

鑽地彈發展兼論我因應之道

作者簡介

李俊明少校,陸官校62期、裝校正規班325期;曾任排長、 副連長、連長、副營長、作戰官,現任職於步校軍聯組聯二 小組。

提要》》

- 一、鑽地彈主在運用於對機場跑道、地面加固目標及地下設施進行攻擊的對地彈藥,其載體一般為巡弋飛彈彈體、洲際飛彈彈體、航空炸(飛)彈彈體等,其運載功能是使鑽地彈頭命中目標。
- 二、鑽地彈未來將朝向:(一)引信更為智能化;(二)彈體隱形化;(三)彈種多樣化; (四)斬首精確化;(五)小型核彈化;(六)朝向多彈頭發展。
- 三、共軍鑽地彈對我作戰之影響:(一)地下指揮中心遭威脅;(二)通、情、監、偵 系統易遭癱瘓;(三)戰力保存更困難;(四)造成人員大量傷亡;(五)輻射污染影 響部隊運動;(六)難獲空軍支援作戰。
- 四、鑽地彈防護作為:(一)設預備指揮所,混淆攻擊目標;(二)地下設施更深入,工事應更強化;(三)預為工事規劃,確維精實戰力;(四)運用積極手段,摧毀發射載具;(五)實施偽裝與干擾,迷盲攻擊目標。

關鍵詞:鑽地彈、鑽地核彈、地下掩體剋星

前 言

作戰時善用地下工事實施戰力保存, 可使攻擊一方人員傷亡增加,作戰時程 增長,後勤耗損增多,自古以來即為防 禦必要作為,以為防禦作戰行動爭取戰 勝契機。1999年科索沃戰爭中,以美國 為首的北約對塞爾維亞發動空襲,歷時78 天,計運用80幾顆衛星,動用各型飛機 1,200餘架, 出動33,200架次, 投擲各類炸 彈23,000餘枚,空襲1,000多個目標,塞爾 維亞以地下設施及採用多種手段實施反空 襲,有效保存70%以上的戰力。英國首相 布萊爾感嘆:「要將武器裝備不良,但深 藏在掩體中的43,000塞爾維亞族人趕出科 索沃,需要有200,000萬人的軍隊❶。」 所以先進國家皆積極投入研發與改良鑽地 彈,以求作戰初期能完全癱瘓敵戰力,有 利地面作戰遂行。中共有鑑於此,也已投 入鑽地彈研究。本文旨在介紹各國鑽地彈 發展概況、未來發展趨勢、其對我防衛作 戰之影響,並提出防護作為,俾供參考。

鑽地彈結構組成與原理

鑽地彈是以攜帶鑽地彈頭,運用於對 機場跑道、地面加固目標及地下設施進行 攻擊的對地彈藥2。其結構組成與原理如 下:

一、結構組成

鑚地彈由載體和侵徹彈頭部組成,載 體一般為飛機、飛彈、巡弋飛彈、核彈

等,侵徹彈頭部由內侵徹彈頭、高爆裝藥 和引信組成,侵徹彈頭一般為高強度鋼或 重金屬合金材料,採用破片殺傷方式,引 信通常為延時近炸引信或智能引信30。

二、鑽地彈破壞原理

(一)動能擠壓

鑽地彈之所以能鑽進地下深處,是 依靠其強大的動能。依動力學原理,物 體的動能受速度的影響特別大,具有一定 質量的兩個物體,只要具有較大的相對速 度,碰撞時就會具有巨大的破壞力。如 果其中一個物體具有堅固的外殼,就能防 護物體內部結構在碰撞過程中免遭破壞, 那麼,這個物體就不會被損壞,就可能對 另一物體產生強大的擠壓力而鑽進被撞物 體內部,鑽地彈就是利用此一原理鑽進地 下深處的。其鑽地深度與重量、頭部的形 狀、撞擊目標的角度和速度等因素密切相 關。鑽地彈的彈體一般以高強度的材料製 成,在彈體的內外表面還須裝有防熱層。 如此,當高速運動的鑽地彈到達地面時, 其彈體就不會被撞裂,鑽地彈就能依靠自 身巨大的動能,順著尖銳的彈頭方向繼續 向地下鑽4。

(二)延時引信、智能引信

引信是引爆彈頭的裝置。鑽地彈的 引信可使鑽地彈平時處於保險狀態,不 會發生爆炸,當鑽進地下一定深度後,能 按特定的指令執行工作,以便適時引爆彈 頭,產生爆炸。鑽地彈的引信可以分為很 多種,延時引信是較為常用的一種,一般

註❶:《解放軍報》(北京),1999年12月22日,版8。

註❷:地平線下網站,〈何謂鑽地彈地〉,http://www.guiping.org.cn/thjs/page_11.htm

註❸:廖文中,〈解放軍新配備地下掩體大剋星——鑽地彈〉《尖端科技》,第239期,2004年7月,頁11。

註❹:人民網,〈鑚地彈:善攻者攻其之下〉,http://www.people.com.cn/BIG5/paper2836/14346/1276247.html

炸(飛)彈撞擊目標後,彈頭內的引信觸點接通,在小於1毫秒的時間內會使雷管發火,從而引爆炸藥發生爆炸。當鑽地彈撞擊目標後,由於延時引信的作用,所以,雷管此時並未發火,而是經過300毫秒以上的延期作用,再發火並進而引爆炸藥5。智能引信是美軍正在研發的多級引信,期能更準確摧毀欲攻擊之地下目標。

鑽地彈頭的分類

一、動能鑽地彈頭

動能鑽地彈頭是利用彈體飛行的動 能,撞擊、穿入掩體內部,再引爆彈頭內 之高爆炸藥,摧毀目標。

二、複合型鑽地彈頭

複合型鑽地彈頭一般由1個或多個安裝在彈體前部的聚能空心裝藥彈頭與安裝在後部的侵徹彈頭組成,利用聚能空心裝藥彈頭強大之射流使工事等硬目標破壞、變形,並沿彈頭方向形成孔道,侵徹彈頭再循孔道鑽入目標內部,摧毀目標⑥。

鑽地彈特性0

一、彈體設計要求高

鑽地彈的設計是要鑽入堅固的工事內,所以其彈體材料必須具有高強度和高 韌性,才能保證彈頭內電子組件等裝置能 夠在高速侵徹時形成的高溫、高壓等等狀況下,繼續向前鑽入至預定目標,以有效破壞敵地下指揮所、飛彈發射井等堅固之地下軍事目標。

二、撞擊速度巧妙設計

如果撞擊速度太低,會使侵徹深度過小,甚至無法鑽入到目標,但撞擊速度過高,則又可能出現因撞擊溫度接近或超過彈頭材料的熔點而導致彈頭變形,出現蘑菇彈頭效應而使侵徹深度降低,所以撞擊速度必須經過精算,才能有效發揮鑽地效能。

三、爆炸威力鉅大

鑽地彈鑽入地下,爆炸時經由向地下偶合能量,簡稱為「力偶」(coupling),使其破壞效能比同當量地面爆炸要大10~30倍。因此,鑽地彈即使鑽入地下不深,其爆炸能量將傳導至地面,產生之強烈震波足以震毀或破壞地下設施3,故對地下工事破壞效果十分顯著。

四、破壞效應特殊化

燃燒鑽地彈頭可鑽入工事內爆炸、燃燒,產生高溫,使作戰人員窒息和中毒;並藉由高溫燃燒、催化劑和氧化作用,摧毀武器庫中的特殊有害物質,且將有害氣體封閉在工事內部⑨,適合摧毀深藏於地下的生化武器彈藥庫。

註**⑤**:徐宏、李偉,〈鑽地彈為什麼能鑽地〉,http://yeqin.shoudu.net/ccjs/chinanews/data/20010627145132.htm

註**⑤**:石豔霞,〈鑽地武器:伊拉克地下工事的剋星〉《現代軍事》,第2003年4月期,2003年4月1日,頁 13。

註7:同註4。

註❸: Ezio Bonsignore, 吳晨輝譯, 〈摧毀強化之地下目標〉《國防譯粹》,第34卷第6期,民國96年6月,頁 100。

註9:同註4。

美、德、英、中共鑽地彈發展

早在第二次世界大戰末期,盟軍就曾 試圖研製鑽地彈,用以摧毀德軍地下指 揮所、彈藥庫、軍工廠和防空洞等軍事 目標,就在德國宣布投降的前幾個月, 英國海軍研製出一種火箭推進炸彈「迪 斯尼」,它能鑽透5.8公尺厚的混凝土, 不過並未於戰場上使用。第二次世界大戰 後,美國進行鑽地彈的研製嘗試,在彈體 材料、引信技術等技術領域獲得突破性進 展,為爾後鑽地彈的發展奠定基礎⑩。茲 將蒐集之美、德、英、中共鑽地彈發展敘 述如後:

一、美軍鑽地彈

美國自第二次世界大戰後,即開始展 開鑽地彈研發,雖有一定程度基礎,卻 未積極生產配備部隊使用。第一次波灣戰

爭開始不久,美軍發現大規模的 空襲根本難以摧毀伊拉克的地下 軍事設施,於是要求國防部儘快 研製深層鑽地彈,只花17天時間 就研製成功GBU-28型鑽地彈(如 圖一),美國目前鑽地彈發展如 下:

(-)GBU-28型鑚地彈(如圖 二)

第一次波灣戰爭期間,由於 戰前伊拉克大量構築防護工事, 主要軍事力量均隱藏在堅固的深 層地下工事中,700餘架飛機除部 分轉移到國外,其餘均分散隱蔽 在深達40公尺的混凝土機庫中。

此外,戰車、裝甲車輛、火砲、兵力也藏 於地下掩體。儘管聯軍的空襲和飛彈襲擊 異常猛烈,先頭15天伊軍飛機、戰車、裝 甲車輛與火砲的損失不到10%,38天狂轟 濫炸後,伊軍被毀於地面的飛機僅11架, 戰車保存70%,裝甲車輛與火砲仍然保存 有65%,共和國衛隊也並未受到重創。美 軍對此甚為困擾, 匆匆向其國防部提出 火速研製攻擊地下堅固設施武器的需求。 17天後,2枚GBU-28型雷射導引炸彈被緊 急運往波灣戰區,由1架F-111戰鬥轟炸機 對巴格達以北數千公尺的空軍基地地下 綜合設施進行轟炸,其中1枚準確命中目 標,對地下掩體目標造成毀滅性的破壞。 據報導,第一次波灣戰爭期間,美國共生 產30枚此種炸彈,後來又對其進行研改, 製造出161枚硬目標鑽地炸彈,專用於對 付堅固的地下掩體和防空洞❶。GBU-28

美國GBU-28型鑽地彈實驗

資料來源:http://jczs.sina.com.cn

註❶:鼎盛軍事網,〈鑽地彈:「盾」堅「矛」更利〉, http://mil.jschina.com.cn/Get/JSPJ/0423194989.htm

註**①**:中國網,〈鑽地武器雷射導引〉, http://big5.china.com.cn/chinese/junshi/471506.htm

屬於美國「寶石路」Ⅲ雷射 導引炸彈系列。彈體分為導 引艙、彈頭部艙、尾艙3大部 分。其中, 導引艙主要由雷 射導引頭、感測器、電腦等 組成。它和尾艙中的控制尾 翼共同控制炸彈鑽入命中目 標。GBU-28全重達2.3噸, 最大直徑約440公厘,長約 5.84公尺,炸彈內裝填2.000 磅、5,000磅高爆炸藥,具 有智慧化的引信,引信的核 心組件是微型固態加速計, 可隨時將炸彈鑽地過程中的 有關數值與內裝程式進行比 較,以確定鑽地深度。當炸

彈碰到地下掩體時,會自動記錄穿過的掩體層數,直到到達指定掩體層後才會爆炸。GBU-28能鑽入地下6公尺深的加固混凝土建築物或30公尺深的地下土層 ②。

(二)GBU-37型鑽地彈

GBU-28型雷射導引鑽地彈體積過大,只有F-15E、F-111等少數飛機可以外掛攜帶,無法裝載在F-117 A、B-1、B-2遠程隱形轟炸機上,所以尚難參與極具震懾力的首波空襲,且準備工作十分複雜,需要預先提供目標及投放條件等各方面準確數據。為解決上述問題,美國在GBU-28基礎上開發成功GBU-37型鑽

圖二 美F-15E戰機投擲GBU-28型炸彈

資料來源:http://news.163.com

註●: 兵器裝備網, 〈美國GBU-28「寶石路」Ⅲ雷射導引炸彈〉, http://www.wpeu.net/BQZs/06/./BQZSGBU28.htm

註❸:同註❸,頁102。

註優:周天宏等,《解放軍報》(北京),2003年12月31日,版8。

以上,已可攻擊深藏在地下發射井中的洲 際彈道飛彈**B**。

(三)JDAM型鑽地彈

它是一種由美國空、海軍聯合研 製,為具有高準確度、全天候、自主式導 引能力的鑽地彈。1997年開始批量生產, 可由轟炸機或戰鬥機從高、中、低空投 放,用以攻擊各類地(海)面目標❻。

四三軍通用聯合距外攻擊飛彈 (TSSAM)

三軍通用聯合距外攻擊飛彈具有 很強的鑽地能力。在1994年7月的一次不 爆炸鑽地試驗中,該彈頭曾使重量為230 噸、厚為1.5公尺的鋼筋混凝土標靶連同 其固定設施往後移動100公厘,而彈頭卻 在貫穿標靶後繼續往前推進172公尺,且 未受到明顯的損壞10。

(五)高超音速巡弋飛彈

高超音速是指飛行速度超過5馬赫 的速度。高超音速技術是極其複雜的綜合 技術,涉及引擎技術、燃料技術、材料技 術和總體設計技術等眾多關鍵技術領域。 近年來,高超音速技術已取得重大進展, 各國的高超音速巡弋飛彈、高超音速飛機 和跨大氣層飛行器已經進入先期技術驗證 階段。高超音速巡弋飛彈的飛行速度快、 突防能力強、攻擊目標範圍大,特別適合 攻擊加固目標和深入地下的目標,具有極 高的軍事價值。從1996年開始,美國國防 高級研究計畫局(DARPA)、海軍和空

軍根據各自的需求,分別制定高超音速巡 弋飛彈發展計畫。1998年初,DARPA就 與波音公司簽訂為期18個月、價值1,000 萬美元的高超音速「波浪騎士」巡弋飛彈 研究合約。該型飛彈採用慣性和全球定位 系統(GPS)複合導引,射程為1,200公 里,重量1,544公斤,彈頭部重113公斤, 飛行速度在6.5馬赫以上,命中精度在9公 尺以內。它採用兩級火箭助推器,利用固 體火箭助推器將飛彈加速到4~5馬赫。按 計畫將在2004年進入研製階段,2010年初 步具備作戰能力。美軍認為,由於高超音 速巡弋飛彈具有極高的動能,即使不使用 彈頭部攻擊某些目標時也能達到良好的侵 徹效果,其對於沙土地的最大貫穿深度可 達40公尺,特別適合打擊地下指揮中心等 深入地下的堅固目標。這種飛彈可裝備 在包括F-22、F-35在內的各種飛機上,還 能從美海軍水面戰艦的MK41垂直發射系 統和類似的潛艇垂直發射系統發射。美 海軍計畫以這種高超音速巡弋飛彈取代 現役的「捕鯨叉」、「斯拉姆」、「斯拉 姆」和BGM-109C/D「戰斧」等巡弋飛彈 **B** •

(六)核鑽地彈

美國從1960年代就著手研究與發展 鑽地核武器,直到1997年研製出B61-11鑽 地核炸彈(如圖三),截至1998年8月, 美國已裝備50枚B61-11鑽地核彈。該彈重 343~726公斤, 長約3.7公尺, 彈徑約0.34

註:: 問義, 〈美軍鑽地彈現狀與發展趨勢〉, 中國航太網站, http://www.space.cetin.net.cn/docs/ht0208/ ht0208ddwq02.htm

註(1):同註(4)。 註0:同註6。 註18:同註15。

圖三 B-2轟炸機正在練習投擲B61-11鑽地核彈 資料來源: http://210.79.226.16:81

公尺,彈尾直徑約0.57公尺,可由B-52、 B-1、B-2戰略轟炸機和F-16戰鬥機攜帶, 能在鑽入岩石2~6公尺後引爆,爆爆 量300噸~30萬噸,爆炸釋放的能量大內 學導入地下,能破壞100公尺範圍內 整硬岩石,對深地下工程爆震」 應遠大於同當量觸地爆炸。美軍計畫逐步 用它取代日益老化的B53核彈(當量900 萬噸、重5,340公斤),打擊敵方,美國 下工程。為提高遠距離投射能力,美國 下工程。為提高遠距離投射能力,美國 下工程。為提高遠距離投射能力, 下工程。為提高遠距離投射能力, 大於同當量900 萬噸、可以由B-2隱形轟炸機在離對 中理外發射優。美軍在近幾年的戰爭 現,地下兵工廠和化學武器貯存庫等 現,地下兵工廠和化學武器貯存庫 設施越來越多,且比以前更深、更堅固

強度,使彈頭能穿透更深的土層、岩石和 鋼筋混凝土工事,到達地下軍事目標**②**。

二、英國「擴孔器」(BroACh)鑽地彈

「擴孔器」(BroACh)由英國研製,裝備到傳統標準飛彈上。美國也在對其進行試驗,以裝備到AGM-86C傳統空射巡弋飛彈、AGM-154C、AGM-129先進巡弋飛彈、戰斧巡弋飛彈上。此外,「擴孔器」還可裝在砲彈和肩射飛彈上20。

三、德國「麥菲斯托」(MEphisto)鑽地 彈

「麥菲斯托」(MEphisto)是為德國KEPD-150標準飛彈而研製的。研製計畫從1997年開始,目前已成功進行3個階

註**®**: 現代軍事網,〈美國鑽地核武器的研製與作戰使用〉,http://210.79.226.16:81/hcetin2/qk/xdjs/b/xd2002/xd2002-3-3.htm

註**②**: 趙卓昀,〈五角大樓欲重啟鑽地核彈研究而美國國會猶豫不決〉,網易網站,http://news.163.com/05/0218/16/1CSTIBG200011235.html

註②:同註②

段的試驗。其是以德國、瑞典合作研製 的KEPD-350動能鑽地飛彈為基礎而研製 的。「麥菲斯托」的侵徹彈頭部裝有光電 感測器近炸引信,主侵徹彈頭部尾部裝有 程式化智慧多用途引信,可設定空爆、觸 發和侵徹3種爆炸模式。在侵徹模式下, 彈頭部可在鑽透沙石、混凝土等多層結構 後,在掩體內部空間爆炸❷。

鑽地核彈模型 資料來源: http://jczs.sina.com.cn

註2:同註2。

註繳:同註❸,頁13。

四、共軍鑽地彈

根據2004年4月在美國加州克萊蒙研 究所發表的一份有關共軍飛彈部隊的研 究報告,共軍二砲部隊對美國在阿富汗 戰爭和第二次波灣戰爭中使用鑽地彈的 效果印象深刻。因此借鑑美軍在戰爭中針 對破壞深藏地下廠庫、指揮所的鑽地彈種 提出多項研究計畫,至2002年底止,根 據報告中所提出之彈種分類計有:(一)東風 15A型(如圖五)反機場跑道的穿透與隨 機起爆子母彈頭; 二東風21系列的延期鑽 深彈頭; (三)東風5A (如圖六) 洲際飛彈 的鑽深彈。2004年6月15日美國參議院通 過法案,核准美國政府研發有鑽地功能, 專攻地下碉堡的超小型5KT級核彈頭。無 獨有偶,共軍二砲的「東風5A」系列洲 際飛彈彈頭亦有1~5KT核子殺傷彈頭的 報導,是否可以及時轉換作為鑽地彈的 彈頭,用於大型地下目標的爆破,值得我 們重視20。另據英國《詹氏防衛週刊》報 導,共軍的鑽地彈研製技術已經達到世界

中共東風15型飛彈 資料來源: http://military.china.com

型八 下六木黑J至水冲

資料來源: http://military.china.com

先進水準,並擁有性能優異的鑽地彈。據稱,這種炸彈與地雷撒布器結合起來,不僅能在跑道上炸出一個大坑,使周圍的混凝土隆起,而且遍布四周的鑽地雷還會使機場搶修速度放緩發。

美、德、英、中共 鑽地彈性能比較

目前各國鑽地彈發展,仍以美國為翹楚,其彈種多樣化、性能智能化,是為各國發展模仿之對象。茲將美、德、英、中 共鑽地彈性能作比較如附表。

鑽地彈未來發展趨勢

一、引信更為智能化

鑽地彈有多級引信,炸彈觸地後先鑽入地下一定深度,由引信A引爆,炸開一個洞口,炸彈繼續鑽地;遇到混凝土結構時,引信B再引爆,炸開混凝土結構,並繼續往下鑽;遇到鋼板加固工事時,引信C引爆;炸彈鑽透鋼板後進入掩體內部,彈體最後才爆炸☎。

二、彈體隱形化

未來的鑽地彈將廣泛採用隱形技術, 採用非圓截面外殼,在彈體外塗上各種吸 波材料,美海軍正利用奈米隱形技術研製 一種新型奈米鑽地彈,它能躲避現今所有 的偵察設備②。另美國還可能在GBU-28 的基礎上研製隱形鑽地彈,以便與B-2、

註**②**:東方軍事網,〈害怕戰時遭受飛彈襲擊臺軍忙著練搶修機場跑道〉,http://mil.eastday.com/eastday/hmil/node3507/userobject1ai332421.html

註**⑤**:中國公眾科技網,〈鑽地彈:地下設施的剋星〉,http://database.cpst.net.cn/popul/guard/armss/artic/30407160058.html

註40: 同註120。 註40: 同註430。

附表 美、德、英、中共鑽地彈性能比較

國別	型號	彈 頭 裝 藥	導引方式	射 程	精 度	鑽 地 深 度
美國	GBU-28型鑚地彈	2,000磅、5,000磅	雷射導引	5公里	_	地下6公尺深的加固混 凝土建築物或30公尺 深的地下土層
	GBU-37型鑽地彈	2,000磅~3,000磅	GPS導引	_	6.1公尺	能鑽入18公尺以上混 凝土工事
	JDAM型鑽地彈	500磅~2,000磅	慣性+GPS 複合導引	24公里	3.05公尺	可穿透13呎厚的混凝土
	三軍通用聯合距外攻 擊飛彈 (TSSAM)	2,000磅	慣性+GPS 複合導引	185公里	_	可穿透1.5公尺以上的鋼筋混凝土
	高超音速巡弋飛彈	_	慣性+GPS 複合導引	1,200公里	9公尺以內	對於沙土地的最大貫 穿深度可達40公尺
	核鑽地彈	300噸~34萬頓	-	數十哩	_	能破壞100公尺範圍內 的堅硬岩石
英國	「擴孔器」(BroACh) 鑽地彈	1,000磅	_	_	_	對沙石、混凝土鑽透 深度為6.1~9.1公尺
德國	「麥菲斯托」 (MEphisto) 鑚地彈	1,000磅	_	_	_	對沙石、混凝土鑽透 深度為6.1~9.1公尺
中共	東風15A系列	90KT核彈頭或 500公斤彈頭	GPS導引	800公里	小於100 公尺	_
	東風21系列	250KT	未來將採 GPS導引	1,700公里	500公尺	_
	東風5A系列	1∼5KT	未來將採 GPS導引	13,000公里	800公尺	_
備考	一符號為未查獲相關數據					

資料來源:一、Ezio Bonsignore,吳晨輝譯,〈摧毀強化之地下目標〉《國防譯粹》,第34卷第6期,民國96年6月,頁 102 °

- 二、周天宏等,《解放軍報》(北京),2003年12月31日,版8。
- 三、百度網,〈GBU28雷射制導炸彈〉,http://baike.baidu.com/view/1104034.html。
- 四、Tianyabook網、〈鑚地彈〉,http://www.tianyabook.com/junshi2/247.htm。
- 五、張如倫,〈精進中的中共「第二砲兵」〉《陸軍月刊》,第41卷第473期,民國94年1月1日,頁42、43。

F-117A等隱形飛機相配合❷。

三、彈種多樣化

未來的鑽地彈彈頭可能有穿甲、爆破 和燃燒等類型,使用者可根據攻擊目標的 防護特點,靈活運用。如裝有微波發射裝

置的鑽地彈侵徹地下指揮中心、通信中心 和電腦控制中心等資訊設施時,裡面的電 子設備將被強微波能燒毀,使電子資訊系 統失靈,如美國近年研製的音爆彈頭/微 波彈頭,在工事內爆炸後產生的噪音/微

註❷:同註❷。

波,可對人員造成傷害,使電子設備失靈 ②。

四、斬首精確化

大規模殺傷已不適合現代戰爭,美軍 在兩伊戰爭中數次實施斬首行動,如2006 年6月7日於伊拉克谷拜附近投下JDAM彈 藥,炸死「聖戰士」基地組織首腦札卡 威。為能遂行攻擊深藏於地下工事〔洞 穴)之斬首行動,且能減少附帶損傷, 鑽地彈也朝向小型及低破壞力發展⑩。另 美國鑽地彈的命中精確度已達到10公尺以 內,擬將進一步改進導引技術,使其命中 精確度提高到3公尺以內,以有效摧毀目 標①。鑽地彈將廣泛應用衛星導航,其導 引的穩定性、抗干擾性和精確度都很高, 將可大幅提高鑽地彈精確度。目前美軍正 在試驗一種「最佳雙重投擲技術」,即一 前一後發射2顆鑽地彈打擊同一目標點, 實施連續爆炸,它就是採用全球定位系統 (GPS) 導引,效果極佳**②**。

五、小型核彈化

依美國國防部情報局掌握的資料顯示,目前全球70個國家約有10,000多個深層的地下掩體,其中1,400多個是大規模殺傷性武器的戰略儲藏地點。一旦發生戰爭,這些深層的地下掩體將成為首波軍事

打擊目標。但是一般的傳統鑽地彈能量顯然不足以摧毀這些深入地下,特別是山岩中的指揮中心(由科索沃戰爭可知),更美國開始尋求再發展更精確、威力更大人的鑽地核彈來攻擊這些防護嚴密的地方,更下自標繳。美國目前核鑽地彈朝向當量為統分對不到核武器,將使核鑽地彈使用不易被察覺,增加其實用性繳。

六、朝向多彈頭發展

據報導,美國擬將「三叉戟Ⅱ」潛射 彈道飛彈的多彈頭核彈改裝為3~7枚深鑽 地核彈頭,每枚彈頭的爆炸當量只有幾十 至幾百噸,運用多彈同時爆炸聚集的爆震 波效應原理,可有效摧毀深地下目標而又 不傷及附近民間設施,對中等強度岩石或 混凝土的鑽地深度約18公尺每。

中共鑽地彈對我作戰之影響

一、地下指揮中心遭威脅

目前我部隊重要指揮所已地下化,可 防護一般精準飛(炸)彈的攻擊,但鑽地 核彈能夠摧毀深埋在地下軍事目標,故我 地下設施不再安全無虞,作戰時可能成為 敵鑽地彈鎖定攻擊目標。

二、通、情、監、偵系統易遭癱瘓

註四:同註6。

註**①**: 同註**①**。 註**②**: 同註**②**。

註: 學習時報網站, 〈不散的核陰影——美軍研製改裝鑽地原子彈〉, http://www.china.org.cn/chinese/zhuanti/xxsb/545602.htm

註錄:同註錄。 註錄:同註錄。

綜觀美軍近幾年來作戰行動,首波以 各式飛彈實施攻擊,除攻擊指揮管制中心 外,通信中心、防空系統、雷達站等亦為 勢必攻擊目標。我現有通信中心、防空系 統、雷達站等都有良好工事,可對一般飛 彈攻擊具有良好防護效果。然而,鑽地彈 可深入混凝土工事內,故對我通、情、 監、偵系統易於癱瘓,使我地面部隊如同 失去雙眼與雙耳,身陷戰場迷霧之中,無 法瞭解敵之動向, 導致被動挨打局面。

三、戰力保存更困難

鑽地彈可對我戰甲車掩體、儲存後勤 物質的地下設施、飛彈發射陣地等,實 施摧毀與破壞攻擊,使我戰力保存更形困 難,而有利其作戰遂行。

四、造成人員大量傷亡

美國家研究委員會鑽地核彈研究組和 其他武器效果委員會主席阿埃爾尼說:雖 然鑽地核彈的當量可能會比傳統核彈小20 倍,但造成的傷亡等同於「在地面爆炸一 枚同當量核彈 | 所造成的傷亡。如果鑽 地核彈在市區爆炸,那麼它造成的人員死 亡人數可能會達一百萬。在人口稀少的地 區,如果風向朝向人口稠密地區,它造成 的死亡人數也可能達幾十萬ᡂ。有報導指 出,中共已朝向鑽地核彈發展,故未來其 若使用鑽地核彈勢必造成我地面作戰人員 大量之傷亡。

五、輻射污染影響部隊運動

一顆當量約為廣島所投擲原子彈 (20KT) 1/3的小型核彈,至少要鑽入地 下約200公尺,才能有效避免核輻射擴散 進入環境中。而目前最先進的鑽地彈技 術,最多只能到達地下30公尺左右,因 此,鑽地彈爆炸後大規模核污染不可避 免。大量落塵除對地面作戰人員造成傷亡 外,亦將對我地面部隊運動形成限制。

六、難獲空軍支援作戰

空軍基地也是敵首波鑽地彈攻擊之標 的, 屆時機場設施或戰機必遭敵破壞, 緊 急搶修亦需一段整修時間才能重新開放機 場使用,所以地面部隊作戰時,將難適時 獲得空軍火力支援。

鑽地彈防護作為

一、設預備指揮所,混淆攻擊目標

現行國軍重要指揮所大都已地下化, 可減少敵精確導引武器攻擊之損害,這些 重要指揮所可能早已被中共偵知,毫無祕 密可言。中共近年來已開始研發鑽地彈, 未來,對我地下化指揮所必將構成威脅。 因此,各級指揮所應多設置預備指揮所, 使敵人無法確切掌握攻擊目標。

二、建立備用指揮系統,確保指管暢通

在戰爭中,指揮所往往是敵人「第一 擊」的目標,固定之指揮所必為敵所攻 擊,若我指揮所被先期摧毀,戰力必然迅 速瓦解。故應以研發中之八輪甲車為基 礎,衍生出適合之指揮車型,以便能隨時 接替指揮,同時躲避敵偵察及結合精準鑽 地彈之攻擊,確保我指、管、通、情系統 暢通,戰力得以適時發揮。

三、地下設施更深入,工事應更強化

未來實施工事規劃時,須考慮中共鑽 地彈性能(鑽入土層深度、鑽入加固混 凝土工事深度),將地下設施更深入與更

註: 新浪網, 〈美研究機構: 鑽地核彈可造成地面百萬人死亡〉, http://jczs.sina.com.cn/2005-04-29/ 1310284625.html

強化,以阻擋鑽地彈鑽入,如可運用山地地形,以水平方向山區側面構工,使有更厚之屏障,雖入口坑道可被損知,然一旦進入山中,則缺乏可確定坑道轉。直往何處之技術方式,使敵無法掌握正確之攻擊目標,確保設施安全於工事強化亦可參考戰甲車防護系統,以保存適當對地彈無法穿透至重要設施,以保存適當戰力。

四、預為工事規劃,確維精實戰力

五、運用積極手段,摧毀發射載具

運用最積極的手段,也就是在敵尚未 對我投射鑽地彈之前,即先利用敵後組 織、特戰部隊、電腦病毒、反輻射飛彈 等,將敵之投射系統、鑽地彈儲存基地或 工廠予以摧毀,癱瘓其投射能力。

六、實施偽裝與干擾, 迷盲攻擊目標

鑽地彈能發揮摧毀功效,主要在於正確負知目標及精確導引,故偽裝與干擾是為良好之防護方式。「隱真示假」主要運用隱蔽與偽裝、設置假目標,混亂敵目標偵蒐,引誘敵攻擊假目標。為有效達到偽裝之功效,應將現行偽裝設施實施研

改,使其具有綜合光譜防護力,並能防護 可見光、近紅外線、熱源和雷達之偵察, 欺騙敵衛星偵察系統、預警機、有人與無 人偵察機,使敵無法掌握所需攻擊目標。 另亦應針對導引系統實施干擾,以迷盲其 導引能力,共軍鑽地彈導引方式主要有慣 性導引、有線導引、指令導引、地形匹配 導引、GPS導引、雷達導引、電視(可見 光) 導引,各種導引方式都有不同之干擾 方式,我們應針對遠、中、近距離的各個 環節實施干擾。在遠距離上應對其感測導 引雷達、GPS、地形匹配雷達干擾;在中 距離上對其指令傳輸系統實施干擾; 在近 距離上對其末端導引系統 (電視導引、雷 達導引、雷射導引)實施干擾,併用多種 干擾手段構成多重防禦體系,有效降低敵 鑽地彈作戰效能₿。

結 語

註母:同註母。

註®:施清岸,〈現代軍事通電技術對精準導引武器作戰研究〉《陸軍後勤季刊》,第35期,民國93年9月1日,頁61。