淺談運用 GPS 接收機實施砲兵測地

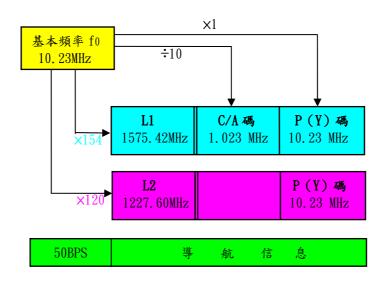
提要

- 一、1991 年波灣戰爭起,美軍陸軍為解決戰場導航與定位問題, 先後編配「輕小型 GPS 接收機」(SLGR)與「精確輕型 GPS 接收機」(PLGR),提供砲兵幹部運用。目前國軍「愛國 者」與「復仇者」飛彈系統已配備 PLGR,鑑於運用 GPS 接收 機實施導航與定位,為目前之潮流與趨勢,其實際精度、作 業區分與美軍運用方式、經驗等,值得深入研究。
- 二、GPS 本質上是一種軍用系統,基於軍事優勢之考量,美國防部刻意在 GPS 系統中區分「標準定位服務」(SPS)與「精確定位服務」(PPS)兩種等級;就儀器性能與作業方式則區分為高精度之「衛星測量」與精度有限之「單點定位」。國軍現有之 PLGR 屬 SPS 等級,僅可實施單點定位。
- 三、美軍砲兵目前編配之 PLGR屬 PPS 等級,使用 P(Y) 碼且具備「反欺騙」(A-S)能力,可滿足砲兵導航與定位需求,亦有條件配合「定位定向系統」(PADS)或與其它系統整合。惟就其運用經驗,GPS 存在信號干擾、欺騙與遮蔽等弱點,須適採有效之因應措施。
- 四、GPS 之地位即使日趨重要,惟其實際弱點與「受制於人」之隱憂,警惕國軍砲兵在規劃與運用時,絕不可過分依賴。前瞻未來宜將 PLGR 用於應急階段,正常測地仍採自主性高使用慣性原理之「定位定向系統」為主,傳統測地為輔,講求「整體、均衡、彈性」之原則,方為致勝之道。

壹、前言

1991 年波灣戰爭期間,美國陸軍為解決戰場導航與定位問題,特緊急編配「輕小型 GPS 接收機」(Small Lightweight Receiver,SLGR),為砲兵指揮官與營、連長、前進觀測官等,提供有限精度之運用。1994 年起,美國陸軍開始採購「精確輕型 GPS 接收機」(Precise Lightweight Receiver,PLGR),預定先行編配於前進部署與處理偶發事件之快速作戰部隊,爾後視預算狀況再行補充。「目前國軍「愛國者」與「復仇者」飛彈系統已配備PLGR,鑑於運用 GPS 接收機實施導航與定位,為當前潮流與趨勢,其實際精度、作業區分與美軍運用方式、經驗等,值得深入研究。

貳、GPS精度區分


GPS 本質上是一種軍用系統,基於軍事優勢之考量,美國國防部刻意在 GPS 系統中區分「標準定位服務」(SPS)與「精確定位服務」(PPS)兩種不同等級之定位服務,俾限制其他國家之軍事部門使用。²當使用 GPS 定位時,必須瞭解持有 GPS 接收機所能提供之精度等級。

一、標準定位服務(SPS):

(一)「標準定位服務」(Standard Positioning Service, SPS)直接免費提供一般民間商業與科學等之應用,在 GPS 兩種(L1、L2)載波信號中僅由 L1 頻率傳送,任何使用者皆可利用接收機之 C/A 碼(Clear/Acquisition Code)進入,取得定位相關數據(如圖一)。目前國軍「愛國者」與「復仇者」飛彈系統所配備之「精確輕型 GPS 接收機」(PLGR+96,如圖二),即屬「標準定位服務」。

¹ Tactically Employing Today's SLGR, 《Field Artillery》 6/1993, p46-49。

² 許國楨,GPS-現代武器系統作戰效能倍增器,《現代軍事》,1994年6月,頁21。

圖一:GPS衛星信號示意

資料來源:陳文豐,《全球定位系統之單點定位》,《測量學術發表會專輯》,民國 91 年 9 月第 30 輯,頁 150。

圖二:國軍「愛國者」與「復仇者」飛彈系統所使用之「精確輕型 GPS 接收機」(PLGR+96)

資料來源:作者自攝

- (二) 1990 年 3 月美國國防部為確保精確、即時之 GPS 數據僅能使用於經過核准之用戶,開始啟用「選 擇使用性」(Selective Availabity,SA),企 圖藉由刻意施加干擾之手段,使 SPS 精度降低,亦 強調從國家安全利益出發,軍方保持隨時施加 SA 之權利³。2000 年 5 月美國總統柯林頓下令關閉 SA,使 SPS 定位精度通常優於 10 公尺。惟保守估 計,在 95%的信心區間下(95% 圓形公算偏 差),平面定位精度約為 22 公尺,標高精度約為 33 公尺⁴(有 SA 與無 SA 效應之 GPS 誤差分析,如 表一)。
- (三)未來美國國防部將提供另一 C/A 碼加入 L2,使民 用者能有一更安全定位系統。

表一

標準定位服務時,有 SA 與無 SA 效應之 GPS 誤差分析表					
誤 差 來 源	標準定位服務(SPS)				
一	有 SA 狀況	無 SA 狀況			
選擇使用性(SA)	24.0 公尺	0.0 公尺			
大 氣 電離層傳播延遲	7.0 公尺	7.0 公尺			
效 應 對流層傳播延遲	2.0 公尺	0.2 公尺			
時錶與星曆誤差	2.3 公尺	2.3 公尺			
接收機雜訊	0.6 公尺	0.6 公尺			
多路徑效應	1.5 公尺	1.5 公尺			
使用者等量距離誤差	1.2 公尺	1.2 公尺			
平面精度因子(HDOP)	1.2 公尺	1.2 公尺			
筆單機平面精度(95%)	75.0 公尺	22.5 公尺			

料來源:陳文豐,《全球定位系統之單點定位》,《測量學術發表會專輯》,民國 91 年 9 月第 30 輯,頁 155。

二、精確定位服務(PPS):

(一)「精確定位服務」(Precise Positioning Service, PPS)使用P(Precision Code)碼傳

³ 同註 2, 頁 21-22。

⁴ 陳文豐,《全球定位系統之單點定位》,《測量學術發表會專輯》,民國 91 年 9 月第 30 輯, 百 155。

送,因L1、L2 載波均調制P碼,接收機可經由雙頻觀測進行電離層折射改正,因而獲得較高之定位精度(平均之平面定位與標高精度約10公尺)。PPS專門為提供美國軍方與經過授權之使用者所設計,並防止敵方對GPS不當使用,以確保美國軍方與其盟國軍事之優勢。

- (二) 1993 年美國國防部「反欺騙」(Anti-Spoofing,A-S)措施啟用,將 P 碼加密成 Y 碼,目的在防止 友軍遭敵發送之假 GPS 信號所欺騙。因加密方式 係使用一種無規律之時間變量,故難以解密。除非接收機裝置「保密鍵」,否則無法解讀加密之 P/Y 碼。
- (三)未來以防衛為導向之 GPS 現代化,則是將焦點集中再提供一個新的「軍事電碼」(Military Code,M-code),亦即將 M 碼加入原本之 L1 與 L2 頻率上,以提供信號加密保護。另基於軍事上較高信號功率之需求,M 碼將比現行的 P(Y) 碼大上 1 百倍(20dBW),俾使美國及其盟邦具有更強之反干擾能力,同時強化 GPS 信號對全球軍事行動的安全。

叁、衛星測量與單點定位

GPS 係以空間為基礎之導航系統,在全球各地可全天候提供陸地、海上與空中高精度之三維位置、速度與時間等信息。惟三維位置之決定,由於儀器性能與作業方法不同,區分為高精度之「衛星測量」與精度有限的「單點定位」。

一、衛星測量:

GPS 衛星測量乃是利用接收機收錄得之衛星信號(電碼或載波相位)及衛星之時間關係,並將錄得信號轉換為距離觀測量,以「空間後方交會法」5

⁵「空間後方交會法」係 GPS 接收機於某點同時接收 3 顆衛星信號,等於在空間測得 3 段距離(信號時間x光速),再由 3 顆已知衛星點按空間距離交會法,即可計算出接收機座標;如接

定出接收機之點位座標及其他相關未知數之測量技術。⁶ 衛星測量通常用於「控制測量」(如圖三),按「接收機在點位上停留測量之時間長短」來區分,其作業方法、觀測時間、測量精度與器材性能,均不相同(如表二)。⁷ 美軍僅陸戰隊砲兵編制Trimble 4000MSGR 衛星測量儀,遂行衛星測量。

圖三:利用 GPS 衛星測量建立控制點 資料來源:Trimble Navigation Geodetic Surveyor Technical Specifications, 10/1993。

二、單點定位:

GPS 衛星提供不同之觀測量,其中以電碼距離為觀測量來定位,應用於導航定位即時定位方面,係以單獨一個觀測站(測站)接收信號而得定位結果,稱之為單點定位。⁸目前國軍「愛國者」與「復仇者」飛彈系統所配備之「精確輕型 GPS 接收機」(PLGR+96),即屬單點定位裝備。

GPS 取消 SA 效應之後,其單點定位一般可優於 10 公尺,惟經由實際之衛星追蹤站觀測資料計算可知,即使設置於對空通視良好,遠離其他電磁波且近距離內無反射體之衛星接收站(如陽明山、北港、墾丁、太

收4顆衛星信號,另可計算標高。

⁶ 周龍章等,《GPS 衛星測量重點規範研議》,《第一屆 GPS 衛星定位技術研討會論文集》, 民國 83 年 3 月,國立成功大學,頁 211。

⁷同註6,頁214。

⁸同註4,頁150。

麻里、鳳林等五處),其單點定位誤差仍會出現大於 30公尺或甚至115公尺之大誤差。⁹

表二

八一				
衛星測量方法、觀測時間與精度表				
測量方法	觀測時間	精 度	儀器性能	
	至少需要 1 小時,常採	百萬分之一至	單、雙頻均	
靜 態	用 2-4 小時的持續觀	千萬分之一	可	
	測。	(1-0.1ppm)		
	須5至15分鐘,視基	十萬分之一至	需雙頻 L1 與	
快速靜態	線長短與衛星幾何分布	百萬分之一	L2 整波長	
	狀況而定。	(10-1ppm)		
	需重覆擺站兩次,間隔	五萬分之一至	單頻	
虚擬靜態	1小時,每次3-5分鐘	五十萬分之一		
		(20-2ppm)		
	可短於10秒鐘。	十萬分之一至	單頻	
半動態		五十萬分之一		
		(10-2ppm)		
	5 秒鐘以內。	五萬分之一至	需有通訊設	
純 動 態		五十萬分之一	備	
		(20-2ppm)		

資料來源: 周龍章等,《GPS衛星測量重點規範研議》,《第一屆 GPS衛星定位技術研討會論文集》,民國83年3月,國立成功大學,頁214。

肆、美軍砲兵 GPS 運用方式

美軍砲兵目前編配之「精確輕型 GPS 接收機」 (PLGR) 屬「精確定位服務」(PPS),使用 P(Y)碼且具備「反欺騙」(A-S)能力,可滿足砲兵部隊火砲與目標獲得之導航與定位需求,亦有足夠條件配合美軍砲兵現行使用之「定位定向系統」(PADS)作業,或支援其他「慣性導航系統」(如 M109A6 使用之「模組化定位定向系統」—MAPS)與「火砲射向賦予與定位系統」(GLPS)整合(如圖四),俾充分發揮互補功能。

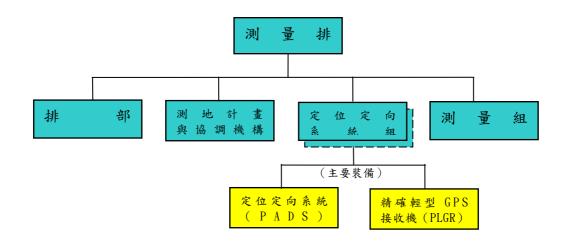
-

⁹同註4,頁158。

圖四:美砲兵連(排)編配之「火砲射向賦予與定位系統」(GLPS)

資料來源: Gun Laying and Positioning System (GLPS). Leica Geosystems AG Defense & Special Projects. 9/2002.

一、運用範圍:


PLGR 提供測量人員於全球各地實施導航、定位與校時等作業。當缺乏測地統制、時間急迫或因戰術狀況影響無法使用原有測地統制資料時,測地人員即可使用 PLGR 建立與決定位置資料。¹⁰

二、編裝型熊:

美軍砲兵測量排現行編制,下轄:排部、「測地計畫 與協調機構」(Survey Planning and Coordination Element,SPCE)、「定位定向系統」(PADS)組與 傳統測量組,1997 年起美軍砲兵已將 PLGR 配賦至定 位定向系統組內(如圖五)。¹¹

 $^{^{10}}$ 《Field Artillery Survey (FM6-2) $\,$ ' Chapter 13: Satellite Signals Navigation Set AN/PSN-11,6/1996,p13-4 $\,^{\circ}$

¹¹美軍已計畫 2004 年以「改良式位置與方位決定系統」(IPADS)取代 PADS。

圖五:美軍砲兵測量排編組型態 資料來源:作者自製。

三、建立測地統制:

當測地統制未建立時,因 PLGR 所提供之起始諸元 (座標、標高),較現行採用假設或地圖定點方式更 為精確,故砲兵測地人員可使用 PLGR 提供之定位資 料起始測地作業。

四、定位方式:

PLGR 區分為「持續」、「快速-固定」與「平均」等 定位模式,其中「持續」與「平均」模式較適合砲兵 定位,又以「平均」模式精度較高。

(一) 持續模式:

當採用「持續模式」(CONT Mode)決定火砲砲位、選擇點、定位定向系統初始校準點、位置更新點或實施閉塞撿查時,PLGR 須具備「密碼鍵」,始可獲得符合精度需求之成果。通常須先選擇適當之「大地基準」(Datum,如 WGS-84),並設定第 1級「可靠參數值」(Figure of Merit,FOM,如表三),¹²此時 PLGR 所得之座標,即可符合(甚至高於)座標 10 公尺(CEP)與標高 10 公尺(PE)之精度。¹³

12 PLGR 可選擇以「可靠參數値」(FOM)之方式顯示座標精度,其等級由 1 至 9(如表三), 等級 1 爲精度最佳,估計位置誤差可小於 25 公尺。

¹³ AN/PSN-11 Precision Lightweight GPS Reciver (PLGR) Used for Artillery Positioning, (White Paper (ATSF-GC)), US Army Artillery School, 2/2003, P1.

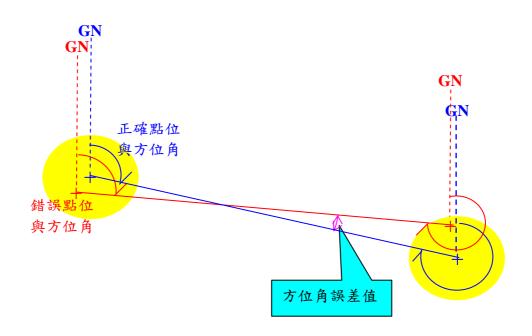
表三

*					
PLGR 可靠參數值與估計誤差對照表					
可靠參數值(FOM)	估計座標誤差				
1	#25 公尺				
2	#50 公尺				
3	#75 公尺				
4	#100 公尺				
5	#200 公尺				
6	#500 公尺				
7	#1000 公尺				
8	#5000 公尺				
9	>5000 公尺				

資料來源:《Precision Lightweight GPS Receiver PLGR+96&PLGR+96 FEDERAL Standard Positioning Service (SPS) Operations and Maintenance Manual》, Collins Avionics & Communications Division Rockwell International Corporation, 6/1996, p2-60。

(二)平均模式:

使用「平均模式」(AVG Mode)時,PLGR 不得移動,衛星信號亦須持續接收。¹⁴ 當 PLGR 設定 FOM1,再切換至平均模式後,無須經過 5 分鐘且超過 300 次之計算過程,即可獲得更為穩定與精確之定位結果。惟其定位資料須經由第二平均值(如另一部 PLGR、地圖定點或定位定向系統測點等方式)實施檢驗。


五、標高決定:

PLGR 所決定之標高,區分為「橢球體」 (Ellipsoid)高與「平均海水面」(Mean Sea Level, MSL)高兩種型式,且兩種型式之標高皆可設 定公尺或呎單位。通常砲兵應依據需求,選擇「平均 海水面」高與公尺單位。

六、方位決定:

¹⁴ 《Precision Lightweight GPS Receiver PLGR+96&PLGR+96 FEDERAL Standard Positioning Service (SPS) Operations and Maintenance Manual》, Collins Avionics & Communications Division Rockwell International Corporation, 6/1996, p2-48。

基於 PLGR 定位所得之點位座標,已存在若干誤差,如以兩點座標方式計算方位,將產生不正確之結果(如圖六)。依據美國砲校射擊組測地小組 2003 年之觀察報告,證實 PLGR 決定之方位甚難達到穩定狀態,其誤差範圍通常在 0.7 至 50 密位之間,¹⁵致美軍絕不允許以 PLGR 決定射向或設置方位,測地人員應使用方位精度符合±0.4 密位之「定位定向系統」(PADS)決定(美軍管式砲兵、多管火箭與目標獲得裝備標準位置精度,如表四)。¹⁶

圖六:PLGR 以兩點座標方式計算方位之誤差示意 資料來源:作者自繪

11

¹⁵同註 13, P3。

¹⁶同註 10, P13-5。

表四

衣口					
美軍管式砲兵、多管火箭與目標獲得裝備標準位置精度表					
精度項目	座標	標高	方位		
系統區分	公尺 (CEP)	公尺 (PE)	密位 (PE)		
105 牽引榴砲	17. 5	10	0.4		
155 牽引榴砲	17. 5	10	0.4		
155 自走榴砲	17. 5	10	0.4		
多管火箭系統 (MLRS)	20	10	1.0		
戰場火力支援與打擊偵察組 (BFIST/Striker)	30	20	2. 0		
反迫砲雷達 (AN/TPQ-36)	10	10	0.4		
反砲兵雷達(AN/TPQ-37)	20	3	0.4		
活動目標定位雷達 (AN/TPS-25/58)	43. 7	10	9		
氣象資料系統 (MMS)	114	10	9		

資料來源:《The Army Positioning & Navigation Master Plan》, United States Army Combined Arms Combat Developments Activity, 9/1990, Table2-1A。

七、與定位定向系統合併作業:

PLGR 與 PADS 合併作業時,無須增加特別裝置。惟為考量 PLGR 接近載具將造成天線遮蔽,故提供 PADS「初始校準」或「位置更新」資料時,載具須離開 PLGR 適當距離或將 PLGR 直接置於測點上,當操作手紀錄 FOM1 平均座標後,再移動載具至 PLGR 位置。如 PLGR 之「遠端天線」(Remote Antenna, AS-4333/V)已固定於載具頂上,其定位所得之座標、標高須先行修正「槓桿臂值」(Lever arms),再提供 PADS 使用。

伍、美軍砲兵運用 GPS 之經驗

美軍砲兵於 1991 年即開始使用 GPS 接收機,歷經波灣、阿富汗、科索沃與伊拉克自由作戰等戰爭,深感 GPS 之運用

雖日趨廣泛,惟仍存在諸多問題,尤當 2000 年柯林頓總統解除 SA 效應後,如何提升 PLGR 運用安全與技術,充分掌握作戰優勢,成為美軍亟需解決之問題。

一、GPS 之弱點:

(一)信號干擾:

對干擾極為敏感為 GPS 之首要弱點,其次則為信號衰減。 GPS 工作所需之衛星信號強度,如同將 100 瓦燈泡光源放射至 300 哩遠。當衛星頻率公布與開放後,僅數百美元即可製造廉價且有效之干擾裝置。事實上,所有合格之 GPS 製造商,皆有能力研發與銷售 GPS 干擾裝置。

- 1. 數年前的俄羅斯航太展中,Aviaconversia公司即公開展示一種 4 瓦功率之 GPS 干擾機,可干擾200 浬半徑之 GPS 信號,且此裝置價格低廉僅需4,000 美金,目前已升級至第四版且功率增強至8瓦。據調查,尚有數個國家在公開市場販售干擾裝置,此種外型類似易開罐,內藏 1 瓦功率之干擾器,影響距離達 20-40 哩,可輕易散佈戰場,妨礙美軍使用 GPS。17
- 2.2001 年 3 月美伊戰爭期間,美國務院抗議俄羅斯 航空轉換公司在開戰前將干擾戰機與炸彈上 GPS 系統之裝置售予伊拉克。美國政府指控,俄羅斯 技師在巴格達建立複雜之 GPS 干擾系統,並協助 其操作,以類似「蓋台」進行干擾,即利用與美 軍 GPS 同頻率之電波,蓋過衛星發射之定位電 碼,使利用 GPS 導引之精準武器產生誤差而錯失 目標,¹⁸其影響層面甚至涵蓋其他使用 GPS 之地面 部隊。
- 3.1994 年中共鑑於絕大多數之衛星導航軍民運用範疇,皆建立在美國 GPS 之上。一旦發生戰爭,美

 $^{^{17}}$ Chief Warrant Officer Three W.Mark Brans $\,^{,}$ Artillery Surveyors Nomads of Battlefield $\,^{,}$ $\,$ $\,$ $\!$ Field Artillery $\,$ 1-2/2001 $\,^{,}$ p44 $\,^{,}$

¹⁸ 忠頻,反制中共「北斗」衛星導航系統,《軍事家 197 期》,2001 年 1 月,頁 91。

國關閉 GPS 或加大 SPS 誤差,對中共影響甚鉅, 致其未雨綢繆發展自主之「北斗衛星導航系 統」,同時研發攻擊衛星相關技術與北斗、GPS之 雙模系統。國軍目前尚無攻擊北斗系統能力,僅 能以干擾方式反制。惟干擾北斗系統時,GPS 即可 接替;¹⁹如干擾 GPS,則同時影響國軍使用。

(二)信號欺騙:

欺騙手段係將先側錄之 GPS 信號,間隔若干時間後再以較高功率播放,造成定位錯誤,且因偽冒與錯誤之舊信號以高功率播放,致使用者接收機無法察覺。目前軍用 GPS 在製造時雖已先行加密,惟欺騙技術已顯著提升,仍對砲兵造成威脅。據瞭解,國際上某些軍事工業正致力欺騙軍用 GPS 接收機相關技術之研發。20

(三)信號遮蔽:

使用 GPS 時,接收機與衛星間須確保通視。如接近濃密樹葉、建築物、峽谷、載具等可能遮蔽衛星信號之物體,致衛星可用數少於 4 顆或幾何分布不佳時,將嚴重影響定位精度。

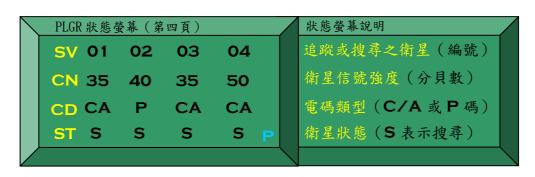
二、因應措施:

(一) 反干擾:

當 PLGR 遭受干擾時,可由「低雜訊比」(信號強度)或接收全面受阻而察覺。操作者可將 PLGR 移至其他位置,或於接收器與干擾源間設置遮障方式克服。當信號強度超過 34 分貝 (dB) 時 (如圖七),即可判定干擾已被排除。

(二)反欺騙:

當 PLGR 處於受欺騙狀態時,系統可偵測出電子欺騙手段,接收機螢幕亦將出現可能已遭受欺騙之警示。為防止 PLGR 遭受偽衛星信號欺騙,而發生


¹⁹ 同註 18,頁 91。

²⁰ 同註 17, P44。

導航與定位資料錯誤,使用密碼鍵與「全 Y 頻」 (ALL-Y),為最有效之反欺騙措施。²¹

(三) 反遮蔽:

PLGR 為接收較多之衛星數,通常最佳仰角設定為 10 度。如可用之衛星無法獲得時,應將設定切換至 0 度,待衛星獲得後,再切換至仰角 5 度之正常操作狀態。如衛星數仍不足,則應將 PLGR 移至較適當之位置。²²

圖七:PLGR 狀態螢幕第四頁

資料來源:《Precision Lightweight GPS Receiver PLGR+96&PLGR+96 FEDERAL Standard Positioning Service (SPS) Operations and Maintenance Manual》, Collins Avionics & Communications Division Rockwell International Corporation, 6/1996, p2-38。

陸、結語

波灣戰爭為 GPS 重要性的分水嶺,其地位由可有可無之奢侈品,躍升為不可或缺之必須品,目前已廣泛運用於軍事與民間之測量、定位、導航與校時等領域。惟 GPS 猶如一把雙刃劍,除可提供我軍在戰場上勝過對手,相對而言,敵方亦可運用之。

基於 GPS 之運用,尤其使用「標準定位服務」(SPS) 接收機,確實存在信號干擾、欺騙、遮蔽、精度不穩定與 無法定向之弱點,以及「受制於人」之隱憂。警惕國軍砲 兵在規劃與運用時,絕不可過分依賴。前瞻未來宜將 PLGR

²¹ 同註 10,頁 13-4。

²² 同註 10, 百 13-4。

用於應急階段,正常測地仍採自主性高,使用慣性原理之「定位定向系統」為主,傳統測地為輔,講求「整體、均衡、彈性」之原則,方為致勝之道。

作者簡介:耿國慶備役中校,現任職陸軍飛彈砲兵學校目標組。