patients with von Recklinghausen disease and large, incompletely resected tumors have the most dismal prognosis^{38,39}, and none have survived more than 25 months. However, two studies show that von Recklinghausen disease has no significant effect on surviva^{19,40}.

MPNST are highly aggressive neoplasms with a poor prognosis that occur rarely in the sacral or presacral region. These tumors usually have a long-term latency before the initial presentation. *En bloc* resection is the treatment of choice, but the involvement of surrounding critical structures and the tumor's enormous size limit the extent of resection. Adjuvant radiation therapy and chemotherapy may be of benefit in some patients whose tumors cannot be completely removed.

REFERENCES

- Paul Klimo J, Ganesh RAO, Richard H. Schmidt, Meic H. Schmidt. Nerve sheath tumors involving the sacrum case report and classification sheme. *Neurosurg Focus* 2003;15.
- 2. Turner AS, Trotter GW, Powers BE. Evaluation of tissue adhesive to contain axonal regeneration in horses. *Vet Surg* 1995;24:308-314.
- 3. Popuri R, Davies AM. MR imaging features of giant pre-sacral schwannomas: a report of four cases. *Eur Radiol* 2002;12:2365-2369.
- Ducatman BS, Scheithauer BW, Piepgras DG, Reiman HM, Ilstrup DM. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. *Cancer* 1986;57:2006-2021.
- 5. Wong WW, Hirose T, Scheithauer BW, Schild SE, Gunderson LL. Malignant peripheral nerve sheath tumor: analysis of treatment outcome. *Int J Radiat Oncol Biol Phys* 1998;42:351-360.
- 6. Paul Kleihues WKC. Pathology and genetics, tumors of the nervous system. *World Health Organization Classification of Tumors*. 1999:172-174.
- Masui F, Yokoyama R, Soshi S, Beppu Y, Asanuma K, Fujii K. A malignant peripheral nerve-sheath tumour

- responding to chemotherapy. *J Bone Joint Surg Br* 2004;86:113-115.
- 8. Payer M. Neurological manifestation of sacral tumors. *Neurosurg Focus* 2003;15:E1.
- 9. Hruban RH, Shiu MH, Senie RT, Woodruff JM. Malignant peripheral nerve sheath tumors of the buttock and lower extremity. A study of 43 cases. *Cancer* 1990;66:1253-1265.
- Kourea HP, Bilsky MH, Leung DH, Lewis JJ, Woodruff JM. Subdiaphragmatic and intrathoracic paraspinal malignant peripheral nerve sheath tumors: a clinicopathologic study of 25 patients and 26 tumors. *Cancer* 1998;82:2191-2203.
- 11. Ducatman BS, Scheithauer BW. Postirradiation neurofibrosarcoma. *Cancer* 1983;51:1028-1033.
- Guccion JG, Enzinger FM. Malignant Schwannoma associated with von Recklinghausen's neurofibromatosis. *Virchows Arch A Pathol Anat Histol* 1979; 383:43-57.
- 13. Feldenzer JA, McGauley JL, McGillicuddy JE. Sacral and presacral tumors: problems in diagnosis and management. *Neurosurgery* 1989;25:884-891.
- 14. Abernathey CD, Onofrio BM, Scheithauer B, Pairolero PC, Shives TC. Surgical management of giant sacral schwannomas. *J Neurosurg* 1986;65:286-295.
- 15. Norstrom CW, Kernohan JW, Love JG. One hundred primary caudal tumors. *JAMA* 1961;178:1071-1077.
- 16. Stewart RJ, Humphreys WG, Parks TG. The presentation and management of presacral tumours. *Br J Surg* 1986;73:153-155.
- 17. Stull MA, Moser RP, Jr., Kransdorf MJ, Bogumill GP, Nelson MC. Magnetic resonance appearance of peripheral nerve sheath tumors. *Skeletal Radiol* 1991;20: 9-14.
- Suh JS, Abenoza P, Galloway HR, Everson LI, Griffiths HJ. Peripheral (extracranial) nerve tumors: correlation of MR imaging and histologic findings. *Radiology* 1992;183:341-346.
- 19. Cerofolini E, Landi A, DeSantis G, Maiorana A, Canossi G, Romagnoli R. MR of benign peripheral nerve sheath tumors. *J Comput Assist Tomogr* 1991;15:593-597.
- 20. Shoher A, Arbab F, Lucci A, Jr. Giant pelvic schwannoma with ancient change. *J Am Coll Surg* 2003;197:163.
- 21. Grnja V, Allen WE, 3rd, Osborn DJ, Kier EL. Sacral neurofibrosarcoma: an angiographic evaluation. Case report. *J Neurosurg* 1974;40:767-771.
- 22. Woodruff JM, Christensen WN. Glandular peripheral nerve sheath tumors. *Cancer* 1993;72:3618-3628.
- 23. Lang-Lazdunski L, Pons F, Jancovici R. Malignant "Triton" tumor of the posterior mediastinum: pro-

- longed survival after staged resection. *Ann Thorac Surg* 2003;75:1645-1648.
- 24. Malerba M, Garofalo A. [A rare case of nerve-sheath sarcoma with rhabdomyoblastic differentiation (malignant triton tumor)]. *Tumori* 2003;89(4 Suppl): 246-250.
- 25. Sangueza OPMD, 2; Requena, Luis M.D.3. Neoplasms with Neural Differentiation: A Review: Part II: Malignant Neoplasms. *American J Dermatopathology* 1998.
- 26. Stark AM, Buhl R, Hugo HH, Mehdorn HM. Malignant peripheral nerve sheath tumours--report of 8 cases and review of the literature. *Acta Neurochir (Wien)* 2001;143:357-363; discussion 363-354.
- Foley KM, Woodruff JM, Ellis FT, Posner JB. Radiation-induced malignant and atypical peripheral nerve sheath tumors. *Ann Neurol* 1980;7:311-318.
- 28. Dini M, Caldarella A, Lo Russo G, Conti P. [Malignant tumors of the peripheral nerve sheath (MPNST) after irradiation]. *Pathologica* 1997;89:441-445.
- Siveke JT, Sen Gupta R, Rieckhoff KU, Braumann D, Goldmann T. [Progressive paralysis caused by radiation-induced cervical malignant peripheral nerve sheath tumor]. *Hno* 2003;51:825-828.
- Adamson DC, Cummings TJ, Friedman AH. Malignant peripheral nerve sheath tumor of the spine after radiation therapy for Hodgkin's lymphoma. *Clin Neuropathol* 2004;23:245-255.
- 31. Amin A, Saifuddin A, Flanagan A, Patterson D, Lehovsky J. Radiotherapy-induced malignant peripheral nerve sheath tumor of the cauda equina. *Spine* 2004;29:E506-509.
- 32. Eviatar JA, Hornblass A, Herschorn B, Jakobiec FA. Malignant peripheral nerve sheath tumor of the orbit in a 15-month-old child. Nine-year survival after local excision. *Ophthalmology* 1992;99:1595-1599.

- 33. Erzurum SA, Melen O, Lissner G, Erzurum SA, Melen O, Lissner G, Friedman DI, Sadun A, Feldon SE, Rao, NA. Orbital Orbital malignant peripheral nerve sheath tumors. Treatment with surgical resection and radiation therapy. *J Clin Neuroophthalmol* Mar 1993;13:1-7.
- Rodero L, Canga A, Figols J, Berciano J, Combarros
 [Buttock mass and malignant sciatic nerve tumor].
 Neurologia 2004;19:27-31.
- 35. Vauthey JN, Woodruff JM, Brennan MF. Extremity malignant peripheral nerve sheath tumors (neurogenic sarcomas): a 10-year experience. *Ann Surg Oncol* 1995;2:126-131.
- 36. Wanebo JE, Malik JM, VandenBerg SR, Wanebo HJ, Driesen N, Persing JA. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 28 cases. *Cancer* 1993;71:1247-1253.
- 37. Perrin RG, Guha A. Malignant peripheral nerve sheath tumors. *Neurosurg Clin N Am* 2004;15:203-216.
- 38. deCou JM, Rao BN, Parham DM, Lobe TE, Bowman L, Pappo AS, Fontanesi J. Malignant peripheral nerve sheath tumors: the St. Jude Children's Research Hospital experience. *Ann Surg Oncol* 1995;2:524-529.
- Vege DS, Chinoy RF, Ganesh B, Parikh DM. Malignant peripheral nerve sheath tumors of the head and neck: a clinicopathological study. *J Surg Oncol* 1994; 55:100-103.
- Doorn PF, Molenaar WM, Buter J, Hoekstra HJ. Malignant peripheral nerve sheath tumors in patients with and without neurofibromatosis. *Eur J Surg Oncol* 1995;21:78-82.
- 41. Chang SM, Ho WL. Malignant peripheral nerve sheath tumor: a study of 21 cases. *Zhonghua Yi Xue Za Zhi* (*Taipei*) 1994;54:122-130.