

Kikuchi-Fujimoto Disease in a Child: An Uncommon Cause of Fever of Unknown Origin with Cervical Lymphadenopathy

Chi-Chieh Lai¹, Shao-Hung Lien¹, Chih-Gueng Lien², and Yi-Ming Hua^{1*}

¹Department of Pediatrics, ²Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China

Kikuchi-Fujimoto disease (KFD), also known as histiocytic necrotizing lymphadenitis is a benign and unusual self-limiting disease, should be included in the differential diagnosis of lymphadenopathy and fever of unknown origin. This disease mostly affects young Asian women, and is rarely reported amongst children. The etiology of KFD remains unclear currently, although the malady may arise secondarily to infection. According to the comments of a number of investigators, the most-common viral pathogens attributed to KFD are of the herpes family, including cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6) and human herpesvirus 8 (HHV-8). Here, we report a 10-year-old child who presented with cervical lymphadenopathy and prolonged fever. Histological examination of involved lymph nodes showed classical KFD.

Key words: Kikuchi's disease, histiocytic necrotizing lymphadenitis, children

INTRODUCTION

Kikuchi-Fujimoto disease (KFD), or histiocytic necrotizing lymphadenitis, is a self-limiting disease that was first described in Japan by, independently, both Kikuchi and Fujimoto et al. in 1972^{1,2}. Although the disease is prominent in Asia, it would appear that the malady is being reported increasingly more frequently in other geographical regions³. The disease usually affects women under 30 years of age although it also affects men, however, occasions where children have succumbed to the disease would appear to have rarely been reported³⁻⁵. For a pediatric population, the most-common manifestation of the disease is, reportedly, cervical lymphadenopathy either with or without fever not dissimilarly to an afflicted adult population³. From a number of studies, prolonged fever has been found for 32.8% of pediatric patients suffering from KFD⁶. Other reported malady-associated complaints include malaise, fatigue, diarrhea, body-weight loss, hepatomegaly, headache, pleural effusion, oral ulceration and polyarthritis^{4,6}. At time of writing, the etiology of the disease would appear to remain somewhat unclear al-

Received: March 20, 2007; Revised: May 25, 2007; Accepted: May 29, 2007

*Corresponding author: Yi-Ming Hua, Department of Pediatrics, Tri-Service General Hospital, 325, Cheng-Gong Road Section 2, Taipei 114, Taiwan, Republic of China. Tel: +886-2-87927025; Fax: +886-2-87927293; E-mail: guitar @so-net.net.tw

though infection and/or autoimmune responses are believed, by some, to be possible causative factors^{5,7}. The most-common disease-associated etiological pathogen is, reportedly, some form of virus, of which the herpesvirus family, including cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6) and human herpesvirus 8 (HHV-8) has been frequently reported⁸⁻¹⁰. We report a case of KFD that occurred in a 10-year-old female child who presented with cervical lymphadenopathy and prolonged fever.

CASE REPORT

A 10-year-old girl was referred to our pediatric emergency department due to persistent fever and a swelling on the left side of her neck that had existed for the preceding ten days prior to her presentation at our clinic. Prior to patient admission at our hospital, this girl had been treated for (presumed) acute upper respiratory tract infection, although the girl was admitted to our department in order to exclude deep neck infection.

Our patient's family history and personal history were unremarkable and we were not able to find any evidence of any previous herpes infection. Upon admission, the patient was febrile with a temperature of 39.2°C. A tender soft, ill-defined mass measuring 4×3cm was found within her left neck. We prescribed an initial trial of Unasyn (ampicillin + Sulbactam) for her. However, subsequent examination revealed no change in her lymphadenopathy one week later. Laboratory studies revealed mild leukopenia (white

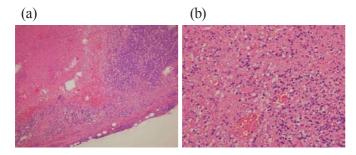


Fig. 1 (a) (Hematoxylin and eosin, original magnification×100) and (b) (hematoxylin and eosin, original magnification×200) are histopathological appearance of lymph-node biopsy and reveal cell architecture distorted by diffuse necrosi with histiocyte proliferation, lymphocytes and the presence of nuclear debris.

cell count = 3,500/mm³), anemia (hemoglobin = 10.7g/dL) and a normal platelet count. The girl's C-reactive protein (CRP) serum level was somewhat elevated (2.53mg/dl), as was her lactate dehydrogenase level (304U/L; normal range = 95-205U/L). Antinuclear antibody (ANA) proved to be negative. Serological tests for Epstein-Barr virus (EBV) and cytomegalovirus (CMV) proved negative, and blood cultures before the administration of antibiotics revealed no bacterial growth.

A computed tomography (CT) scan of the patient's neck demonstrated diffuse soft-tissue swelling with multiple enhancing, and the presence of necrotic nodes within the left neck, and also a few small nodes featuring apparent central necrosis or enhancement within the right neck. A cervical lymph node was excised and revealed no growth of acid-fast bacilli. The pathological findings included architecture distorted by diffuse necrosis and histiocyte proliferation and an unclear picture of resident debris (Fig. 1).

Following these investigations, the patient was treated symptomatically. One week later, she made a spontaneous and complete recovery. The patient has remained asymptomatic and well during 6 months of follow-up.

DISCUSSION

KFD may actually be more prevalent amongst a pediatric population than had been previously thought¹¹. Fortunately, patients typically feature a rather good prognosis and recover spontaneously within a few weeks to months of developing initial symptoms without any (apparent) serious sequelae⁸. KFD can affect patient of any age, gender, and ethnic background. The female-to-male ratio generally varies from 3:1 up to 4:1; however, rela-

tively low female-to-male ratio in Asian series were reported^{3,12}. The gender incidence of KFD in one pediatric series has a complete different predominance compared with the adult population and shows male-to-female ratio of 1.9:1¹³. Various infections have been postulated to feature some sort of a causative role, notable pathogens reported to have been associated with KFD include parasites (eg, those responsible for toxoplasmosis), bacteria (eg, *Yersinia enterocolitica*), and viruses (eg, EBV, pavovirus B19, HHV-6 and HHV-8, human T-lymphotropic virus type 1 [HTLV-1], rubella, parainfluenza, and varicella zoster virus), although as we are aware currently, none of the viruses have been definitively confirmed as causative agents for KFD⁹.

The most common presentation of KFD is localized lymphadenopathy with or without fever. Cervical lymph nodes are the principal site of disease. The next most common sites of lymph node involvement are the axillary and then the supraclavicular lymph node⁵. The diameter of the affected lymph nodes are smaller than 2 cm in most reported cases¹². Additional signs and symptoms include hepatosplenomegaly, headache, skin lesions, oral ulcer, night sweats, general malaise and body weight loss^{6,12}.

No definite laboratory test is available for the diagnosis of KFD. Leukopenia was one of the characteristic findings of KFD with the reported incidence ranging from 23% to 44%. Other findings including atypical peripheral blood lymphocytes (3-30%), elevated CRP level (12-26%), elevated ESR level (14-41%), impaired liver function (14-25%), elevated LDH level, anemia and thrombocytopenia are also presented^{3-6,12,13}.

The diagnosis of KFD is confirmed only by histologic examination. The classic morphologic findings of KFD involving lymph nodes have the following features: (1) Lymph node involvement is patchy in the paracortex and/ or cortex, (2) fibrinoid necrosis is present in all early lesions, (3) a mixture of benign histiocytes, immunoblasts, plasmacytoid monocytes, and small lymphocytes surrounds the necrotic areas, (4) granulocytes are absent and plasma cell are absent or rare, (5) abundant predominantly extracellular apoptotic debris is present^{14,15}. Kuo particularly classified the histopathologic changes into three histologic types: proliferative, necrotizing, and xanthomatous type³. Recent studies have found that apoptotic cell death might be the mechanism of cellular destruction, relevant investigators suggesting that apoptosis is mediated by certain specific cytotoxic lymphocytes⁵. These findings support that KFD arises secondarily to either a viral or autoimmune pathogenesis.

As mentioned before, KFD is a self-limiting disease,

and the treatment is usually symptomatic and supportive. Most of the patients with spontaneous improvement with complete resolution within a period of 1 to 4 months. However, some patients with severe systemic manifestations might benefit from systemic glucocorticoids or intravenous immunoglobulin^{16,17}. Recurrence rate of KFD ranged from 3% to 4%^{3,6}. The recurrent episodes may develop in any parts of the body from the time of initial diagnosis of KFD of about 4 months to 8 to 9 years^{3,18}. A small number of patients initially diagnosed as KFD developed the SLE subsequently with an average time of several months to 5 years^{3,4}. Yet, KFD has not been reported to subsequently develop into malignant lymphoma to date.

KFD typically affects the cervical lymph nodes and its etiology remains quite unclear at time of writing. KFD may arise secondarily to apoptosis which is mediated by cytotoxic lymphocytes, a condition caused either by infection or by autoimmune pathogenesis⁵. Various viruses have been attributed to the occurrence of KFD. KFD is a self-limiting disease and most patients with KFD have spontaneous complete resolution without treatment. Thus, each pediatrician should consider the possibility of KFD when patients have prolong fever and cervical lymphadenopathy in order to avoid unnecessary inspections or examinations. Furthermore, it is important to follow up the patients of KFD for the possible development of autoimmune disease.

REFERENCES

- Kikuchi M. Lymphadenitis showing focal reticulum cell hyperplasia with nuclear debris and phagocytosis. Nippon Ketsueki Gakkai Zasshi 1972;35:379-380.
- 2. Fujimato Y, Kozima Y, Yamaguchi K. Cervical subacute necrotizing lymphadenitis: a new clinicopathological entity. Naika 1972;20:920-927.
- 3. Kuo TT. A clinicopathologic study of 79 cases with as analysis of histologic subtypes, immunohistology, and DNA ploidy. Am J Surg Pathol 1995;19:798-809.
- Chuang CH, Yan DC, Chiu CH, Huang YC, Lin PY, Chen CJ, Yen MH, Kuo TT, Lin TY. Clinical and laboratory manifestations of Kikuchi's disease in children and differences between patients with and without prolonged fever. Pediatr Infect Dis J 2005;24:551-554.
- 5. Lin HC, Su CY, Huang CC, Hwang CY, Chien CY. Kikuchi's disease: a review and analysis of 61 cases. Otolaryngol Head Neck Surg 2003;128:650-653.

- Felgar RE, Furth EE, Wasik MA, Gluckman SJ, Salhany KE. Histiocytic necrotizing lymphadenopathy (Kikuchi disease): In situ end-labeling, immunohistochemical, and serologic evidence supporting cytotoxic lymphocyte mediated apoptotic cell death. Mod Pathol 1997; 10:231-241.
- Kubota M, Tsukamoto R, Kurukawa K, Imai T, Furusho K. Elevated serum interferon gamma and interleukin-6 in patients with necrotizing lymphadenitis. Br J Hematol 1996;95:613-615.
- 8. Koybasi S, Saydam L, Gungen Y. Histiocytic Necrotizing Lymphadenitis of the Neck. Am J Otolaryngol 2003;24:344-347.
- 9. Bosch X, Guilabert A, Miquel R, Campo E. Enigmatic Kikuchi-Fujimoto disease. Am J Clin Pathol 2004; 122:141-152.
- Martinez-Vazquez C, Potel C, Angulo M, Gonzalez-Carrero J, Alvarez M, Tenorio A, Cid D, Oliveira I. Nosocomial Kikuchi's disease–a search for herpesvirus sequences in lymph node tissues using PCR. Infection 2001;29:143-147.
- Chen CK, Low Y, Akhilesh M, Jacobsen AS. Kikuchi disease in Asian children. J Paediatr Child Health 2006;42:104-107.
- Yu HL, Lee SS, Tsai HC, Huang CK, Chen YS, Lin HH, Wann SR, Liu YC, Tseng HH. Clinical manifestations of Kikuchi's disease in southern Taiwan. J Microbiol Immunol Infect 2005;38:35-40.
- 13. Lin HC, Su CY, Huang SC. Kikuchi's disease in Asian children. Pediatrics 2005;115:92-96.
- 14. Lerosy Y, Lecler-Scarcella V, Francois A, Guitrancourt JA. A pseudo-tumoral form of Kikuchi's disease in children: a case report and review of the literature. Int J Pediatr Otorhinolaryngol 1998;45:1-6.
- 15. Onciu M, Medeiros LJ. Kikuchi-Fujimoto Lymphadenitis. Adv Anat Pathol 2003;10:204-211.
- Kumar TS, Scott JX, Agarwal I, Danda D. Management of Kikuchi disease using glucocorticoids. J Clin Rheumatol 2006;12:47.
- 17. Noursadeghi M, Aqel N, Gibson P, Pasvol G. Successful treatment of severe Kikuchi's disease with intravenous immunoglobulin. Rheumatology 2006;45:235-237.
- Dorfman RF, Berry GJ. Kikuchi's histiocytic necrotizing lymphadenitis: an analysis of 108 cases with emphasis on differential diagnosis. Sem Diagn Pathol 1988;5:329-345.