

軍用機器人發展現況簡介

作 簡

介

江文川副教授,美國德州農工大學資訊碩 士、美國辛辛那提大學機械碩士、工業工 程博士;曾任助教、講師,現任職於陸軍 官校資訊系。

・提要

- 一、科技的發展往往也帶動各種新式軍用武器機具的技術蓬勃興起,機 器人應用於軍事用途以減少人員的傷害為目標已逐漸成為潮流,近 來各國無不卯足全力發展軍用機器人,其發展不僅提升了戰鬥力, 也避免傳統戰爭大量的人員傷亡。
- 二、國際間發展的軍用機器人類型已達上百種,功能遍及各種不同的軍 事應用領域,諸如偵察、保障、排雷、防化、攻擊、防禦型等等。 若以空間的配置將軍用機器人作一分類,可以大致分為陸面、水下 及空中軍用機器人三種。
- 三、國防戰備的素質與實力,是確保國家安全安定的重要因素,軍用 機器人已然在未來成為戰場上的主角,世界各國為因應世局的快速 轉變,掌握國際軍事主流,如何建立機制,整合與運用科技人才資 源,積極發展與研析軍用機器人,為當前軍事單位所面臨的挑戰。

前 言

美國國防部機器人項目辦公室負責人戈登·約翰遜說:「它們不會感到飢餓,不會產生恐懼,也不會忘記長官的命令。即使有人在它們身邊中彈倒下,它們也毫不在意。難道它們不比人類幹得更出色嗎❶」?

自第一個機器人的具體概念問世級之間, 整40多年的發展已有傲大年 在用途人的要是是有人。 是是一個機器人。 是是一个。 是一个。 是一一。 是一个。 是一一个。 是一一个。 是一一个。 是一一个。 是一一个。 是一一个。 是一一个。 是一一

科技的發展往往也帶動各種新式軍 用武器、機具的技術蓬勃興起,現代戰 爭中應用高科技裝備已越來越多,生命 得到至高的重視,因此機器人應用於 事用途以減少人員的傷害為目標而逐漸 成為潮流。軍用機器人是一種用於軍 此具有某些擬人功能的機械電子裝置, 它可以是一個武器系統,例如:機器人

機器人應用於軍事用途之過去與現況

註❶:網易科技網,http://tech.163.com/05/0218/15/1CSR05QG0009153V.html

註❷:中國科普博覽網,〈機器人博覽——機器人探密〉,http://159.226.2.5:89/gate/big5/www.kepu.net.cn/gb/technology/robot/secret/sec101.html

註❸:中華民國微系統暨奈米科技協會,http://www.nma.org.tw/bulletin/newslist.asp?web_id=msa&func_seq=2&serialno=919

目前,國際間發展的軍用機器人類型已達上百種,功能遍及各種不同的軍事領域,諸如偵察、排雷、防化、攻擊、防禦……等等型式。若以空間的配置將軍用機器人作一分類,可以大致分為陸用、水下、空中軍用機器人的介紹,將著重在陸用型軍用機器人的介紹,分述如下:

一、陸用機器人

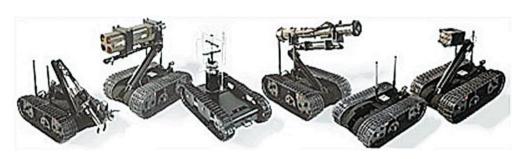
陸用機器人可以用以執行掃雷、偵察、攻擊和運補等各種任務,大大降低士兵的傷亡。美、英、德、法、日等國均已研製出多種不同用途的陸用機器人,並在實戰中成功協助完成任務。 在此舉例說明各種不同用途之陸用機器 人:爆裂物處理、掃雷、獵殺、保安、 偵察機器人及其他類型的機器人。

(一)爆裂物處理機器人

依中華民國最高法院民國22年上字第4131號判例指出:「刑法上所謂爆裂物,係指其物有爆發性,且有破壞力,可於瞬間將人及物殺傷或毀損者而言⑤。」因此,我們可以清楚的界定出凡是具有爆發性、破壞力且能在瞬間將人及物殺傷或毀損的物品,就是爆裂物。

軍事行動是爆裂物處理機器人發展的主要動力之一,其他諸如:恐怖事件的頻繁發生、政治事件的恐嚇手段、藉機要脅金錢或單單只是惡作劇心理等,也提升了爆裂物處理機器人的需求。

註❹:中國科普博覽網,〈機器人博覽——軍用機器人〉,http://159.226.2.5:89/gate/big5/www.kepu.net.cn/gb/technology/robot/army/sec101.html


註母:中華民國法務部,http://www.moj.gov.tw/ct.asp?xItem=26480&ctNode=96&mp=001

註❻:中國安防產品網,http://www.secu.com.cn/news/view/2005/3/14/9798.htm

iRobot公司的PackBot機器人等等,亦 具有相同之性質。

TALON機器人(如圖一)的重 量大約80磅,每小時可行進5.2哩,一 次充電可走約20哩。在「清醒」模式 下,也就是機器人執行監視任務但大部 分時間還是休眠狀態,一次充電大約可

化輕型攜行裝備(MOLLE)」中❸。 將PackBot運用在爆裂物處理時,配 備了稱為爆裂物處理器「Explosive Ordnance Disposal, EOD」和工程師 的全套工具,可以對土壤進行挖掘,然 後舉起相當於自身重量2倍的炸彈⑨。 此外, PackBot Explorer機器人搭配聲

美國Foster-Miller公司以TALON機器人平臺為基礎,延伸發展出 昌 一 的軍用機器人系列照

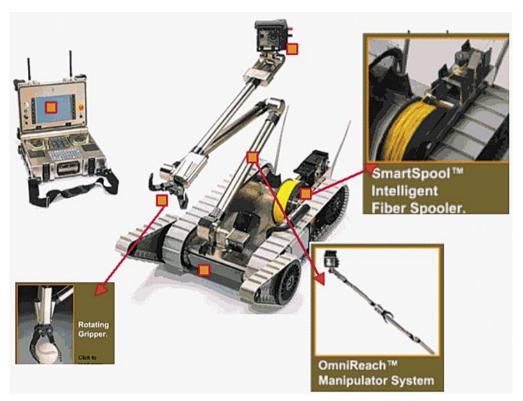
資料來源:http://taiwan.cnet.com/news/ce/0,2000062982,20094647,00.htm

使用1星期。操作人員是透過無線電的 命令或是光纖網路來指揮,還可配備火 箭砲以達到武裝化的目的♥。TALON 曾經在波西尼亞協助清除手榴彈,以及 世貿中心災難現場的清理。

PackBot機器人(如圖二)體 型小巧, 長0.87公尺、寬0.51公尺、 高0.18公尺、重18公斤。「Packbot」 意指「背包機器人」,美國已準備將 其納入美軍新型單兵標準裝備「模組

波定位儀、雷射掃瞄器、微波雷達等 多種裝置,能準確捕捉敵方狙擊手的方 位, 還可執行反狙擊任務; 報導指出, 美國軍方已在伊拉克和阿富汗使用這樣 的機器人進行偵察與排除炸彈和反狙擊 任務❶。

(二)獵殺機器人


獵殺機器人專職追蹤和射擊任 務,目前最負盛名的獵殺機器人為美 國陸軍在阿富汗和伊拉克戰場上使

註: Taiwan.CNET.com, http://taiwan.cnet.com/news/ce/0,2000062982,20094647,00.htm

註❸: 中國評論新聞網, http://www.chinareviewnews.com/doc/1002/6/6/7/ 100266749.html?coluid=6&kindid=27&docid=100266749

註9:機器人愛好者網,http://www.roboticfan.com/Article/general/200610/252.shtml

註●: 國際縱橫網, http://big5.chinabroadcast.cn/gate/big5/gb.cri.cn/321/2004/04/14/ 152@129102.htm

圖二 美軍用於伊拉克戰爭的PackBot Explorer機器人 資料來源: http://playrobot.com/menu09_c23.htm

用的SWORDS(Special Weapons Observation Reconnaissance Directaction System)機器人(如圖三),又稱為「劍」機器人,由Foster-Miller公司研發製造,它的前身為TALON機器人,兩者的不同點在於,TALON主要執行爆裂物處理和災難現場的清理任務,而SWORDS則裝上了機槍等大威力武器,直接執行戰鬥任務。

SWORDS身高只有3呎(約合 0.9公尺),它裝備了4具攝影機、夜 視鏡、變焦設備等光學偵察或瞄準設 備。能裝備的武器包括:M16步槍、M240、M249機槍以及M2 02-A16 40公厘火箭彈發射器等;以步槍或機槍而言,每分鐘能發射1,000發子彈。士兵可以對其進行遠程遙控指揮,有效控制距離最遠為1,000公尺;採用交流電、電池或充電電池作為動力;控制盒重13.6公斤,有兩個操縱桿,分別控制武器和SWORDS機器人優。

另外,由美國iRobot公司研發 生產的「戰士」(Warrior)獵殺機 器人(如圖四),它配備了兩挺全自

註**①**: Foster-Miller Company, http://www.foster-miller.com/lemming.htm

註●:百靈寬帶網, http://news.beelink.com.cn/20050222/1789107.shtml

劍機器人的功能圖

美國陸軍在伊拉克戰場上使用的SWORDS機器人,左圖為其正面 照,右為細部說明

資料來源:http://sports.eastday.com/eastday/mil/node3205/node3206/userobject1ai709895.html http://news.beelink.com.cn/20050222/1789107.shtml

動、自動裝彈、可遙控的機槍,重量 為250磅。這種機槍被稱為「鎚子」 (Hammer),目前還處於實驗階段 **B** •

(三)掃雷機器人

據聯合國兒童基金會1996年的 報告估計,在全世界64個國家中埋有 700多種合計共1.1億顆地雷,例如在 波灣戰爭中,伊拉克共埋設了500~ 1,000萬顆各種地雷、阿富汗有1,000 萬顆、柬埔寨有500~800萬顆、安

哥拉900萬顆、莫三比克200~300萬 顆、波士尼亞黑塞格維那有300~500 萬顆等。這麼多地雷對於平民百姓生命 有極大的威脅,不時傳出傷亡的報導, 更不要說許多地方還在不斷埋下的新 地雷。現在世界上每月平均有2,000人 死於地雷爆炸,每年約有2~2.6萬人因 而喪生,地雷已使25萬人致殘。而且 每清除一顆30美元的地雷,需要花費 300~1,000美元,這麼多的地雷以現 在的投資與技術需要1,400年才能清除

註❸:機器人愛好者網,http://www.roboticfan.com/Article/general/200610/252.shtml

圖四 美國iRobot生產的「戰士」Warrior機器人 資料來源: http://www.roboticfan.com/Article/general/200610/252.shtml

完畢。在阿富汗,只靠人工掃雷,清除 全國的地雷需要4,300年。而且掃雷還 會造成士兵的傷亡,因此掃雷成了各國 緊迫而又長期的任務。機器人掃雷之所 以受到人們的重視,不僅因為它掃雷速 度快,更重要的是它可以避免人員的傷 亡。

此外,2002年1月初,日本文部科學省在東京展示了用於探測和清除地雷的六腳機器人「慧星2號」(如圖五)。它不但可以探測到普通的地雷,而且還可以發現聲波雷達無法發現的塑膠地雷。這種機器人將被用於阿富汗的掃雷工作圖。德國的「萬發

雷」(Minebreaker 2000)機器人掃雷 車,則採用「豹|」型 主戰坦克的底盤,能 夠透過自身攜帶的重 型碳化鵭齒,把地表 的植被清除,割斷地 雷的引爆索,然後挖 出並摧毀埋在地下的 彈藥。在同時間內, 它的掃雷面積相當於 一個工兵排掃雷面積 的15~20倍。在戰 場上,這些掃雷機器 人更可先行為部隊開 路,大大減少地雷帶

給部隊的傷亡**B**。

四警戒機器人

一般而言,警戒機器人均具有多種功能,可用於巡邏、偵察煙、火及入侵者,此外,它還可以在發現問題時即時發出警報。最大利益在於能夠最大程度的替代保安的工作,做到人們所不能做到的保安工作。

警戒機器人可用於軍事基地、核 子武器設施、洲際飛彈地下發射庫、軍 需倉庫、軍火庫、機場、鐵路樞紐、港 口、大型油槽,及其他重要設施的保衛 工作。

由我國專家與新光保全公司合作

註**④**:東方新聞網,〈日本的掃雷機器人〉,http://news.eastday.com/epublish/big5/paper5/20020120/class000500003/hwz583671.htm

註**⑤**:公眾科技網,〈形形色色的機器人〉,http://academy2003.cpst.net.cn/popul/topic/artic/51213144244.html

圖五 日本文部科學省展示慧星機器人

資料來源:http://news.eastday.com/epublish/big5/paper5/20020120/class000500003/hwz583671.htm

研製的首款保全機器人「新保中正一號」(如圖六)即將量產。具有自動行走、迴避障礙、爬坡、偵測火災(斯、毒氣)或人體溫度、警訊通報、監視等多項功能,白天可以利用語音導覽系統及觸控螢幕,擔任導覽員;晚上又可轉任保全人員,供遠程操控⑩。

在東京舉行的2004安全設備大展上展出的T63警戒型機器人(如圖七左),是日本TMUSK公司所研製,它為室內型保全機器人,並具備樓層間自

動巡邏、即時影像傳輸、遠端操控、自動充電、攻擊/防禦裝置、手臂取物以及火焰、人體等多重感測裝置,當它感應到火苗時能即時聯繫消防中心,東國火苗時能即時聯繫消防中心有灑水功能。除此之外,若偵測到罪犯入侵不下63也能噴出煙霧來暫時使罪犯喪失行動能力,TMUSK公司尚有Ligurio戶外警戒型之機器人(如圖七右)仍像。

(五)偵察機器人

偵察機器人的功能在於搜索及跟

註●:中國教育和科研計算機網,〈臺灣研製成功的首款保安機器人將批量生產〉,http://www.edu.cn/20040924/3116763.shtml

註: PCHOME http://article.pchome.net/00/01/73/36/23~31

註®:吳兆橫、何侑倫和林彥君,〈保全機器國際發展現況〉《智慧機器人技術專輯》,第218期, 2006年8月,頁23~31。

圖六 由我國專家和新光保全公司合作 研發的「新保中正一號」保全機 器人

資料來源:吳兆橫、何侑倫和林彥君,〈保全機器國際發展現況〉《智慧機器人技術專輯》, 第218期。 蒐集。

除前文曾提及美國Foster-Miller 公司的TALON機器人和iRobot公司的 PackBot機器人外,美軍最近新推出 一種偵察機器人,命名為「龍行者」 (Dragon Runner) (如圖八)的偵察 機器人,其設計目的就是避免士兵的 傷亡,能在城鎮地區代替士兵開展偵察 工作。軍隊可以將它隨即扔到目標地, 無論是山洞裡、屋子的角落、樓梯間, 或者屋頂上,這種機器人都能夠重新再 站立起來,執行任務。此款機器人核心 裝置為一無線數據機和超高頻UHF圖 像傳輸系統,它的作業系統包括運動裝 置、操作控制系統和一個遙控器裝置。 士兵們只要用不到3秒鐘就可以把它從 背包裡面拿出來投入使用,它的最高運 行速度達到每小時20哩。機器人有一

圖七 日本TMUSK公司所研製的保全機器人,圖左為T63室內警戒型機器人;圖右為Liqurio戶外型保安機器人

資料來源:吳兆橫、何侑倫和林彥君,〈保全機器國際發展現況〉《智慧機器人技術專輯》,第 218期。

蹤戰場上的機動目標;也可偵察識別建 築物內人類和機器的活動。可在戰場中 取代士兵前往危險區域進行偵察或情報 個隨車攜帶的錄影機,可以在白天或 夜間提供戰略目標的即時畫面,以及 士兵們視線以外的潛在危險區域的圖

由美國卡內基·梅隆大學和美國 佛吉尼亞海軍實驗室合作研發的 「龍行者」(Dragon Runner) 機器人

資料來源:http://big5.southcn.com/gate/big5/ www.southcn.com/tech/news/ 200406290070.htm

像。它也可以用來做崗哨,用超音波 感測器來監聽某個特定區域的不同方位 的動向。該系統還能有效地克服各種障 **礙物、翻越欄杆、上下樓梯。它還具有** 一個方便攜行的把手,及方便裝卸供電 系統的設計,前端有一個能夠提供圖像 的攝影機。「龍行者」首次在阿富汗戰 場的山洞中使用,成功完成多項艱鉅任 務,證明了其戰場之實用性❶❷。

(六)其他類型的機器人

一輪型

R-Gator (如圖九) 是一種 新型汽車,由美國iRobot公司和John Deere合作在其公司的Gator平臺改裝 而成。它可以人為駕駛,也可以自動駕 駛,配備了「R-200」輕武器系統操作 的一挺30機槍。這種自動汽車有長時 間的、大容量的貨物運輸功能,性能十 分卓越。

CRUSHER(如圖十)尖端機器人 戰車,由美國卡內基.梅隆大學國家機 器人中心於2006年所研製,重6.5噸, 它定位為混合型運輸車,這種機器人 也可以代替士兵在危險地區執行偵察任 務。即使沒有裝甲,CRUSHER戰車也 可以承受輕兵器打擊,繼續前進,因為 它的每個輪子都具備引擎與懸吊系統, 即使其中的一個或幾個輪子失靈,戰車 照樣可以行進2020。

二履帶型

GLADIATOR (如圖十一)軍 用機器人,由美國卡內基·梅隆大學國 家機器人中心為美國海軍陸戰隊量身 訂做,目前正在研製中,重2,000磅, 體積與CRUSHER相比小得多,美國海 軍陸戰隊打算將它作為一種戰術偵察 車。

三腿型

「大狗」Big Dog(如圖十 二)運輸型機器人,是由美國Boston

註❷: 吳兆橫、何侑倫和林彦君,〈保全機器國際發展現況〉《智慧機器人技術專輯》,第218期。

註⑩:南方網,http://big5.southcn.com/gate/big5/www.southcn.com/tech/news/200406290070.htm

註❷:中國網,http://news.china.com.cn/chinanet/china.cgi?docid=85078311,54424989 &server=192.168.9.86&port=3002

註❷:今日電腦網, http://www.computertoday.com.hk/robot.php?gsel=19&commonid=48

圖九 由美國iRobot公司和John Deere合作 研發的R-Gator無人駕駛車

資料來源:http://www.roboticfan.com/Article/general/ 200610/252.shtml

圖十 由卡內基·梅隆大學國家機器人中心 所研製的CRUSHER機器人戰車

資料來源:http://www.computertoday.com.hk/robot.php?gsel=19&commonid=48

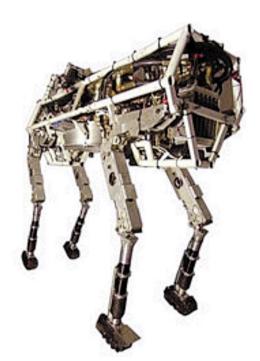
Dynamics公司研製,高2.3呎、重165磅的未來載重機器人,它能夠在戰場上為士兵運送彈藥、食物和其他物品;汽油是它的動力來源,內裝維持機身平

衡的迴轉儀。它擁有比傳統輪式機器人更強的越野能力,一次有效荷載可搭載40公斤,可爬越35度的斜坡。同時,它還裝備多種傳感器,其中最為特殊的是一套用於保障平衡和穿越崎嶇路面的「主動平衡」系統@@。

四衛兵型

由南韓公司聯合研製出的 一種機器人衛兵(如圖十三),可 用於守衛重要軍事設施和執行巡邏 任務。這種由三星集團Techwin公司 領導研製的機器人衛兵, 聲稱能偵 測、警告並以壓制性火力對付入侵 者。南韓政府2003年12月投資98億 韓元(約合10.3億美元)開始這項 為期3年的研製計畫。Techwin公司 負責這項研製工作的總工程師說, 這種機器人衛兵兼有通常的「視 力」和紅外線探測能力,能識別2公 里(白天)和1公里(夜間)以外的 人、汽車或樹木,還可探測到4公里 (白天)和2公里(夜間)以外的移 動物體。

這位總工程師說,這種機器人衛兵能夠盤問10公尺以內的來客,並在偵測到闖入者時發出警報。這些功能可以由機器人衛兵自動完成,也可以由管理員操縱。一名管理員可同時操縱16個機器人衛兵。如有需要,還


註❷:工業控制網,〈機器人大「比拚」,超前技術影響人類生活〉,http://www.industrialcontrols. eetchina.com/ART_8800424763_2500004_584065d8200607.HTM

註❷:智能機器人,〈大狗(BigDog)機器人將為軍隊運輸設備〉,http://robotworld.org/robotworld/index.php?option=com_content&task=view&id=41&Itemid=2

由美國卡內基 · 梅隆大學國家機器人中心為美國海軍陸 圖十一 戰隊量身訂做的GLADIATOR軍用機器人

資料來源:http://war.zgjrw.com/News/20061231/War/183822264600.html

圖十二 美國Boston Dynamics公司所研製的「大狗」Big Dog運輸型機器人

資料來源:1.http://www.industrialcontrols.eetchina.com/ART_8800424763_2500004_ 584065d8200607.HTM

> 2.http://robotworld.org/robotworld/index.php?option=com_content&task =view&id=41&Itemid=2

圖十三 由南韓公司聯合研製的機器人 衛兵,目前正在測試中

資料來源:http://big5.china.com.cn/military/txt/2006-09/30/content_7208285.htm

二、水下軍用機器人

水下機器人不僅可用於海上資源的 探勘和開發,而且在海戰中也有不可替 代的作用。水下機器人分為遙控、半自 動及自動型。為了爭奪制海權,各國都 在開發各種用途的水下機器人,一般常 見的有探雷機器人、反水雷水下機器人 等。

(一)探雷機器人

美國海軍陸戰隊專家依據一種大 龍蝦的形態,開發出了能穩健地在海 邊沙灘和淺灘地區移動並探尋地雷、 水雷的機器人。這種機器人的身形近 似長方體,在其身體下部安裝的原本是 數個橡膠輪子,當機器人在遙控裝置的 操縱下靠近可疑物後,其攜帶的傳感 器能探測到爆炸物成分的特殊分子。 但是,當機器人進入海邊的淺灘地區 後,海浪和方向不定的水流會嚴重阻 礙機器人的行進。為了解決這個問題, 研究人員根據常在美國海岸出沒的一種 大龍蝦的形態,對探雷機器人進行「整 容」。重整過的機器人的身體兩側被分 別裝上4條可彎曲的長腿,其身體後部 有兩片形似大龍蝦尾部的支撐板,頭頂 上還有兩根形似觸角的器件。但是, 原有的輪子並沒有拆除。當機器人依 靠輪子快速駛進淺灘後,它的8條腿可 在遙控下支撐起身體,穩健地趴著在 水底行進,其移動速度可達每秒15公 分。在急流中,機器人尾部的支撐板 和從頭頂伸下的「觸角」能夠扎入水 底細沙,協助機器人繼續行進。研究 人員認為,經過進一步改裝後,這種機 器人還能在淺灘地區協助搜尋遇險人員 **2**36 °

註**⑤**:中國互聯網新聞中心,〈南韓研製出機器人衛兵能夠盤問10米之內來客〉,http://big5.china.com.cn/military/txt/2006-09/30/content_7208285.htm

(二)反水雷水下機器人

水雷的種類繁多,利用不同的水 雷封鎖航道,不僅在戰爭期間是對海軍 的巨大威脅,而且戰後清理它們也是個 令人頭痛的事情。

正像在地面上一樣,海上掃雷也 是一項既困難又危險的工作。為了避 免人員的傷亡,一些已開發國家都利用 遙控水下機器人ROV掃雷。用ROV掃 雷的過程一般分四步驟 — 檢測、分 類、識別和銷燬。掃雷艦的聲納發現 水雷後,先測出方位,然後再把ROV 放入水中。透過光纜控制ROV駛向目 標,並利用ROV攝影機進一步確定它 是不是水雷,若是,則利用ROV置放 炸藥然後引爆水雷。瑞典博福斯公司研 製的「雙鷹」ROV已被瑞典、丹麥及 澳大利亞海軍選用。在德國和比利時海 軍也選擇SAAB博福斯動力公司的ROV 掃雷;由於ROV的技術成熟,所以目 前大多數國家都使用ROV掃水雷。但 是ROV的臍帶纜嚴重限制了機器人作 業區域的大小和操作的 靈活性;美國 海軍制定無人無纜潛水器(UUV)發 展計畫,UUV或稱之為自動水下機器 人(AUV),以期能取代ROV,突破 ROV的限制如。

三、空中軍用機器人

空中機器人又叫無人飛機,是軍用機器人研製技術進步最大、經費投入最

多、實戰經驗最豐富的領域。其主要用 於戰場警戒、蒐集情報、目標跟蹤或毀 損評估,兼具偵察、定位等多項軍事功 能。無人飛機可概分為三大類:

(一)第一類:大型無人飛機

具1,000公里以上的遠距飛行能力,系統成本昂貴,須具有複雜的衛星導航控制設備與性能,滯空時間長。

(二)第二類:中、小型無人飛機

飛行能力為100公里以上的中、 短距離,系統成本較低,導控設備較簡單,通常以螺旋引擎為主,目前此類無 人飛機全球研發與應用最廣。

(三)第三類:微型飛行器

機身6吋大小,飛行能力只有10 公里以內。導控設備操作簡易,同樣以 螺旋槳引擎為主,成本便宜。

註❷:大公網訊,http://www.takungpao.com/news/2003-7-4/_IN-151452.htm

註: http://www.roboticfan.com/robot/bbs/dispbbs.asp?boardID=46&ID=1415&page=3

註❷:人民網,〈綜述:美軍無人飛機嶄露頭角〉,http://www.people.com.cn/BIG5/junshi/63/20030429/982104.html

圖十四 美國國防部無人駕駛飛機 (BQM-34A火蜂)

資料來源:http://www.people.com.cn/BIG5/junshi/ 63/20030429/982104.html

圖十五 美國空軍於阿富汗戰爭中的掠 食者偵察機

資料來源: http://www.people.com.cn/BIG5/junshi/ 63/20030429/982104.html

隨著時代進步,高科技的無人飛機將使 有人戰機逐步退出天空,取代成為未來

圖十六 由美國波音公司研發的X-45A 無人戰鬥機,於2005年5月25 日成功完成首飛任務

資料來源: http://www.people.com.cn/BIG5/junshi/ 63/20030429/982104.html

的空戰主角之可能2000。

軍事單位發展與研析軍用機

註❷:人民網,〈美軍無人飛機嶄露頭角〉,http://past.people.com.cn/BIG5/junshi/63/20030429/982104.html

註⑩:解放軍報網,http://www.pladaily.com.cn/big5/pladaily/2004/07/28/20040728001334_gjjs.html

器人之挑戰

以美國國防部國防先進研究計畫署 為例,其主要任務在維持美軍的科技優 勢和維護國家安全,並透過高投資研 究,彌合與探詢基礎研究和軍事用途之 間的縫隙, 並提供美國國防部推動國家 安全變革。DARPA的管理哲學在於引 進專案管理,透過充分的授權能迅速做 出決策,政府亦提供相當獎金來鼓勵研 究成果。近年來美軍高層認為,自動化 的陸海空載具或機器人,將可有效紓緩 汽車炸彈或地對空飛彈造成人員死傷, 有鑑於此,美國國防部DARPA便陸續 於2000~2004年對卡內基·梅隆、加 州、維吉尼亞和喬治亞大學、波音公 司、諾斯洛普格魯曼、英特爾等產學界 合作,投入金額並高達3.800餘萬美元 來進行對偵察、運輸機器人或無人載具 自動駕駛新型戰車Spinner等的研發, 以取代M1戰車。此結合產官學各界能 量,投入先進國防科技研發的機制值得 我方參考。

將目前各方科技人才培訓資源與國 防需求相互整合,從事機器人產業先期 研發作業,除了可與民間密切合作之 外,更可藉此發展軍民通用技術,把軍 事技術建立於民生工業,厚植國防工業 於民間以帶動產業發展,建立平時將 才訓練儲備於民間(寓兵於民),於需 要時政府即可隨時整合運用這股人力資 源能量動。

結 論

收件:96年3月16日 修正:96年5月11日 接受:96年5月21日

註**①**:陸開泰,「第七次全國科學技術會議」,第六議題子題二題綱三。Http://www.nsc.gov.tw/pla/tc/Files/9308-others/0805-6(5)-5.doc