雷達研析 - 論相列雷達的發展與運用

作者:陳良培 中校

提要:

- 一、面對速度快、飛行高度低、干擾能力強、雷達截面積小的新一代威脅武力, 傳統的二維雷達系統已逐漸失去現代化戰場的優勢,取而代之的是多功能 三維相列雷達系統(3-D Phased Array Radar),美軍愛國者飛彈系統以及神盾 級艦隊,均以配署相列雷達爲其主要的特色。
- 二、相列雷達集一般雷達的搜索、追蹤、接戰功能於一身,並可快速部署於戰場,同時執行多批目標鎖定,更可提供目標三度空間之雷情,並迅速情傳至指管中心,以執行威脅評估與火力分配,藉以整合多層火力單元,遂行接戰攔截,實爲當前克制飽和攻擊之利器。
- 三、相列雷達主要特性爲:
 - (一) 具俯視搜索能力。
- (二) 具抗干擾、雜訊的能力。
- (三) 具反輻射飛彈(Anti-Radiation Missile, ARM)能力。
- (四) 具建立安全走廊能力。
- (五) 具導引(Cueing) 防空武器射擊的能力。
- 四、正視未來共軍新一代戰機、導彈的威脅,並有鑑於我現役雷達系統對其偵 蒐能力明顯不足之際,相列雷達的出現,提供了我們未來向外採購與自行 研製努力的方向,期能有效增加我防空預警時間,提高戰場存活率,並能 制敵於千里之外。

壹、前言

近年來,中共軍方頻頻提出「打贏下一場高技術局部戰爭」、「發展遠攻戰力」、「保衛海洋國土」等口號與目標,更在 2006 年年初對台提出「斬首戰術」與「猝然突襲」構想,以作爲對台動武的軍事行動概念。誠如美國前國防部助理次長白邦瑞(Michael Pilsbury)於 1955 年來台訪問時所指出,中共對未來戰爭的研究投入相當程度的努力,企圖掌握未來戰爭規

律,以贏得未來戰爭。證諸國際媒體,中 共軍事力量的未來發展,如同其經濟實力 快速茁壯一般,皆爲世人矚目的焦點。尤 其在波灣戰爭之後,中共軍方更取得美軍 「戰斧巡弋飛彈」(Tomahawk)的相關技 術,大幅提昇其精準縱深打擊的武力。

面對速度快、飛行高度低、干擾能力強、雷達截面積小的新一代威脅武力,傳統的二維雷達系統已逐漸失去現代化戰場的優勢,取而代之的是多功能三維相列雷達系統(3-D Phased Array Radar),美軍

愛國者飛彈系統(圖1)以及神盾級艦隊, 均以配署相列雷達爲期主要的特色。

圖 1、愛國者相列雷達 資料來源:美國國防部網站(DOD)

相列雷達集一般雷達的搜索、追蹤、 接戰功能於一身,並可快速部署於戰場, 同時執行多批目標鎖定,更可提供目標三 度空間之雷情,並迅速情傳至指管中心, 以執行威脅評估與火力分配,藉以整合多 層火力單元,遂行接戰攔截,實爲當前克 制飽和攻擊之利器。

相列雷達技術亦爲許多電子電機等 尖端科技之薈萃,例如寬頻帶、高功率之 發射機、大型武器系統整合技術、快速訊 號處理電路、智慧型高方向性天線、超大 型積體電路設計與製作、巨型軟體開發與 維護、高頻高品質電路設計,以及物件導 向軟體的分析與設計,均涵蓋於電子電機 等相關領域內,且息息相關。

故本文重點除介紹一般雷達的基本 原理與架構外;並對三維相列雷達系統運 作、固有的特性、作戰的功能、現況的應 用與未來的發展趨勢提出探討。

貳、雷達緣起、原理與限制

一、緣起:

遠朔 1864 年馬克思威爾 (James Clerk Maxwell) 藉數學推算出電磁波的特性公

式,並認爲電磁波與光具有許多相同的特性。十五年後(1888年),德國科學家赫茲展開一系列實驗而證明電磁波的存在(圖2)。

圖 2、赫茲實驗示意圖

資料來源:朱耀衣譯,《雷達基本原理》,徐氏基金會 出版

直到二次世界大戰英國瓦特生瓦特 爵士(Sir Robert Watson-Watt)將五個無線 電定位系統設立於英格蘭的東海岸,有效 地偵測出橫越英倫海峽的德國機群之位 置與航路。使得雖然在戰鬥機數量上處於 弱勢的英國皇家空軍,因能及早預警,而 適時地將其颶風式及噴火式戰鬥機予以 集中,形成局部空優,而締造了不列顛輝 煌的空戰史蹟(圖3)。

圖 3、不列顛空戰

資料來源: http://www.51wall.com

在此以後,雷達元件的相關技術陸續被開發出來,例如調速管(Klystron)、共振空腔(Resonant-Cavity Magnetron)等,至此雷達的研究工作有了突破性地進展,在目標方向與距離測定的功能上,也

因此定義了雷達的名稱與功用一「無線電 偵蒐與測距」(Radio Detection And Ranging)。

二、雷達組成

- 一般的雷達系統係由發射機、天線、 接收機與顯示器所組成,茲以圖 4 為例說 明雷達各部的名稱與功能。
- (一)頻率、時序產生控制器 (Frequency Generation , Timing and Control):此方塊之主要功能係在產生系 統所需要的工作頻率與時脈,以決定發射 機及其它模組運作的時機,直接控制整個 系統的工作參數,爲雷達系統之控制中 樞。

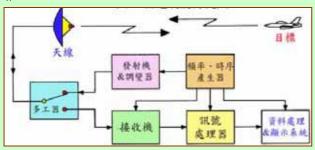


圖 4、雷達功能方塊圖

資料來源: BYRON EDDE,《RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS》

- (二)發射機(Transmitter):主要產生射頻訊號(Radiate Frequency),並經由功率放大器以增加輻射能量,饋送至發射天線。
- (三)頻率、時序產生控制器 (Frequency Generation , Timing and Control):此方塊之主要功能係在產生系 統所需要的工作頻率與時脈,以決定發射 機及其它模組運作的時機,直接掌握並控 制整個系統的工作參數,爲雷達系統之管 理中樞。
 - (四)調變器(Modulator):在脈波

- 雷達(Pulse Radar)中,該模組的功能係在控制發射機以產生脈波訊號;在連續波雷達(Continuous Wave Radar-CW)中,係將低頻的測距訊號(Ranging Singal)或其它參數,在調變器中以調幅(Amplitude Modulation-AM)或調頻(Frequency Modulation-FM)的方式,調制在由發射機所產生的高頻載波上,藉以傳送至所欲偵測的目標上。
- (五)多工器(Duplexer):主要功能 係在控制單一天線雷達發射訊號與接收 目標回波的時機。
- (六)天線(Antenna):目的係在集中發射波束,或接收目標回波訊號。
- (七)接收機(Receiver):主要功能 係將目標回波訊號中的射頻載波(RF carrier)、雜訊予以篩除,而留下目標的距 離訊號。
- (八) 訊號處理器(Signal Processor):主要功能係在處理目標及干擾訊號,同時提高目標回波的強度,並抑制干擾訊號的大小,藉以擴大「目標-雜訊比」(Signal-to-Interference),藉以判斷所接收的訊號是否爲目標。
- (九)資料處理器(Data Processor): 該模組係將目標位置予以儲存及處理,並 將目標位置予以座標化。在搜索雷達的 「搜索時追蹤」(Track-While-Scan)模式 中,資料處理器扮演著推算目標位置的角 色;在追蹤雷達內的資料處理器,肩負伺 服驅動的任務。例如將角度誤差訊號傳送 至伺服驅動器內以帶動天線至所望位置。
- (十)顯示器(Display):顯示目標 訊號,以利雷達操作手判讀雷情。
- 三、雷達原理2

註 1 BYRON EDDE,《RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS》,1993,頁 4-5。 註 2 同註 1,頁 8。

(一)目標偵測(Detection):用以決定所偵測的訊號是否爲真實目標。基本的原理是將訊號與某一臨界值做比較,若訊號大於臨界值,則雷達將此訊號判定爲真實目標;若訊號小於臨界值,則雷達將此訊號歸類爲雜訊(圖 5)。目標偵測的 4種條件,如表 1 所列。

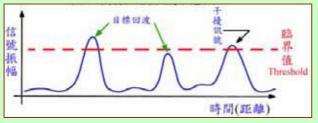


圖 5、目標回波訊號示意圖

資料來源: BYRON EDDE, 〈RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS〉

表 1、判斷訊號的原則表

判斷直實訊號的條件				
是否爲目標?	是否有偵測訊號?	偵測結果		
否	否	正確		
是	是	正確		
是	否	不正確		
否	是	不合理(假警報-False Alarm)		

(二)測距(Ranging):測距原理係從雷達發射電磁波開始計時,至雷達偵測到目標訊號止,所經過的時間間隔(圖6)。公式如下:

$$R = \frac{cT_P}{2} \text{(meters)}$$

R:雷達至目標的距離(公尺)

T_P: 雷達發射電磁波至雷達偵測到目標訊 號所經過的時間間隔(秒)

c:電磁波速度(等於光速=3×108公尺/秒)

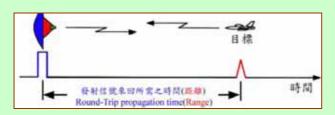


圖 6、測距示意圖

資料來源: BYRON EDDE, 〈RADAR PRINCIPLES,

TECHNOLOGY, APPLICATIONS

當發生多批目標產生相同回報位置時,即發生「距離混淆」(Range Ambiguity)的現象,其原因係所採取的參考訊號點錯誤所致。例如當發射脈波訊號 1,即得到目標回波 1;發射脈波訊號 2,即得到目標回波 2,並未發生「距離混淆」(Range Ambiguity)的現象,如圖 7所示:

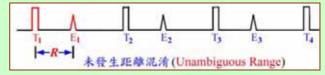


圖 7、測距明確示意圖

資料來源: BYRON EDDE, 《RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS》

然而若目標回傳至雷達的時間,大於兩個脈波之間的時間間隔時,即脈波重複率過低(Pulses Repetition frequency-PRF),造成發射脈波訊號1的目標回波1,出現在發射脈波訊號2的時間之後,如圖8所示。



圖 8、測距不明確示意圖

資料來源: BYRON EDDE, 〈RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS〉

R:目標真實距離。 Ra:錯誤目標距離。

(三)目標速度的測量:目標徑速度 (Radial velocity)(圖9)的測量,係根據 發射訊號以及目標回波間所產生的「都卜 勒頻率位移」的現象所得到的。

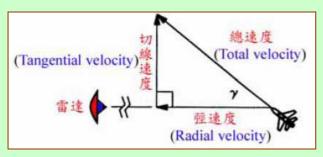


圖 9、目標速度方向示意圖

所謂「都卜勒效應」就是當一個發射 訊號源移動時,其訊號頻率會發生改變 (圖 10)。

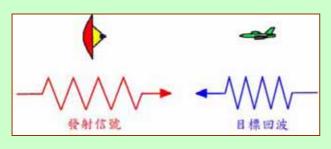


圖 10、都卜勒頻率位移示意圖

資料來源: BYRON EDDE, 〈RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS〉

同時對一個在固定座標上的接收裝置而言,其頻率的變化與發射源的速度成正比,速度越快,頻率的變化也愈大。例如站在火車月台聽見迎面而來的火車汽笛聲時,其音頻的改變即爲一種的「都卜勒效應」。

「都卜勒頻率位移」的公式如下: $f_d = f_R - f_T$ (Hertz)

f_d:表示「都卜勒頻率位移」(Doppler shift) (正值表示正在接近雷達目標;負值表示 正在遠離雷達之目標)。

fR:表示目標回波訊號頻率。

fr:表示發射訊號頻率。

只有朝向雷達的目標徑速度(圖 11) 會影響「都卜勒頻率位移」。假如目標朝 向雷達的徑速度遠小於電磁波傳遞的速 度,則「都卜勒頻率位移」的公式爲:

$$f_d \cong 2f_T \frac{v_R}{c}$$
 (Hertz)

VR:表示雷達與目標之間的徑速度差。

c:表示電磁波傳遞的速度。

圖 11、弳速度對都卜勒頻率位移影響示意圖 資料來源:BYRON EDDE,〈RADAR PRINCIPLES, TECHNOLOGY , APPLICATIONS 〉

從圖 12 得知,對一個固定陣地的雷達而言,當目標的徑速度垂直雷達天線發射軸時,不產生「都卜勒頻率位移」;若目標朝向雷達飛行時,「都卜勒頻率位移」有增強的趨勢;若目標朝向雷達天線發射軸反方向飛行時,「都卜勒頻率位移」有減弱的趨勢。

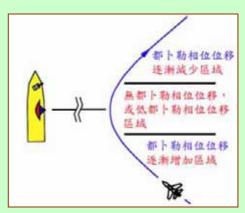


圖 12、飛行目標對固定座標之都卜勒現象示意圖 資料來源: BYRON EDDE,〈RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS〉

(四)解析度(Resolution):解析度 爲雷達針對多批目標回波,而加以分解成 個別目標的能力。例如一個「平面位置顯 示器」(Plan Position Indicator)對四批目標 的解析度的顯示。若雷達解析能力不強, 4 批目標將是同一個目標; 反之, 則 4 批目標均能清晰地顯示於「平面位置顯示器」上, 如圖 13 所示。

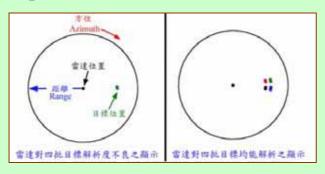


圖 13、平面位置顯示器對目標解析度示意圖 資料來源: BYRON EDDE, 《RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS》

雷達對目標的解析度有兩種類型: 「距離解析度」(Range Resolution)及「橫 截距離解析度」(Cross-Range Resolution) (圖 14)。

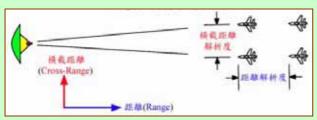


圖 14、雷達目標解析度定義示意圖

資料來源: BYRON EDDE, 〈RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS〉

1、「距離解析度」(Range Resolution): 當雷達在某一方位和仰度偵測到多批目標時,雷達將此密集目標分解成個別目標,且賦予不同距離位置的能力。「距離解析度」實爲雷達訊號頻寬的函數。雷達要有良好的「距離解析度」,基本的條件是目標間的距離至少等於經過處理後的回波訊號寬度。故要以愈較長的脈波訊號,來解析密集目標時,目標間的距離必須要要越寬,才能由雷達處理器解析出來,如圖 15 所示。「距離解析度」公式爲

$$\Delta R \approx \frac{c\tau_c}{2}$$
 (公尺)

 ΔR :表示兩目標間可解析的最小距離(公尺)。

c :表示電磁波傳遞的速度(公尺/秒)。 τc :表示處理後的目標脈波寬度(秒)。

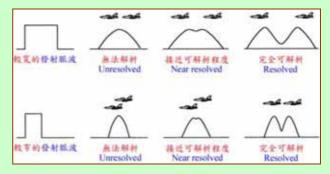


圖 15、距離解析度與脈波寬度關係圖

資料來源: BYRON EDDE, 《RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS》

2、「橫截距離解析度」(Cross-Range Resolution):橫截距離爲垂直雷達發射天線軸的線性維度。「橫截距離解析度」係雷達對同一距離之密集目標的解析能力。越窄的雷達波束越能解析較密集的目標群。雷達要有良好的「橫截距離解析度」,基本的條件是目標間的橫截最小距離必須等於雷達「有效波束」的寬度,如圖 16 所示。

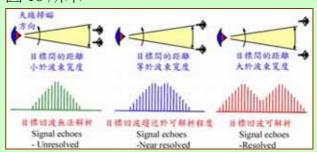


圖 16、橫截距離解析度與波束寬度關係圖

資料來源: BYRON EDDE, 〈RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS〉

從圖中得知,目標間的橫截距離若小 於雷達「有效波束」的寬度則視爲同一目 標;若目標間的橫截距離若大於或等於雷達「有效波束」的寬度,則可解析爲不同的目標。

「橫截距離解析度」公式爲:

 $\Delta X \approx R\theta$ (公尺)(參考圖 17)

 ΔX :表示兩目標間在橫截距離維度上可解析的最小距離(公尺)。

R :表示兩目標間橫截距離(公尺)。 θ :表示雷達天線波束寬度(弳度)。

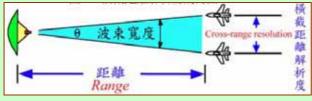


圖 17、橫截距離解析度幾何圖

資料來源: BYRON EDDE, 《RADAR PRINCIPLES, TECHNOLOGY, APPLICATIONS》

四、影響雷達性能的因素

(一)接收機產生的雜訊:當雷達接收機內部所產生的雜訊過大時,將會遮蔽一些微弱的回波訊號,如圖 18 所示。

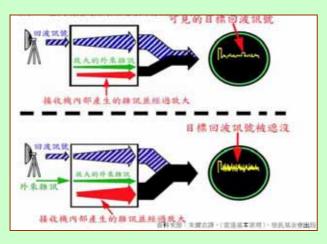


圖 18、接收機內部雜訊對目標顯示的影響示意圖 資料來源:朱耀衣譯,《雷達基本原理》,徐氏基金會 出版

(二)地表雜訊:若雷達作爲導航或 繪製圖形之用時,地表回波爲有用之訊 號;但當雷達用以偵測空中飛行目標時, 則地表回波將增加目標訊號辨識的困難。故陸基防空雷達天線常以提高仰度約30左右的做法,以消除大部分的地表雜訊,然而此方式無異對偵測低空飛行的目標,造成更大的死角(圖19)。

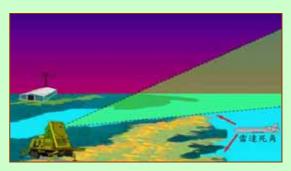


圖 19、提高天線仰度避免地表雜訊 資料來源:自行調製

(三)自然界的干擾: 閃電、太陽黑子以及暴風雨常會干擾、遮蔽目標的訊號 回波,如圖 20 所示。

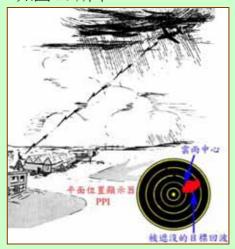


圖 20、自然界雜訊對目標顯示的影響示意圖 資料來源:朱耀衣譯,《雷達基本原理》,徐氏基金會 出版

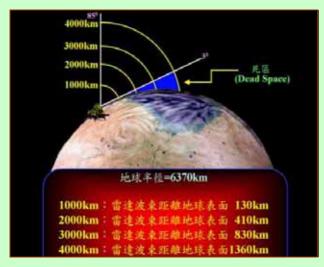
(四)人爲干擾:例如手機,吹風機、 馬達等電器用品在運作時,其訊號常經由 天線、接收機而到達顯示幕上,或者兩個 頻率相同的艦載雷達互相接近中,亦會造 成彼此干擾:亦有敵人施放的干擾訊號, 以阻撓我方雷達的運作。

(五)地球曲度:常造成雷達無法偵

測到地平線以下低空飛行的目標。 地球曲率的公式:

$$r = \sqrt{R^2 + x^2 - 2xR\cos(90^0 + \theta)} - R$$

R = 6370 km 地球半徑


x = 雷達束射出距離(km)

 θ = 雷達仰角

表 2、雷達死區數值統計(來源:Ratheon 公司)

Po	雷達仰角			
x km	00	30	50	
50.	0.196229 km	2.812409 km	4.552393 km	
100	0.784881 km	6.015684 km	9.493429 km	
150	1.765846 km	9,609237 km	14.82221 km	
200.	3.138944 km	13.59241 km	20.53776 km	
300.	7.060451 km	22.72462 km	33.12496 km	

地球曲率影響雷達偵測示意圖

(六)發射機功率:發射機功率越高,雷達偵測距離越遠。故在設計雷達系統時,必須考慮其所擔負的任務,例如偵蒐遠距離目標時,其所使用的雷達,必須具有較強的發射功率,否則在遠方的目標回波訊號,勢必被雜訊所遮沒,如圖 21所示。平面搜索雷達因地球曲率的限制,其偵測僅爲 50 哩,故可使用較小功率的發射機。

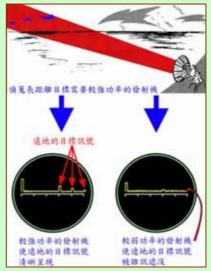


圖 21、發射機功率對雷達偵測的影響

資料來源:朱耀衣譯,《雷達基本原理》,徐氏基金會 出版

(七)雷達波東寬度與形狀:若雷達 波束甚寬,兩個在相同距離的目標,勢必 在波東照射範圍以內,而在顯示器中將導 致誤判爲一個目標點,如圖22所示。

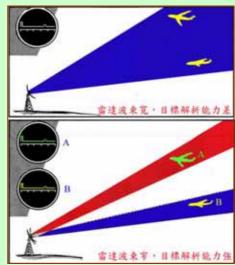


圖 22、雷達波束對目標解析力的影響

資料來源:朱耀衣譯,《雷達基本原理》,徐氏基金會 出版

參、相列雷達系統

一、原理:

現代防空首重「早期預警」,且要反制敵方之飽和攻擊。故面對新一代的空中

威脅,雷達的功能必須多元且富彈性,其設計的理念亦必須跳脫傳統雷達的思維。

相列雷達係以電子式控制各陣列天線的相位,使其波束指向具有不規則性跳躍改變的特性。在外觀上與傳統雷達有一非常明顯的差異,即是相列雷達的天線係固定於平面牆上,而非藉由水平或俯仰的機械傳動。更由於相位雷達波束窄,且能以笛卡爾座標(Cartesian Coordinates)(X, Y, Z),或球座標(R, θ , φ)提供目標三度空間資料。若以3個(含)以上的相列天線,其雷達可涵蓋整個半球空間。³

相列雷達系統主要包含發射機、接收機、天線、訊號處理器、射控計算機等各部分(圖 23),現將其各部分功能與運作原理介紹如下:

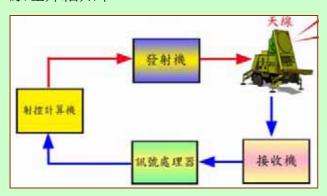


圖 23、相列雷達各部名稱功能方塊圖 資料來源:作者自繪

(一) 天線:

相列雷達天線是將許多小天線(天線元)排列在一平面上(平面陣列),可視為傳統天線在空間取樣(數位)後的結果。若每個天線元輸出的訊號被設定為同相位,則在垂直於天線面的方向,所有天線元輻射所合成的為最強,如圖 24 所示。而在其它方向,其合成信號將漸趨遞減,如圖 25 所示。

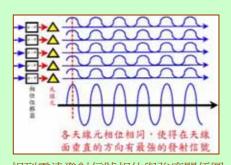


圖 24、相列雷達發射信號相位與強度關係圖(一) 資料來源:古錦安,(新新季刊),第31卷,第2期

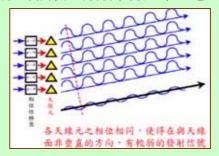


圖 25、相列雷達發射信號相位與強度關係圖(二)

資料來源:古錦安、〈新新季刊〉,第31卷,第2期

但若以某一規律調整各天線元裡之信號的相位(例如,使各天線元訊號輻射前均先通過一「相位位移器」),導致各天線元信號呈現領先或落後的關係,如圖26所示情況。

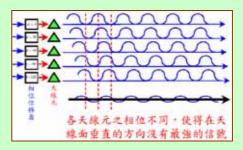


圖 26、相列雷達發射信號相位與強度關係圖(三) 資料來源:古錦安,〈新新季刊〉,第 31 卷,第 2 期

則當其輻射時,在垂直於天線面的方向,其合成信號將不再是最強。而是在另一方向,出現最強的合成信號,如圖 27 所示。故以改變相位位移器所控制的相位值,即可改變波束最強的方向。所以只要以電子式的數位信號就可改變雷達波束指向,而不須要機械方式轉動天線面。

註 3 古錦安,〈相列雷達系統概述與發展概況〉《新新季刊,第 31 卷,第 2 期》,(民國 92 年 4 月),頁 11-13。 陸軍砲兵季刊第 137 期(96 年第 2 季)04-9

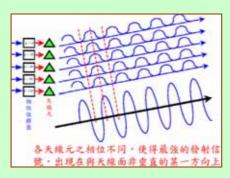


圖 27、相列雷達發射信號相位與強度關係圖(四) 資料來源:古錦安、〈新新季刊〉,第 31 卷 , 第 2 期

各天線元的振幅也可以個別獨立控制,使總體天線合成各種形狀的輻射場型,例如同時發射數個波束,或移動天線旁波束零點(Null)位置,使以零點面對敵方電戰干擾源方向,藉以閃避或減輕敵方電戰干擾的威脅,如圖 28 所示。

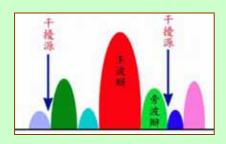


圖 28、相列雷達反制干擾源示意圖

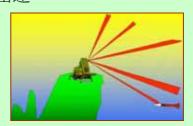
資料來源:古錦安、〈新新季刊〉,第31卷,第2期 (二)訊號處理器:

相列雷達訊號處理器在結構方面,採分散式處理與平行式處理結構。分散式處理結構,較適合使用於處理資料關聯或交換性低的系統,如雷達後級信號處理或目標資料處理;平行式處理結構,則較適合於須大量運算,且資料具相當關聯性或交換性的系統。美國海軍且已訂立平行處理型態之標準結構,作爲西元 2030 年前雷達訊號處理器之典範。

(三)射控計算機:

主要功能在掌控多元的工作模式,且即時(Real Time)處理各項運算參數,使雷達在複雜環境(如雜波或電戰干擾)下

依然遊刃有餘。射控計算機同時肩負系統 自測功能,並能使人機介面的操控與顯示 趨於簡易,及提供完善逼真的模擬訓練, 促使相列雷達的功能遠優於傳統的二爲 雷達。


(四)發射機:

相列雷達的發射功率、頻段及波形參數可迅速且隨意變換,故相列雷達發射機必須具備承受激烈變化之能力。近年來,主動陣列(Active Array)技術日趨成熟,亦即工程人員將固態功率放大(與接收)器,直接放置於各天線元上,藉以取代先集中射頻功率、放大,並傳輸至天線後,再予以輻射的技術,其目的即在降低裝備的故障率。

二、相列雷達特性

由於三維相列雷達係以電子方式,控制筆柱形波束(Pencil Beam)快速掃瞄空域目標,而達到搜索、追蹤的目的,其主要的特點如下所述:

(一) 具俯視搜索能力: 相列雷達所發射之筆柱形波束,可從山頂陣地向下掃瞄,以搜索低凹窪地形的空域。傳統二維扇形波束(Fan Beam) 雷達必須在低漥地形的陣地上方執行搜索,以避免被地面雜波干擾雷達。

相列雷達具俯視搜索能力 資料來源:作者自繪

(二)具抗干擾、雜訊的能力:在一般情形下,操作人員不會將雷達主波束指向干擾源,所以大部份干擾源的雜訊,會經由天線旁波瓣方向進入雷達接收機。三

維相列雷達天線具低旁波瓣位準,能抵擋 大部份干擾源之雜訊,以防止其進入接收 機。據統計,干擾雜訊進入傳統二維扇形 雷達接收機的功率,爲三維相列雷達數百 倍或千倍,係因其具有較高天線旁波瓣位 進。

(三)具反輻射飛彈(Anti-Radiation Missile;ARM)能力:

三維相列雷達因具有低旁波瓣位準 特性,可保護雷達不易遭受 ARM 攻擊, 提高戰場存活率。

(四)具建立安全走廊能力:

三維相列雷達因具有準確的追蹤能力,可指定較準確的安全走廊,使友機從戰場中突圍返航,二維傳統雷達因無法提供目標高度資訊,對導航友機至安全走廊較難。

(五)具導引(Cueing)防空武器射擊的能力:

三維相列雷達因偵蒐距離遠,可在武器系統有效射程外,即能偵測到敵機目標,予防空部隊充分預警時間,進而使防空武器系統有足夠之反應時間來執行攔截作戰,二維傳統雷達因爲缺乏目標高度資訊,對武器系統攔截效益較差。同時相列雷達可視其目標高度,而決定射控系統是否需要射擊,以避免浪費砲彈,故在軍事作戰環境上,三維相列雷達性能效益比,是二維傳統雷達的 13.4 倍。4

三、相列雷達主要功能

(一)搜索:相列雷達可提供三度空間(3D)目標資料,由於它的天線面不轉動,故無法看到它後方的目標,若要搜索水平360°全方位,一般須使用四面或三面天線才得完全涵蓋。相列雷達的波束可填

滿整個搜索空域,且波束間以非規則性輻射,可降低敵方電偵裝備偵測信號的能力。對不同空域(距離/高低)與作戰環境,也可以使用不同的波束,交錯運用於系統之中(圖29)。

圖 29、相列雷達搜索目標示意圖 資料來源:作者自繪

(二)追蹤:當機群目標被相列雷達 偵測到後,相列雷達將開始對這些目標, 發出密集的追蹤波束,這些追蹤波束以隨 機(random)的方式植入搜索波束中,並 視目標運動狀態及所在環境(雜波或電戰 干擾),改變追蹤波束的數量予密集度。 面臨不同的追蹤狀況時,相列雷達還能以 即時變動追蹤波束的波形,適時調整內度 處理參數,使追蹤效果維持最佳狀態(圖 30)。

圖 30、相列雷達追蹤目標示意圖 資料來源:作者自繪

(三)接戰:相列雷達將目標追蹤資

註 4 BROOKER, E. 〈Aspects of Modern Radar〉, Artech House, 1988.

料送往接戰中心,以執行敵我識別、威脅評估、及接戰分析等功能,接戰中心在選定數十個接戰目標之後,隨即發射飛彈攔截摧毀目標。以愛國者飛彈系統之接戰程序爲例:當飛彈發射後,愛國者系統之相列雷達以「上鏈」(Uplink)型式,將目標與飛彈之動態資訊(位置、速度、加速度、航向等),持續傳送至飛彈上,藉以導引飛彈朝向目標飛行,即進行所謂「中端導引」(Midcourse Guidance)功能。相列雷達上鏈信號是透過雷達波束發出,其信號內容並非雷達追蹤目標所需,而是攜帶目標與飛彈之動態資訊及指令,提供飛彈攔截目標之用(圖31)。

圖 31、相列雷達接戰目標示意圖 資料來源:作者自繪

一般相列雷達可同時導引數十發飛彈,接戰數十批目標,無論遠距離或近距離的戰機、無人飛機、反輻射飛彈、高仰角的彈道飛彈、低仰角的巡弋飛彈等,均在其效力涵蓋範圍之內。故論其威力,較諸數十部具接戰功能的傳統追蹤雷達,應有過之而無不及(表3)。

表 3、傳統 2D 雷達與 3D 相列雷達功能比較表

27/60	雷達類型		
9086	傳統2-D雷達	3-D相列雷達	
距離解析度	較相列爾達差	較傳統管連续	
横截距離解析度	較相列爾達差	較傳統管連律	
抗干擾輸訊能力	較相列爾達差	較傳統營藻佳	
發射機功率(影響質測距離)	量射機功率較低	發射機功率高	
俯機慎寬組力	不具備此項能力	其備此項能力	
反輻射飛彈能力	不具備此項能力	其儒此理能力	
建立安全走廊能力	不具備此項能力	具備此項能力	
債測・追牒・接載能力	分數在不可當達	阿菲其備此3種功能	
債測RCS値低的目標能力 (因弋・弾道飛彈)	不其做此項能力	其僕此排能力	
系統職路複雜度	較相列雷達網易	較傳統雷達復雜	
製作成本	較相列爾達佐	較傳統雷達斯	

相列雷達執行接戰支援功能的波束,亦是藉由插入搜索與追蹤波束之中。故其時而搜索,時而追蹤,時而接戰,時而開啓特殊功能,時而拉長/縮短脈波寬度,及改變調變/處理參數。其運作變幻莫測,讓敵方防不勝防。但其內部卻始終運作井然有序,靈活流暢自如。

四、相列雷達近期的發展與應用

美國軍方在未來數年內之相列雷達系統發展,以完成支援其戰區飛彈防禦系統(NMD)之建構與部署爲重點。美國陸軍現役陸基防空和巡弋飛彈防禦系統,主要由近空防空(SHORAD)、中程延伸防空系統(MEADS)、愛國者三型(PAC-3),以及聯合陸攻飛彈防禦系統(JLENS)共同組成。其中SHORAD系統的AN/MPQ-64哨兵雷達(圖32)是一個X頻段三維相列野戰防空雷達,具有40公里的偵測能力,可透過無線通信連接,把它的雷達圖像傳送到指管單位。

圖 32、哨兵相列雷達(AN/MPQ-64) 資料來源:美國國防部(DOD)

此外愛國者飛彈系統提供陸地重要設施及機動部隊之防禦,以對抗敵機、巡弋飛彈(CM)及彈道飛彈(TBM)的攻擊。愛國者飛彈系統的戰鬥單元是由相列雷達(RS)、火力單元、接戰控制站(ECS)、發電機、天線桅杆組,通訊單元和8個遙控發射站(LS)共同組成。愛國者系統快速反應的能力、強大的火力和在嚴苛的電子干擾環境下,具同時追蹤許多目標的能力,其改良性能遠遠超過以往的防空系統。

美軍在發展高層戰區防禦系統 (Theater High-Altitude Area Defense-THAAD)所使用的雷達,亦爲 X 波段主動式陸基相列雷達系統,可反擊各 類飛行中之彈道飛彈(圖33)。

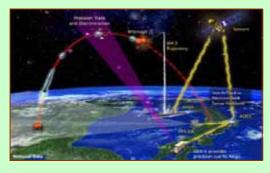


圖 33、高層戰區防禦系統(THAAD) 資料來源:美國國防部(DOD)

同時對於導彈攻擊之中間與末段防禦,係以 X 波段的陸基雷達 (Ground Base Radar-GBR)系統爲主要預警系統(圖34)。

圖 34、美陸基雷達 (GBR)

資料來源:美國國防部(DOD)

而以偵監潛射彈道飛彈爲主的預警系統,即爲鋪路爪(PAVE PAWS) (AN/FPS-115)三維主動式相列雷達系統 (圖 35)。

圖 35、鋪路爪相列雷達系統(PAVE PAWS) 資料來源:美國國防部(DOD)

美國在海軍方面,其神盾(AEGIS) 系統 S 頻段 SPY-1D 相列雷達爲主動陣列 型式,而未來亦有發展 X 頻段之主動陣列 接戰雷達等計畫,並於近年內尋求跨國合 作完成。

英國委託西門子、普萊西公司設計一名爲「多功能電子掃描適應性雷達(MESAR)」之展示雛型,經約二十年的發展,已卓然有成。該案之目前型態稱爲山普森雷達,使用S頻段,具適應性陣列功能,面對大批干擾源,具極強之反制能力,預計近期將正式出現在英國的防空系統之中。

在此同時,由德國-荷蘭-加拿大共同開發出資,西格納爾(Signnal)公司爲主設計的 X 頻道主動陣列雷達(Active Phased Array Radar-APAR),其功能與山普森雷達類似,具有主動陣列及適應性陣列之優越特性,運作於 X 頻段;對雷達波束的分配、管理及運用上均較被動式相列雷達靈活,且易於提高系統反映速度與效率。故其水平偵測與精準接戰能力極佳,

但長距離偵監則非其所長。目前日本、德國、荷蘭、加拿大近年內都有 APAR 的裝艦計畫,美國海軍亦正考慮是否用以取代神盾艦,預計新發展之 X 頻段接戰雷達,將與陸基雷達(GBR)能力相同,均具有偵蒐、接戰彈道飛彈之能力。

中共爲拓展海軍戰力置遠洋艦隊的 規模,除相俄國購買具備三維主動式相列 雷達的驅逐艦外,亦已研發出與美軍神盾 級相同類型的全方位相列雷達,並配備於 「蘭州號」飛彈驅逐艦上,並稱爲「中華 神盾」(圖 36),顯見其在相列雷達科技研 究上的進步。

圖 36、中共配備相列雷達系統的「中華神盾」飛彈驅 逐艦

資料來源:中國今日國防網站 (http://www.sinodefence.com)

肆、結語

三維相列雷達系統兼具多目標搜索、追蹤及接戰功能。不但能將雷達波束快速掃瞄於特定威脅區域或全空域,同時執行目標值追識別,並可在電磁干擾的環境中導引飛彈反制敵方飽和攻擊。即使部份陣列元件損壞,仍能維持全系統基本功能,故有較高之系統可靠度。

相列雷達技術涵蓋了許多電子電機工業的先進科技,可成爲帶動國家整體科技發展的重要動力源。如其系統本身,即 爲整合多樣性複雜功能的大型系統,此種 系統工程技術培養,依國外大廠之經驗, 須至少十餘年實務歷練,方能臻於成熟。 而其各分項之專業特色,如寬頻段高功率 發射機、智慧型方向性天線、快速訊號處 理技術、及大型軟體之發展與管理維護 等,都可在其特定領域獨領風騷。往更基 礎技術觀察,超大型積體電路設計製作、 高頻高品質電路設計製作、結構式與物件 導向式軟體分析/設計/與程式技巧等,與 電子電機各相關領域,更是具有密不可分 的關係。

正視未來共軍新一代戰機、導彈的威脅,並有鑑於我現役雷達系統對其偵蒐能力明顯不足之際,相列雷達的出現,提供了我們未來向外採購與自行研製努力的方向,期能有效增加我防空預警時間,提高戰場存活率,並能制敵於千里之外。

作者簡介:

陳良培中校,中正理工 47 期,兵校正規 班 87 期,美紅石兵校火控班 78 班,電研 所 30 期,歷任保修官及教官,現任職陸 軍飛彈砲兵學校飛彈組綜合保修組主任 教官。

收件:96年3月14日初審:96年3月18日 初審:96年4月02日 複審:96年4月10日