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Role of Kinetic Modeling in Biomedical Imaging

Sung-Cheng Huang"
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Biomedical imaging can reveal clear 3-dimensional body morphology non-invasively with high spatial resolution. Its
efficacy, in both clinical and pre-clinical settings, is enhanced with its capability to provide in vivo functional/biological
information in tissue. The role of kinetic modeling in providing biological/functional information in biomedical imaging is
described. General characteristics and limitations in extracting biological information are addressed and practical approaches
to solve the problems are discussed and illustrated with examples. Some future challenges and opportunities for kinetic
modeling to expand the capability of biomedical imaging are also presented.
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INTRODUCTION

Biomedical imaging has experienced a rapid and con-
tinuing advancement, and is critically important in many
clinical and pre-clinical applications. There are a multiple
of modalities, such as CT, MRI, emission tomography, and
ultrasound, and they can all give accurate 3-dimensional
(3-D) images of some physical quantities, such as, tissue x-
ray attenuation coefficients, proton density, and radioac-
tivity concentrations, in the body non-invasively. Based on
these images and measurements, detailed information re-
garding the structure (shape and size) and functions inside
the body can be obtained that is useful for disease diagnosis,
treatment monitoring, pharmaceutical development and
biological/medical investigations.

Among these 3-D imaging modalities, emission tomog-
raphy (ET), especially positron emission tomography
(PET), is unique in its ability to provide functional
information, such as perfusion, transport, metabolism, and
receptor density, in tissues'?. While the importance of the
advancements in physics (e.g., detectors) and instrumenta-
tion (fast electronics) cannot be overstated, the unique
capability of emission tomography is derived from its
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intrinsic use of radio-tracers to trace biological pathways,
and the availability of many radio-tracers for a wide range
of biological functions in tissues/cells. Since the use of
tracers to indicate biological function is based on the
principle of tracer kinetics, understanding of the principle
is critical for the interpretation of the image/measurements
and for guiding the development of new radio-tracers™*. In
this article, I will explain the role of kinetic modeling in this
process, and will address some practical problems and
their solutions. I will focus on PET in the rest of this article
when addressing these issues.

IMAGE INTERPRETATION AS AN INVERSE
PROBLEM

The procedure of performing a PET study consists of 1)
administrating a tracer (labeled with a positron emitter) in
the body and 2) scanning the subject in a PET scanner to
give images of the distribution of the injected tracer at
some specific time post injection or as a function of time.
The biological condition of the imaged tissue was then
inferred from the obtained PET images. The procedure is
illustrated in the diagram shown in Figure 1. The objective
is to determine the biological state of tissue that is unknown.
The tracer administration and the PET imaging are part of
the measurement process — the forward process. The in-
terpretation of the resulted images to determine the un-
known tissue biology is the so-called inverse process, in
terms of mathematical terminology. Formally, solution of
the inverse problem is done by first modeling the forward
process mathematically, and then followed by adjusting
the model to find the condition (or parameter values) that

57



Kinetic modeling imaging

Body with Administration . —
biolﬂgical of radiotracer Radioactivity
parameters to be kinetics in the body

determined PET scanning
L] A J
a Projection measurements
= . |
: tomographic
. reconstruction
" | t Kineti
. . racer Kinetc O
Biological & e PET Images
biochemical bR e
. . e R radioactivity
information parameter T
in the body estimation in the body)

Fig. 1 Procedure of a PET study as a diagram of information
flow. The dash arrow indicates the interpretation of
the images obtained from PET scanning after a PET
tracer has been administered to the subject. The inter-
pretation is accomplished by kinetic modeling of the
tracer distribution in the body and by estimation of the
model parameters best matching the biological func-
tions in the body of the subject being studied.

gives the response/predictions most consistent with the
measurements (i.e., the measured images). The modeling
part, in this case, is primarily to describe the distribution,
uptake and clearance of the injected tracer in the body
mathematically. For a biological system as complex as the
body, modeling the tracer kinetics in the body is not trivial.
Fortunately, compartmental models, which consist of only
1% order ordinary differential equations, have been found
able to describe the tracer kinetics in the body quite well®.
However, there are many practical problems/issues in-
volved that need to be addressed in solving the inverse
problem. The imaging process also needs to be modeled as
well, since it is part of the forward process that gives the
measurement results, but, imaging is a physical process
that is relatively simple to model compared to a biological
system. Even though few people have this inverse process
and modeling in mind when interpreting the PET images,
the modeling is implicit in the process of interpreting the
images.

PRACTICAL ISSUES AND SOLUTIONS

Though compartmental models are appropriate for de-
scribing the tracer kinetics, there are many organs and
kinetically different tissues in the body. A compartmental
model that describes the tracer kinetics in the whole body
could still be large and complicated, and have many
unknown parameters. The more complicated the model,
the more difficult it is to solve the inverse problem. This is
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Fig. 2 A comprehensive model describing the kinetics of a
tracer that follows a biochemical reaction in a local
tissue region. Tracer is delivered by blood flow to
tissue, transported across the capillary and cell
membrane, and involved in the biochemical pathway
in the cells that the tracer was developed for. Some
chemical form of the labeled tracer/product will usu-
ally be transported out of the cells and be cleared from
tissue via the venous blood flow.

exacerbated by the fact that usually not the whole body is
imaged, or, even it is, is not simultaneously (i.e., different
parts are imaged at different times). In such cases, whether
there are sufficient measurements to solve the problem is
a key question. What assumptions one can make to con-
strain the problem and to obtain robust results is naturally
also a concern. In the following subsections, common
approaches to address these issues will be discussed.

INPUT FUNCTION

Since most tissues in the body receive administered
tracer from blood directly and rely on the venous blood to
clear the extracted tracer from the tissue, the tracer kinetics
in local tissue would depend only on the time activity curve
(TAC) of the tracer in blood and the biological/metabolic
state in the tissues*’. If the blood TAC of the tracer is
measured/known, relationship between the tracer kinetics
in tissue and the tissue biological function can be directly
established. The influence due to other body tissue/organs
on tracer kinetics in the tissue of interest will be accounted
for completely by the tracer TAC in the blood, which is
normally called the input function. With the input function
determined, only the tracer behavior in the local tissue
region needs to be addressed, and the kinetics in one region
is completely independent of those in other tissues. Thus,
the modeling of the tracer kinetics in local tissue of interest
is greatly simplified, and a model of the form shown in
Figure 2 can generally be used.
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Fig. 3 A) Simplified models for a well designed tracer that
does not involved in many serial reactions in a bio-
chemical pathway. The input function for this model
is plasma tracer concentration Ca in arterial blood. B)
Model configuration is further reduced from the one
in 3A, if the extraction fraction of the tracer across the
capillary is small and blood perfusion is not a limiting
factor, like the case of FDG in brain and myocardial
tissues. In this case, Ca and Cp of Figure 3A are
nearly equal, and the input function is still the plasma
tracer concentration in arterial blood, but is com-
monly denoted as Cp.

WELL DESIGNED TRACERS/PROBES

Biochemical pathways in cells usually involve many
steps. Even with the simplification to deal only with tracer
behaviors in local tissue region, the model can still be quite
complicated. However, if the tracer is properly designed
such that it only goes through a couple of steps in cells and
has only a couple of pools/compartments, the modeling
problem can be more easily managed. The commonly used
PET tracer FDG®’ is a good example of such well designed
tracers. It can be transported by glucose transporters into
cells and phosphorylated by hexokinase, but the phospho-
rylated product, FDG-6-P, is not a substrate for the subse-
quent isomerization step in the glycolytic pathway®’. Also,
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FDG is stable in the body and no significant amounts of
labeled metabolites appear in the blood even after a couple
of hours. So, a compartmental model describing the kinet-
ics can be quite simple (Fig. 3A).

Furthermore, if the extraction fraction of the tracer is
small (e.g., <10%) when it passes through the capillaries in
tissue, the uptake and clearance of the tracer in tissue are
not affected greatly by blood perfusion in the tissue, and
the blood perfusion and clearance can be omitted from the
model, simplifying the model further, as illustrated in
Figure 3B. A great advantage of a simple model is that it
has only a small number of model parameters and their
estimation can be quite robust. The model of Fig. 3B is
generally used for describing FDG kinetics in brain,
myocardial, and tumor tissues*.

Based on this model, and the input function and the
measurement of the tissue kinetics, one can estimate (e.g.,
using nonlinear regression) the values of the rate constants,
from which the net uptake constant of FDG from blood to
tissue can be calculated (i.e., as k k./(k,+k,))". Also, the
efficiency of the transport/enzymatic reactions for FDG
relative to those of glucose can be calibrated, and the
uptake rate of FDG in tissue can be converted to the
utilization rate of glucose in tissue. The calibration con-
stant between FDG and glucose through these steps is
commonly referred to as the lumped constant (LC), used
originally by Sokoloff'® for deoxyglucose (DG) and later
adopted for FDG®.

SIMPLIFIED ANALYSIS AND SUV

As shown in the above example, an important informa-
tion obtained is the uptake constant (i.e., k k,/(k,+k,) ) of
the tracer in tissue. A simple method, the Patlak analysis'!,
can be used to provide the uptake constant directly using a
graphical procedure.

Another type of tracers/probes commonly used in PET
is for determination of the density of receptors/enzymes in
tissue. An example of this type of tracers/probes is FDDNP,
which is used for assay of amyloid plagues and neuro-
fibrillary tangles (NFT) in tissue for assessment of patho-
logical progress related to Alzheimer disease'*"*. The
model for this type of tracers is similar to the one for those
that trace a dynamic process (e.g., Fig. 3), except that the
k, step is proportional to the binding affinity of the tracer
to the receptor site and the density of the receptors, and k,
represents its dissociation from the binding. The ratio k,/k,
is related directly to the ratio of receptor density and the
dissociation constant of the tracer for receptor binding, and
is commonly called the binding potential'*. Theoretically,
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if one knows the value of the dissociation constant, the
receptor density can be easily obtained from the binding
potential. However, due to the uncertainty of the in vivo
biochemical environment around the receptors, accurate
estimation of the dissociation constant of the binding tracer
in vivo is difficult, and the binding potential is usually used
instead as an index of receptor density.

The primary parameter of interest for this type of studies
is the ratio k,/k,. There is a simple graphical method, Logan
plot'®, that can give the distribution volume (V) of the
tracer in tissue relative to that in blood. This distribution
volume, according to the model, is equal to (k /k,)(1+ k/
k,). If a tissue region does not have any specific receptor
that the tracer will bind to, the value of Vd will simply be
k /k,. Assuming this k /k, ratio is uniform over all tissue
regions, the ratio k,/k, can be obtained by the following
equation.

k/k,=(V)/(V) .1
Moreover, it has also been shown that the ratio of distribu-
tion volumes in the above equation can be determined
easily with the use of the kinetics of the reference tissue as
the input function in applying the Logan plot'®. With this
approach, one does not even need to determine the input
function from blood samples. There are also other simpli-
fied methods for estimating the binding potential or distri-
bution volumes'”!®. One needs to keep in mind, however,
the underlying assumptions of these methods (e.g., uni-
form k /k, ratio and the existence of a reference tissue that
is devoid of specific receptors for the tracer/probe used).

In many cases, even the above simplified analyses are
impractical. A simpler and commonly used quantification
method for tumor uptake of FDG is the standardized
uptake value (SUV)!*2! It is calculated as

SUV = (tracer concentration in tissue)/(dose of injected

tracer/body weight of subject)
The value of SUV would equal to 1.0, if the tracer is
distributed uniformly in the whole body. So, if the value
is higher (or lower) than 1.0 in a tissue region, it would
mean that the tracer uptake in that tissue is more (or less)
than the whole body average. There are variations of the
SUV calculations. Lean body weight or body surface area
is often used to replace the body weight. Other variations
including the addition of plasma glucose level in the
formulation to improve its correlation with tissue glyco-
lytic rate?®22, SUV is easy to calculate, but has its limitations.
Its validity for quantification of an uptake process depends
on the consistent shape of the input function among indi-
viduals in the population®'. It is not necessarily appropriate
for quantifying the tissue biological states for general
tracers.
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Fig. 4 Parametric images from 4 brain PET scans of a normal
subject with 4 different tracers, O-15 CO, O-15 water,
O-15 oxygen, and FDG. The images correspond to the
same transaxial cross-section through the upper part
of the brain. The gray scales of the images were scaled
to the maximal value on each image. Lighter shade is
for higher values. Multiple biological functions for
tissues in the same brain regions were obtained with
the 4 PET scans: CBV (cerebral blood volume) from
0-15 CO scan; CBF (cerebral blood flow) from O-15
water; MRO (metabolic rate of oxygen) and OEF
(oxygen extraction fraction) from O-15 oxygen along
with the images of CBV and CBF; MRG (glucose
utilization rate) from FDG; OGR (oxygen to glucose
molar ratio) as a ratio of MRO and MRG. For normal
subjects, values of OEF and OGR are around 0.40 and
6.0, respectively, and are similar for gray and white
matter regions as shown in the figure. (see text and
cited references for details on methods and nominal
values.) (Images were generated from a study per-
formed at UCLA in collaboration with Drs. Marvin
Bergsneider, H.M. Wu, David Hovda, et al at UCLA
Brain Injury Research Center)

MULTI-FUNCTION CAPABILITY OF PET

One of the unique characteristics of PET is that there are
many tracers available to measure a variety of biological
parameters. Figure 4 shows what this multi-function capa-
bility of PET can be utilized to provide useful biological
information that is difficult to be obtained otherwise. In
this example, 4 PET scans with 4 different tracers were
performed to image the brain of a subject and kinetic
modeling was used to convert the PET images to biological
parameters in absolute units. The use of FDG provided the
parametric image of glucose utilization rate (MRG); O-15
water provided the perfusion image (CBF); O-15 CO gave
the image of vascular volume (CBV); O-15 oxygen gave
images of oxygen utilization rate (MRO) and extraction



fraction (OEF) (in combination with the use of CBF and
CBYV images)*. Furthermore, the image ratio of MRO and
MRG gave the image of oxygen-to-glucose utilization
ratio (OGR). CBF image could indicate whether sufficient
oxygen and glucose were delivered to brain tissue; OEF
showed whether the delivered oxygen met the demand of
the tissue (i.e., whether OEF is less than or equal to 40%);
OGR (in molar ratio) showed whether the utilized glucose
went through the Creb cycle (OGR = 6) or whether sub-
strate other than glucose was consumed (OGR>6). This
multi-function study has been performed on patients with
severe brain injury at the Brain Injury Research Center of
UCLA to investigate brain tissue metabolic changes asso-
ciated with severe brain injury**?’.

For multi-function studies, separate PET studies with
different tracers are performed in separate scanning sessions.
To take full advantage of this multi-function capability, the
images from different studies need to be co-registered.
Usually, patients studied with PET also have other imaging
studies (e.g., MRI and CT). They also need to be co-
registered to integrate the structural/morphological infor-
mation with the functional information?®. Furthermore,
people are beginning to align/warp images of individuals
elastically to a standardized image in a common brain
space to compare with a database for computer aided
diagnosis of various diseases?*%.

FUTURE CHALLENGES

There are many additional areas that kinetic modeling
can be used to help advance the state of the art of biomedi-
cal imaging. With the growing use of small animal PET
imaging for biological and pharmaceutical studies, there
are many new technical challenges, as well as new oppor-
tunities for kinetic modeling. To obtain the input function
in small animals like mice is one of them. A lot of pro-
gresses have been made recently®*-*, but more advance-
ment is expected. The use of kinetic modeling in the image
reconstruction of dynamic PET images is also expected to
help reduce image noise level and improve the signal to
noise ratio. Other challenges/opportunities include rapid
validation of models for new tracers, automated process-
ing for biological quantification, and modeling of
biomarkers with large mass doses.

One of the special characteristics of mouse PET imag-
ing is that the whole animal can be placed inside the field
of view. So, the kinetics of all tissues in the body can be
obtained simultaneously. This offers the opportunity that a
whole body model can be developed and be used to
determine the biological parameters in the entire body at
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the same time. If this is successful, no separate determina-
tion of the input function would be needed. A set of
dynamic mouse FDG PET from UCLA is available online
(http://dragon.nuc.ucla.edu/mqp/index.html)*’. People who
are interested in solving the problem can start exploring
this possibility without performing the expensive and time
consuming experiments to acquire the experimental data.

Computation is important in many scientific fields
today, and has created specialties, like computational fluid
dynamics, computer-aided design, computational biology,
virtual anatomy, and Monte Carlo simulation. In biomedi-
cal imaging, Monte Carlo simulation is used to help the
design of new scanners, and computer-aided diagnosis is
used to speed up the diagnostic procedure and to improve
its sensitivity and specificity. Based on kinetic modeling of
the whole body for tracer distribution, we have also devel-
oped a computer software system call KIS (http://dragon.
nuc.ucla.edw/kis/index.html)* to simulate tracer kinetics
in local tissue regions as well as in the entire body as
measured with PET. It offers the opportunity to do virtual
PET studies on mouse. A hypothetical tracer with certain
biological and biochemical properties can be evaluated
quickly to see if it would be useful for indicating certain
biological function, before effort is devoted for its develo-
pment. Instead of lengthy trial and error experiments,
scanning protocols can also be evaluated quickly using this
type of virtual experimentation to determine the optimal
parameters.

SUMMARY

As presented above, kinetic modeling has played an
important role in biomedical imaging and its role is in-
creasing as more functional and biological information is
demanded in clinical and pre-clinical settings. Many new
challenges and opportunities are here for investigators to
advance the utility of kinetic modeling to expand the
capability of biomedical imaging in the future.
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