

Expression of Keratin 7 in the Boundary Epithelial Cells of Colorectal Neoplasm

Hong-Wei Gao, Cheng-Ping Yu, Jong-Shiaw Jin, and Herng-Sheng Lee*

Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China

Background: Cytokeratin 7 (CK7) is an effective immunohistochemical diagnostic tool for the study of the origins of tumors in various organs. However, the specific phenomenon of CK7 expression in the boundary epithelial cells of colorectal neoplasms has not been adequately studied. We evaluated this specific expression pattern of CK7 in colorectal tumors and tried to explain its possible relationship to tumorigenesis. Methods: The study comprised 130 cases of colon adenocarcinoma, 105 colon adenoma, 15 benign nonadenomatous tumors of the colorectum, 12 inflammatory bowel disease and 17 secondary metastatic carcinomas of the colorectum. Immunohistochemical staining for CK7 was performed for all cases. Results: One hundred and seven cases (82.3%) in the primary adenocarcinoma group revealed positive staining at the tumor boundary with sharp transition from CK7-negative carcinomatous tumor to CK7-positive adenomatous epithelium (boundary epithelium) then to CK7-negative normal-appearing mucosa. Eighty-eight cases (83.8%) in the primary adenoma group showed similar boundary patterns. However, other lesions, including benign non-adenomatous tumors, inflammatory bowel disease and secondary metastatic carcinomas of the colorectum, did not show this pattern. Conclusion: Because of the characteristic location of these CK7-positive cells, they may be related to dedifferentiation and redifferentiation of cells in colorectal tumorigenesis. In this article, we present a hypothetical "ripple model" to interpret the role of the specific CK7 boundary features in the possible pattern of clonal expansion in the development of colon tumors.

Key words: keratin 7, colorectum, carcinoma, boundary epithelium, tumorigenesis

INTRODUCTION

Cancer presumably arises from a dedifferentiation of mature cells that return to a fetal phenotype with the potential for proliferation and renewal, or from stem cells preserved in an undifferentiated state since fetal development¹⁻³. Dedifferentiation in this context could represent a transitional phase that cells pass through before they switch to redifferentiation, metaplasia or neoplasia⁴. Keratins are intermediate filaments that are critical in cytoskeletal organization. Their roles in cellular processes are underscored by inherited human diseases in which germline mutations of keratins are found, as well as by transgenic and knockout mouse models that recapitulate those diseases^{5,6}. According to previous reports, CK7 is present in fetal, largely absent in normal adult, and transiently

Received: June 12, 2008; Revised: August 4, 2008; Accepted: September 11, 2008

*Corresponding author: Herng-Sheng Lee, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, No 325, Sec 2, Cheng-Gong Road, Taipei 114, Taiwan, Republic of China. Tel:+886-2-6606-9319; Fax: +886-2-6600-0309; E-mail: DOC31796@ndmctsgh. edu.tw

neoexpressed in metaplastic and neoplastic epithelial cells of the stomach². Hence, CK7 neoexpression in the stomach could define a fetal-like, dedifferentiated, cellular phenotype during the development of metaplasia and neoplasia². In contrast, although adenocarcinoma of the colorectal region is typically positive for cytokeratin 20 (CK20) and negative for CK7^{7,8}, the role of CK7 neoexpression in the colorectum remains unclear. In the present study, we found that CK7 is uniquely expressed in the boundary epithelial cells of colon neoplasia. This suggests that CK7 expression could correlate with important cell fate decisions in colon epithelia. We tried to explain the relationship between this CK7-positive boundary phenomenon and tumorigenesis of colorectal adenocarcinoma by developing a "ripple model". The critical roles of CK7-associated proteins or molecules within this hypothetical model remain to be determined.

MATERIALS AND METHODS

Human Materials

Formalin-fixed and paraffin-embedded colon tissue was derived from the diagnostic files of the pathology department of the Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, between 2001

and 2004. One hundred and fifty-six primary colon adenocarcinomas (Ca), 124 adenomatous polyps (Ap) of the colon, 15 benign non-adenomatous tumors of the colorectum (five hyperplastic polyps; four carcinoid tumors; two lipomas; four gastrointestinal stromal tumors (GISTs)) and 12 cases of inflammatory bowel disease (six ulcerative colitis; six Crohn's disease) were included. Seventeen cases of secondary carcinoma metastatic to the colorectum, including four cases of ovarian adenocarcinoma, four cases of endometrial adenocarcinoma, four cases of hepatocellular carcinoma, two cases of urinary bladder transitional cell carcinoma, two cases of cervical squamous cell carcinoma and one case of esophageal squamous cell carcinoma were also evaluated. Specimens were included irrespective of an immunohistochemically detectable sublemmal or cytoplasmic CK7 expression.

Immunohistochemistry

Expression of CK7 was investigated by a mouse antikeratin 7 monoclonal antibody (1:100; clone OV-TL 12/ 30; Dako, Glostrup, Denmark). Single staining in paraffin sections was performed as previously described. One paraffin-embedded pulmonary tissue specimen from an adult cadaver donor was used as an internal control for CK7 immunostaining. A negative control was performed by omitting the primary antibody.

Evaluation of immunostaining

CK7 immunostaining was evaluated semiquantitatively. The categories for adenocarcinoma of colon (including ascending, descending, sigmoid and rectal colon) were defined arbitrarily as *negative*: less than ten CK7-positive cells occurring in the boundary epithelium; *positive*: ten or more CK7-positive cells occurring in the boundary epithelium that could be easily observed under low magnification (40x). Boundary cells were defined as the adenomatous epithelial cells immediately adjacent to the junction of normal mucosa with tissue of different differentiation (e.g., adenoma — normal mucosa junction; carcinoma — normal mucosa junction; adenoma — carcinoma junction). The other parts of nonneoplastic mucosa were defined as background mucosa.

Statistical analysis

Differences in the degree of expression of a positive boundary pattern in the subgroups of Ca and Ap were analyzed using the x^2 test. A value of $p \le 0.05$ was considered significant.

Table 1 Clinicopathologic features of primary adenocarcinomas of the Colon

nomus of the Colon						
cCa (n = 86)	mCa (n=10)	tCa (n = 34)	Total Ca (n =130)			
61.5 ± 15.1	60.5 ± 7.1	64.8 ± 13.3	62.3 ± 14.2			
21-86	50-73	28-82	21-86			
47:39	7:3	15:19	69:61			
4.1 ± 1.6	5.3 ± 1.9	1.4 ± 0.5	3.5 ± 1.9			
0.7-8.5	3.5-9	0.5-9	0.5-9			
84;97.7	2;20	21;61.8	107;82.3			
	cCa $(n = 86)$ 61.5 ± 15.1 $21-86$ $47:39$ 4.1 ± 1.6 $0.7-8.5$	cCa (n = 86) mCa (n=10) 61.5 ± 15.1 60.5 ± 7.1 $21-86$ $50-73$ $47:39$ $7:3$ 4.1 ± 1.6 5.3 ± 1.9 $0.7-8.5$ $3.5-9$	$\begin{array}{cccc} cCa & mCa & tCa \\ (n=86) & (n=10) & (n=34) \\ \hline \\ 61.5\pm15.1 & 60.5\pm7.1 & 64.8\pm13.3 \\ 21-86 & 50-73 & 28-82 \\ 47:39 & 7:3 & 15:19 \\ \hline \\ 4.1\pm1.6 & 5.3\pm1.9 & 1.4\pm0.5 \\ 0.7-8.5 & 3.5-9 & 0.5-9 \\ \hline \end{array}$			

cCa: common adenocarcinoma; mCa: mucinous carcinoma; tCa: adenoma with malignant transformation; CK7+: CK7 positive immunoactivity in boundary epithelium.

Table 2 Clinicopathologic features of Primary Adenomas of the Colon

Features	Tubular adenoma (n = 40)	Villotubular adenoma (n = 40)	Villous adenoma (n =25)
Patients' age (yea	ars)		
$Mean \pm SD$	56.1 ± 18.7	67.5 ± 11.0	62.1 ± 15.0
Range	21-81	44-81	32-85
Male: female ratio	o 16:24	19:21	13:12
CK7+ (n;%)	32;80	34;85	22;88

CK7+: CK7 positive immunoactivity in boundary epithelium

RESULTS

Clinical and Individual Characteristics of the Patients

After excluding the cases that showed CK7-positive immunoreactivity in neoplastic and/or nonneoplastic parts, or loss of morphologic orientation, 130 cases of Ca and 105 cases of Ap were extracted. Apart from common adenocarcinoma (cCa) (WHO adenocarcinoma, ICD 8140/3), ten mucinous carcinomas (mCa) and 34 cases of focally malignant transformation from adenomatous polyps (tCa) were included in the Ca group. None of the patients had received chemotherapy or radiotherapy before biopsy or surgery. The mean age of patients was 62.3 ± 14.2 years (range 21-86 years) for the Ca group (Table 1) and 61.9±15.9 years (range 21-85 years) for the Ap group (Table 2). The cases included in the Ca group had a male/female ratio of 1.13 (69/61), whereas that of the Ap patients was 0.84(48/57). Six patients in the Ca group had additional tumors (one each of adenocarcinoma of the prostate, squamous cell carcinoma of the esophagus, bronchoalveolar carcinoma of the lung, polyposis of the colon, adenocarcinoma of the lung, low grade noninvasive papillary urothelial carcinoma)

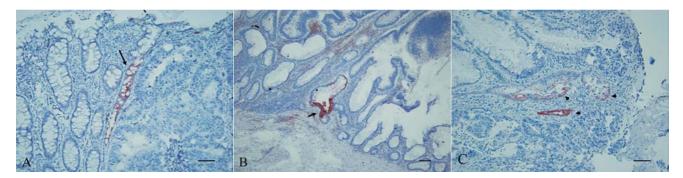


Fig. 1 Characteristic CK7-positive boundary cells in different transitional regions: (A) CK7+ boundary cells (brown, long arrow) between normal (left side) and adenocarcinoma (right side). (B) CK7+ boundary cells (short arrow) between normal (right side) and adenoma (left side) junction. (C) In case of adenocarcinoma arising from adenoma, the CK7-positive adenomatous cells (arrow head) were identified between adenoma (upper side) and carcinoma (lower side) (Scale bar: 200 μm).

before diagnosis of colon adenocarcinoma. Of the patients in the Ap group, only one had a previous history of cancer (squamous cell carcinoma of the anus). Schistosomiasis was noted at the time of diagnosis of colon adenocarcinoma in one case. One patient in the Ap group had a family history of cancer (father: died, cause unavailable; mother: died of colon adenocarcinoma; elder sister: leukemia under treatment; younger sister: adenocarcinoma of colon after surgical treatment) while one patient in the Ca group had an associated history (familial adenomatous polyposis).

CK7 Expression Profiles

Normal-appearing nonneoplastic large intestinal mucosa was universally negative for CK7 expression by immunohistochemistry. Eighty-four cases (97.7%) in the cCa group showed a positive boundary pattern, of which the prominent feature was a sharp transition from CK7negative carcinomatous epithelium to sparse CK7-positive adenomatous epithelium (boundary epithelium) then to CK7-negative remaining normal-appearing mucosa (Fig. 1A). Of the ten primary mucinous colon carcinomas, eight cases (80%) did not show this boundary pattern, which was in marked contrast to the cCa group, where only two cases (2.3%; 2/96) of tumors with mucinous foci occupying less than half of the tumor mass were negative (p < 0.05). Of the tumors in the tCa group, the cases with CK7-positive boundary features expressed the staining either in the adenomatous cells at the normal appearing mucosa adenoma junction (Fig. 1B), carcinoma—adenoma junction (Fig. 1C) or both junctions (Table 3). The overall CK7positive boundary immunoreactivity patterns of the cCa group did not appear to correlate with the age and sex of the patients, nor the size, differentiation status, or stage of the

Table 3 CK7 boundary patterns of colon adenomas with adenocarcinoma transformation

Expression of CK7 boundary pattern		Villotubular adenoma (n =17)	Villous adenoma (n =5)
Positive (n;%)	10;83.3	9;53	2;40
Negative (n;%)	2;16.7	8;47	3;60

tumors (p > 0.05). Eighty-eight cases (83.8%) in the Ap group showed similar boundary patterns that were mainly located in the adenomatous cells near the adenomatous—normal-appearing mucosa junction. There was no obvious difference in the expression rate between the three histopathological types (p > 0.05) (Table 2).

No lesion in our collected cases that was diagnosed as primary benign nonadenomatous tumor, inflammatory bowel disease or secondary metastatic carcinoma to the colon had such boundary CK7 reactivity.

DISCUSSION

Cytokeratins are intracellular intermediate filaments that are critical in the maintenance of the cytoskeleton and are selectively expressed during the course of development and differentiation in different types of epithelium⁵. They can be classified into types I (CK9-23) and II (CK1-8), and there is heterodimerization of one type I keratin with a type II keratin, the nature of the combination varying within epithelial compartments¹⁰.

A series of reports have discussed both CK7 and CK20 expression patterns in neoplasms of different origins^{7,8,11-13}. Adenocarcinoma of the colon is generally considered to be immunopositive for CK20 and negative for CK7. Although several recent studies have indicated a higher

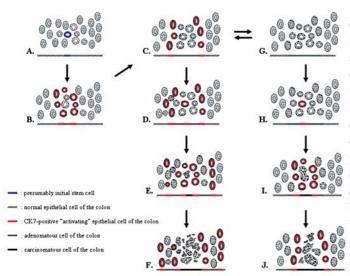


Fig. 2 "Ripple Model". Presumably, the tumor development initiates from a single pocket of epithelial stem or dedifferentiated cells (blue glands in A). Via possible cell dedifferentiation and clonal expansion, the boundary epithelial cells around the primary stem or dedifferentiated cells become "activating" (red glands in B) and then transform into adenomatous cells, and the activating wave moves along the junctional regions between normal-appearing colon mucosa and adenoma. The transformed adenomatous cells might proliferate/expand (C) or go into "static" adenomatous cells (G). As accumulation of genetic loss and/or mutation, or environmental factors stimulation, a progressed sentinel adenomatous cell becomes "activating" (D or H) and then transforms into carcinomatous cell (E or I). The boundary cells are activated and then sequel to carcinomatous cells as well as advanced cellular expansion (F or J). In this model, the "activating" CK7-positive cells that locate over the periphery of the transforming mass present an expansion/ripple wave.

percentage of CK7 expression in rectal lesions^{12,14}, we know of no previous description of the phenomenon of CK7 expression in the boundary epithelium. The specific pattern of CK7 expression in the boundary epithelium did not occur in primary benign nonadenomatous tumors, inflammatory bowel disease or carcinoma metastatic to the colorectal area, which led us to suggest that it was frequently associated with primary neoplasia rather than being a secondary reactive phenomenon. In comparison with the boundary epithelium, the uninvolved mucosa directly above or adjacent to primary colon lesions or metastatic tumors from non-large bowel primary sites (called "transitional mucosa" in previous associated reports) revealed mucin expression and alteration of mucosal thickness that was considered secondary reactive change¹⁵⁻¹⁹.

A characteristic CK7 expression pattern, similar to our observations in colorectum, is also found in the boundary mucosa of the neoplastic stomach². Review articles have suggested that malignancy could arise either from stem cells because of a maturation arrest, or from a dedifferentiation of mature cells that regain the ability to proliferate^{20,21}. It has been suggested that a decisive step for gastric carcinogenesis is dedifferentiation, defining a backward change of differentiated epithelial cells into a fetal-like phenotype. Such a dedifferentiation phenomenon has been described in a number of experimental studies on tissue or cultured cells²¹⁻²³. The possible pathways of the switch between differentiation and neoplastic growth with involvement of β -catenin accumulation, transforming growth factor (TGF)- α and epidermal growth factor (EGF) have been mentioned in human stomach², hair follicle²⁴ and in transgenic mice^{25,26}. Several studies imply that epithelial neoplasms are clonally derived; that is, a single transformed cell is the ancestor of all cells that compose the neoplasm^{1,27}.

In the 34 cases within the tCa group that were diagnosed as adenocarcinoma arising from adenoma, it was possible to study different stages in the same tumor specimen including both adenomatous and carcinomatous regions of individual tumors. The CK7-positive cells in the tCa group, similar to those in the cCa group, were situated in boundary regions between normal appearing mucosa, adenoma and carcinoma junctions. This specific phenomenon revealed that the CK7-positive adenomatous cells mainly locate in the neoplasia during progression or within transforming areas which, together with our observation that most of the CK7-positive boundary cells are low-grade adenomatous epithelial cells, might indicate that these "activating" adenomatous cells precede some events involved in colorectal tumorigenesis. The characteristic location of these CK7-positive cells, CK7-associated proteins or gene products may be related to one or more stages in the genetic model for colorectal tumorigenesis²⁸, particularly those steps between early to intermediate adenoma. CK7, as one of the type II keratins that are encoded on chromosome 12q,²⁹, and the relatively low-grade adenomatous dysplasia in most of the CK7-positive boundary cells, suggest the possibility that CK7-associated proteins or the tumorigenic stage involved might have something to do with alteration of genes located on chromosome 12 (for example the ras gene located on chromosome 12p) that result in the colorectal tumorigenesis event transitioning between early to intermediate adenoma. Similar findings were described by Chen and Wang who showed that acquisition of CK7 expression occurs early in small intestinal tumorigenesis, i.e., at the adenomatous stage, and are also highlighted by observations in studies of CK7 and $CK20^{30}$.

Although it is still controversial that mucinous colorectal carcinoma is associated with a relatively poor prognosis, mucinous carcinoma of the colorectum is considered a distinct entity with recent studies describing a number of clinicopathological parameters (such as localization, prevalence in different countries and age groups, association with hereditary nonpolyposis colorectal cancer, and inflammatory processes) and genetic alterations (e.g., frequency of mutation in Ki-ras and p53 genes, level of MUC2 expression) that differentiate mucinous from nonmucinous tumors³¹. The almost negative CK7 immunoreactivity in the boundary epithelium of mucinous tumors in our present analysis may indirectly support such evidence of a separate "mucinous pathway of carcinogenesis"³¹.

Nearly 30 years ago, Nowell suggested that adenoma progression presumably resulted from successive waves of clonal expansion³². The generally accepted genetic model for colorectal tumorigenesis suggests that it occurs in three stages through a series of genetic alterations involving oncogenes (ras) and tumor suppressor genes (particularly FAP, DCC, and p53) that take more than ten years^{28,33}. However, these hypotheses, models or observations are based on the biochemical or molecular examination of homogenized tissues and there have been few opportunities to observe the clonal development of colorectal tumors directly in human epithelia³⁴. In this paper we present a hypothesized "ripple model" (Fig. 2) to try to interpret the presumed pattern of clonal expansion in the development of colorectal tumorigenesis in terms of the specific CK7 boundary features representing a possible cell dedifferentiation²⁰⁻²⁷ and clonal expansion³².

As we try to develop a "ripple model" to explain the relationship between CK7 immunohistochemical findings and the pathogenesis of colorectal neoplasia, however, more questions remain unanswered. First, little is known about the normal function of any of the CK7-associated proteins or structures implicated in colorectal tumorigenesis, a prerequisite for understanding the biochemical and physiologic effects of the CK7-positive boundary cells⁵. Second, it is not known which point or stage of the colorectal genetic model involves these CK7-positive adenomatous cells of boundary regions, nor the exact route(s) of transduction of the possible "waves" in the ripple model as depicted in Fig. 2, the role of that route(s) in tumorigenesis or whether the progression to CK7-positive boundary cells is inexorable or can be arrested by nonsurgical means and.

lastly, the possibility of the "ripple model" being applied to tumorigenesis of other organs.

Although the precise meaning of these CK7-positive adenomatous cells in the boundary region cannot yet be determined, our hypothesized model may enable us to predict the results of several future experiments, especially the genetic/molecular relationship between CK7 and early adenoma development in the genetic model for colorectal tumorigenesis. Further identification of genetic and molecular changes characteristic of the CK7-positive boundary cells will help in understanding the etiology of colorectal tumors and possibly establish useful markers or targets for clinical diagnosis and therapy.

ACKNOWLEDGEMWNTS

The authors thank Ms. Shu-Fen Huang, Shao-Fong Liou, Yu-Ju Lin, and Hung-Chen Liaw for their excellent technical assistance. This study was supported by a grant from Tri-Service General Hospital, TSGH-C97-122, Taiwan.

REFERENCES

- Booth C, Potten CS. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 2000;105:1493-9
- Kirchner T, Muller S, Hattori T, Mukaisyo K, Papadopoulos T, Brabletz T, Jung A.. Metaplasia, intraepithelial neoplasia and early cancer of the stomach are related to dedifferentiated epithelial cells defined by cytokeratin-7 expression in gastritis. Virchows Arch 2001;439:512-22.
- 3. Slack JM. Stem cells in epithelial tissues. Science 2000;287:1431-3.
- 4. Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 1994;70:6-22.
- Porter RM, Lane EB. Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet 2003;19:278-85.
- 6. Coulombe PA, Omary MB. "Hard" and "soft" principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 2002;14:110-22.
- 7. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology 2002;40:403-39
- 8. Moll R. Cytokeratins as markers of differentiation in

- the diagnosis of epithelial tumors. Subcell Biochem 1998;31:205-62.
- Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. betacatenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999;155:1033-8.
- Irvine AD, McLean WH. Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br J Dermatol 1999; 140:815-28.
- Schmidt PH, Lee JR, Joshi V, Playford RJ, Poulsom R, Wright NA, Goldenring JR. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest 1999;79:639-46.
- 12. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 2000;13:962-72.
- 13. Tot T. Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic adenocarcinoma. Eur J Cancer 2002;38:758-63.
- Ramalingam P, Hart WR, Goldblum JR. Cytokeratin subset immunostaining in rectal adenocarcinoma and normal anal glands. Arch Pathol Lab Med 2001;125: 1074-7.
- Franzin G, Grigioni WF, Dina R, Scarpa A, Zamboni G. Mucin secretion and morphological changes of the mucosa in non-neoplastic diseases of the colon. Histopathology 1983;7:707-18.
- 16. Lev R, Lance P, Camara P. Histochemical and morphologic studies of mucosa bordering rectosigmoid carcinomas: comparisons with normal, diseased, and malignant colonic epithelium. Hum Pathol 1985;16: 151-61.
- 17. Listinsky CM, Riddell RH. Patterns of mucin secretion in neoplastic and non-neoplastic diseases of the colon. Hum Pathol 1981;12:923-9.
- Robey-Cafferty SS, Ro JY, Ordonez NG, Cleary KR. Transitional mucosa of colon. A morphological, histochemical, and immunohistochemical study. Arch Pathol Lab Med 1990;114:72-5.
- Sawady J, Friedman MI, Katzin WE, Mendelsohn G. Role of the transitional mucosa of the colon in differentiating primary adenocarcinoma from carcinomas metastatic to the colon. An immunohistochemical study. Am J Surg Pathol 1991;15:136-44.
- 20. Sell S. Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect 1993;101:15-26.
- 21. Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular

- origin of teratocarcinomas and epithelial cancers. Lab Invest 1994;70:6-22.
- 22. Slomp J, Gittenberger-de Groot AC, Glukhova MA,. Conny van Munsteren J, Kockx MM, Schwartz SM, Koteliansky VE. Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vasc Biol 1997;17:1003-1009
- 23. Sparks RL, Seibel-Ross EI, Wier ML, Scott RE. Differentiation, dedifferentiation, and transdifferentiation of BALB/c 3T3 T mesenchymal stem cells: potential significance in metaplasia and neoplasia. Cancer Res 1996;46:5312-5319.
- 24. Gat U, DasGupta R, Degenstein L, Fuchs E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β -catenin in Skin. Cell 1998; 95:605-614.
- 25. Spitzer E, Zschiesche W, Binas B, Grosse R, Erdmann B. EGF and TGF alpha modulate structural and functional differentiation of the mammary gland from pregnant mice in vitro: possible role of the arachidonic acid pathway. J Cell Biochem 1995;57:495-508.
- 26. Wagner M, L?hrs H, Kl?ppel G, Adler G, Schmid RM. Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology 1998;115:1254-1262.
- 27. Garcia SB, Park HS, Novelli M, Wright NA. Field cancerization, clonality, and epithelial stem cells: the spread of mutated clones in epithelial sheets. J Pathol 1999;187:61-81.
- 28. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67.
- 29. Rosenberg M, Fuchs E, Le Beau MM, Eddy RL, Shows TB. Three epidermal and one simple epithelial type II keratin genes map to human chromosome 12. Cytogenet Cell Genet 1991;57:33-8.
- 30. Chen ZM, Wang HL. Alteration of cytokeratin 7 and cytokeratin 20 expression profile is uniquely associated with tumorigenesis of primary adenocarcinoma of the small intestine. Am J Surg Pathol 2004;28:1352-9.
- 31. Hanski C. Is mucinous carcinoma of the colorectum a distinct genetic entity? Br J Cancer 1995;72:1350-6.
- 32. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23-8.
- 33. Leslie A, Carey FA, Pratt NR, Steele RJ. The colorectal adenoma-carcinoma sequence. Br J Surg 2002;89: 845-60.
- 34. Schmidt GH, Mead R. On the clonal origin of tumours-lessons from studies of intestinal epithelium. Bioessays 1990;12:37-40.