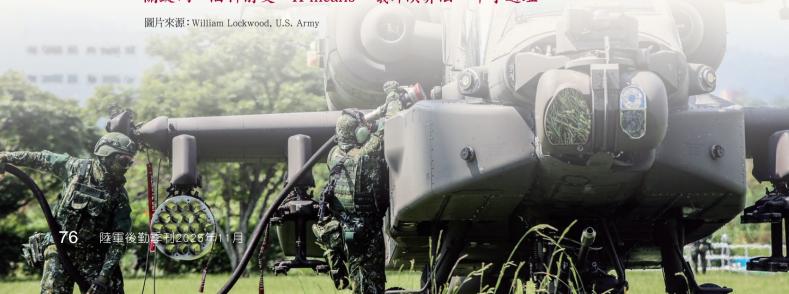
DOI:10.53106/230674382025111144005

運用K-means及蟻群演算法建構支援區油料前支能量規劃模式之研究


作者/陳鴻鈞、羅能成、羅裕耀

審者/梁欣光、周偉仁、王文浩

提要

- 一、國軍在有限資源條件下,應尋求適宜之建軍項目與戰備整備,期能快速提升可 恃戰力;另後勤支援是防衛作戰的關鍵性工作,對於軍隊戰鬥效能與作戰成功 至關重要;其中油料更是部隊維持戰術機動、武器裝備運作所不可或缺,在後 勤組織變革中,如何結合民間油料支援,以精進補給效能,對於作戰成功至關 重要。
- 二、本研究透由K-means及蟻群演算法將支援區所屬民間加油站進行分群,接續隨機建立受支援部隊,由系統依不同的地理位址,由K-means分群出6群加油站分配至距離最近或運輸時間較為合理的站點。
- 三、研究結果在面臨人力與空間資源皆有限的情況下,選定固定數量的加油站作為「前支點」的模式確具可行性。透由手肘法(Elbow Method)與輪廓係數(Silhouette Coefficient)進行測試後,將原本全區的油料站點自53處縮減至6處後,並未因站點減少而產生衝擊,期以「集中運補」與「少量但質精」的原則,不僅可維持現有補給水準,亦能增加人力調度彈性。

關鍵詞:油料前支、K-means、蟻群演算法、軍事選址

壹、前言

依國防部112年國防報告書指出:「面對中共區域拒止、反介入、海上封控及三棲快速多點犯臺能力日趨完備,如何發揮海島防衛的地理優勢,並借鏡俄烏戰爭不對稱作戰啟示,在有限資源條件下,尋求適宜之建軍項目與戰備整備,期能快速提升可恃戰力,以有效依『防衛固守,重層嚇阻』之軍事戰略」指導遂行防衛作戰。並依「處處皆戰場,時時做訓練」指導,¹有效結合地方全民總力的運用,納入演習規劃,共同演練及驗證,以提升國家整體防護韌性。

國軍遂行防衛作戰是為保衛國家的 主權,防範外來侵略及威脅。而後勤支 援是防衛作戰的關鍵性工作,對於軍隊 戰鬥效能與作戰成功至關重要,其中補 給品如何有效即時支援至前線為確保持 續戰力的關鍵。故有兵學研究專家形容: 「油料是戰爭之血脈」,² 更說明油料補 給在戰場上扮演維持戰術機動、武器裝 備運作所不可或缺的角色。

從「精實案」、「精進案」至「精粹 案」的兵力結構調整與「募兵制」推動, 國軍兵力大幅裁減,其中後勤部隊的兵力 結構,更在歷次的組織併編與位階調整 中,而臨作業人力不足而導致支援能量萎 縮。精進案的推動旨在精簡部隊人力、提 高資源效能,並集中力量提升戰備能力。 然而,這項措施導致後勤部隊縮編,使得 後勤支援效率在資源與人力不足的情況 下受到挑戰。具體而言,部隊對油料的需 求並未隨人力減少而降低。面對現代化 作戰環境,快速、靈活的補給需求不斷提 高,且因應中共敵情威脅,國防部為提升 後備戰力,同步增編5個旅級守備部隊, 並將守備兵力予以編實,以達「常後一 體」的目標。3 惟後勤人數並未同步提升, 顯見如何精進後勤支援,更顯格外重要。

美軍在後勤支援部隊的配置上,作 戰部隊與後勤支援部隊之間的配置比 例相對穩定,例如美軍根據歷史數據 分析指出,美軍長期維持1比0.8的戰勤 比,也就是每一位直接參與戰鬥的士 兵,背後約有0.8名的人員負責提供後

¹ 國防部(2023年9月12日),《中華民國112年國防報告書》,國防部,1-204。

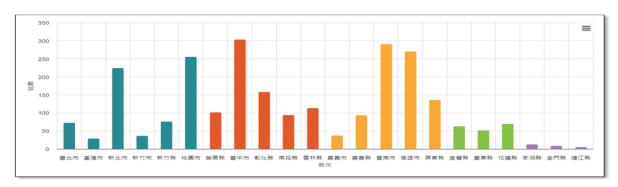
² 皋山、李雪(2009年),〈誓叫鐵獅雄姿展—紀念後勤部油料研究所〉,《科學中國人》, 2009(3),104-107,道客巴巴。https://www.doc88.com/p-9092855770068.htm(檢索日期:民國 114年10月26日)。

³ 同註1,頁1-204。

勤供應,⁴而國軍油料部隊精粹案後將原編制約60人的陸用油料分庫裁併成一個約10人的陸油作業組,僅維持海、空用油料分庫作業能量,總人數由約700餘人大幅降至約300餘人,⁵顯見油料作業人員面臨捉襟見肘的窘境。根據三軍近年來的改革措施,雖然後勤支援人員已盡可能集中調配,但相較於美軍人力配置之穩定性,國軍仍面臨較大的壓力。後勤支援人力減少直接導致戰時油料支援能力不足,無法有效支援前線作戰部隊,進一步影響戰時作戰效能。

國軍油料部隊主要以支援三軍各部 隊裝備運作、戰術機動與運輸等油料需 求,舉凡陸用油料(汽油、柴油)、海用油 料(普通柴油)及空用油料(JP8航空燃油) 等各類型油料。而陸用油料因易結合民 間加油站快速補充,配合戰術位置支援 作戰任務,故成為國土防衛作戰中縱深 防禦與戰略持久的重要支撐之一。

臺灣地理環境山地、丘陵、溪流與平原交織加上高度城市化,形成複雜且多變


的環境,密布的道路交通路網可有效提供補給路線的靈活與彈性,地理環境也提供物資團儲分散及隱密的優勢,因此,應依防衛作戰特性及可獲資源,強化作戰需求如何有效結合民間資源,期能快速獲得、有效支援。就油料資源而言,自民國七十六年起國內加油站開放民間經營,加油站的設立如雨後春筍般崛起,如今加油站已遍布各地,尤其以臺中地區已超過300家加油站數量最多(如圖一)。油料無論平時或戰時均為不可或缺的需求,但油料並非國軍的專用物資,其軍民通用的特性,戰爭一旦爆發,恐產生軍民爭搶物資情形,如何有效支援分配,至關重要。

貳、文獻探討

一、戰時油料支援作為

通用後勤作業平時由各地區支援指揮部負責掌握管制所屬補給(含糧秣、油料等補給)、彈藥、保修、衛勤及運輸等專業後勤部隊行各項後勤支援; 6 於戰時

- 4 Nguyen, H. P. (2020). Sustainable development of logistics in Vietnam in the period 2020–2025. International Journal of Innovation, Creativity and Change, 11(3), 113–126. https://ijicc.net/images/vol11iss3/11344_Nguyen_2020_E_R.pdf (檢索日期:民國114年10月26日)
- 5 潘坤棋(2012年),〈國軍陸用油料供補外包政策之研究-系統動態觀點〉(碩士論文,國防大學資源管理及決策研究所),臺灣博碩士論文知識加值系統。
- 6 林國華(2018年),〈因應敵非線性作戰時我軍陸用油料供補模式之研究〉,《陸軍後勤季刊》, 107(2),20-29。

圖一 民間加油站數量統計圖

資料來源:能源局油價資訊管理與分析系統網站

各軍團轉為作戰區,地區支援指揮部幕僚群納作戰區後勤管制中心編組,掌握作戰區後勤支援能量與調配。作戰分區指揮官由作戰區擇一乙級作戰單位部隊長擔任,支援區納作戰分區統籌轄管,運用作戰分區內專業後勤部隊執行全般後勤支援作業。

戰時各作戰區補給需求應依作戰構 想、敵情威脅、可能獲得的資源、供補能 量優序及受補單位任務遂行補給支援。 油料分庫由支援區統籌運用,配合各作 戰分區依作戰計畫遂行防衛作戰,油料 分庫戰時於現駐地開設油料補給點,遂 行三軍通用油料補給支援。並依作戰需 求擬定作戰計畫,於部隊營輜重後方選 定適切之中油加油站或地區供油中心, 開設油料前支點,原則以「前推預置」、 「分區囤儲」之原則,達到「就近支援」、「分散風險」、「縮短時效」等功效。⁷

油料的供補係為滿足部隊油料補給需求,減少受補單位行政負荷,以達成支援任務,考量運補的經濟效應,達到「就近支援、就地提領、主動運補」的支援策略,。戰時為因應國軍油料供補的彈性,相關油料設施應強化疏散、掩蔽及損害管制,以確保作戰任務持續力。為有效達成分散國儲、前推預置之效,油料部隊多結合現駐地及民間設施開設油料補給點,結合建制輸具或民用油罐車等,採主動運補方式執行供補至各營輜重位置,受支援單位於營輜重地區,以油罐車優先對機甲車輛實施油料整補作業,以滿足作戰需求,亦可結合地區內合約商之直營加油站,以補給點分配法,對受支援

⁷ 羅裕耀、石穎浩(2019年),〈軍用油料前進支援點開設選址之最佳化研究-以F作戰區為例〉, 《陸軍後勤季刊》,108(1),38-51。

⁸ 同註6。

單位輪型車輛實施供補作業;另以桶裝油料運送、油罐車對車灌補或實車換空車等作為時,採穿梭運輸方式對受支援單位實施供補作業。

由上述可知,油料補給方式區分兩 種模式,分別為「補給點分配法」及「單 位分配法」。適宜採用何種補給方式,端 視單位特性與任務,如守備旅,編制輸具 不足,通常採單位分配法;另若打擊部隊 實施攻勢作戰時,亦因時效而可能採單 位分配法。簡言之,就補給的重點係以戰 備供補優先順序、存量管制、撥發時效 及運輸安全等為主。國軍機動性高的行 政車輛多屬使用汽油引擎燃油車輛,通 常以運用以加油卡,採補給點分配法逕 自中油加油站實施油箱加滿備桶補實; 而戰術型車輛多屬柴油引擎燃油車輛, 因搭載裝甲及槍砲等造成噸重性高、機 動力較差,通常採運用桶裝油料或油罐 車等單位分配法為主。

面對共軍持續不斷地襲擾及海峽周 邊常態性的演練,我國面對敵軍猝然攻 擊時,可資運用戰備整備時間勢必短促, 必須快速應處,將後勤補給物資預置分 屯規劃,快速整補前推,以有效支援作戰 任務。9 預置預儲亦為美國陸軍的一項戰 略計書,主要目的為減少對部隊初期運 輸的兵力需求,並在建立運輸線之後對 主戰兵力提供部隊維持,其主要行動為 部署、接收、提領及整備等項,10也就是 油料的供補應於集結地區完成一切補給 支援準備, 並考量敵火力炸射威脅, 及機 動彈性調整適切變換位置,藉妥適增設 前進支援點,以提升整補效能。然而,面 對高度城市化的戰場環境,為便於作戰 部隊保有基本物資存量,同時快速機動 轉換,作戰部隊通常以基本攜行量行初 步戰備部署,營級單位於所屬陣地後方 適切位置開設營輜重,並透由作戰區後 勤部隊於作戰區內選擇適當位置或設施 開設前支點,以滿足地區內部隊所需補 給支援。

二、軍事設施選址研究

選址的問題已被廣泛應用於物流配送、生產作業、店鋪挑選、車輛網路分析等,應用領域相當廣泛,而選址的好壞, 無論是成本利潤或服務品質均可能影響 企業財務或顧客的黏著度,¹¹最為廣泛運

⁹ 鄧詠政(2007年),〈應急作戰階段後勤支援作為之研究〉,《陸軍步兵季刊》,225,60-71。

¹⁰ 林俊安(2020年),〈美陸軍後勤準則ADP 4-0《部隊維持》改版內容介紹與研析〉,《陸軍後勤季刊》,2020(1),39-48。

¹¹ 蕭翼遠(2016年),〈應用演算法於醫院選址問題〉(碩士論文,中原大學工業與系統工程學系),臺灣博碩士論文知識加值系統。

用的即為物流的配送,而配送中心的選址目的主要考量到基礎設施成本、存貨成本、運用成本及顧客滿意度。12軍中後勤補給前支點就如同民間物資轉運站或集散點,基於強化供補效能、減少運用成本與庫儲需求等,更應加以廣泛討論應用。

國軍為達「戰略持久、戰術速決」之 戰略指導,在油料補給作為中,除應積極 尋求油料獲得的管道外,勤務設施開設 應力求分散,並有效結合民間堅固設施, 以達油料供補不墜,並利用戰鬥間隙或 預置分國等手段,完成油料前支供補作 業。¹³當國軍因戰況緊急,無法循正常採 購程序獲得油料補給時,依「軍用油料緊 急支援作業程序」由中油油罐車對國軍 設立之油料補給點或前支點遂行供補作 業。¹⁴然而,油料補給點因儲油設施等限 制因素,每一作戰區於歷次演習中均擇 1至4處不等的中油民間加油站轉換油料 前支點開設運用。

就過往實務上,各級後勤設施選址 均沿用舊有前支點、僅現地勘查確認地 形地貌有無明顯更新後,即納後勤計畫 執行,然此作法衍生出各補給點獨立決 策,縱向或橫向關係互不相關,缺乏科學 量化的輔助工具,易受人為因素或本位 主義所影響。15

回顧文獻,就國內軍事設施選址的研究,計張大剛(2004)透由重心法、重心法求解值及中位法等方法,比較運輸配送中心的選址模式,探討各野戰勤務設施之總旅行距離最小化之目標。16羅裕耀等(2019)研究中指出,單位開設能力充足前提下,至多以開設7個前支點為最適方案。17賴智明等(2020)運用簡群演算法與層級分析法解決國軍野戰後勤設施選址問題,而李雲芳等(2022)運用AHP指出「任務達成」為保修收集站選址最為關鍵因素(如表一)。

¹² 徐嘉吟、黄士滔(2010年2月),〈MAX-MIN 螞蟻演算法於配送中心選址之研究〉,《品質學報》,17(1),55-70。

¹³ 同註9。

¹⁴ 國防部(2018年),《油料作業手冊》,國防部編印。

¹⁵ 賴智明、徐冠中(2020年),〈運用簡群演算法與層級分析法解決國軍野戰後勤設施選址問題〉,《危機管理學刊》,17(1),43-54。

¹⁶ 張大剛(2004年),〈野戰勤務設施選址最佳化〉(碩士論文,元智大學工業工程與管理學系), 臺灣博碩士論文知識加值系統。

¹⁷ 同註7。

而諸多軍事設施評選指標中,以「達成任務能力」為最廣泛的指標,¹⁸並參考其達成任務選址評選指標,遴選「設施容量」、「道路條件」、「防護力」、「作業區大小」及「距離」等5項為後勤設施開設的重要選址構面,故本研究將以這五

項指標為分群參考指標(如表二)。

三、蟻群演算法

(一) 蟻群演算法概述

蟻群演算法(Ant Colony Optimization, ACO),又稱為「螞蟻演算法」,是一種用來在圖中尋找優化路徑的機率型演算法。

表一 國軍軍事設施選址文獻一覽表

研究者	選址運用
張大剛(2004)	透由重心法、重心法求解值及中位法等方法,比較運輸配送中心的選址模式,探討各野戰勤務設施之總旅行距離最小化之目標。
羅裕耀等(2019)	以「P-中心問題」代入戰區參數實例驗證求解得知,單位開設能力充足前提下,至多以開設7個前支點為最適方案。
賴智明等(2020)	運用簡群演算法與層級分析法解決國軍野戰後勤設施選址問題
李雲芳等(2022)	運用AHP探討保修收集站選址關鍵因素,得出選址考量之依序為「任務」、「防禦」、「疏散」等關鍵因素。

資料來源:本研究整理

表二國軍後勤設施「達成任務能力選址」準則構面一覽表

賴智明等人19	石穎浩等人20	李雲芳等人 ²¹	條件定義		
設施容量	回儲容量	(未列於此構面)	物資囤儲容量,容量應滿足需求。		
道路條件	補給路線	交通	後勤設施相鄰,主要道路條件。		
防護力	(未列於此構面)	(未列於此構面)	設施具有抵禦敵方攻擊、轟炸和保護 其補給功能。		
作業區大小	幅員	基礎設施	有執行作業的區域		
未四八小	基礎條件	在 城以地	行刊1] F未以呼以		
距離	位置	距離	後勤設施至受補單位之距離		

資料來源:本研究整理

- 18 同註7,頁38-51。.
- 19 同註15。
- 20 同註7。
- 21 李雲芳、張旭明(2022年),〈運用 AHP 探討保修收集站選址關鍵因素〉,《陸軍後勤季刊》, 111(4),10-27。

其概念是源自於生物界直實的螞蟻,透 由觀察螞蟻挑選食物時,會依照同伴間 費洛蒙濃度來判斷,選擇費洛蒙濃度較 多的路徑行走,然而,因費洛蒙會隨時間 蒸發,若食物與巢穴越近,費洛蒙累績 越快速,也就是在加乘的效果下,最短路 徑和其他濃度路徑也就差異越大。22即假 設螞蟻初始找尋路徑為最短直線路徑, 若中間出現障礙物時,螞蟻必須在障礙 物兩側的路徑做選擇,而選擇較短路徑 的螞蟻,回到原本的蟻巢時間一定少於 選擇較長路徑所花費的時間,因此,較 短路徑上其所遺留的費洛蒙也會較多, 故下一批要出發的螞蟻就會選擇擁有較 多費洛蒙的路徑行走,故驅使大多數的 螞蟻選擇費洛蒙較多的路徑行走,慢慢 地另一個路徑的費洛蒙,因為越來越少 螞蟻選擇其行走路徑,故費洛蒙就慢慢 蒸發不見。23所以導致這種覓食行為而衍

生成為最佳化的方法,利用這種自然界的原理,因而形成一種有效率地求解一些最佳化問題(Optimization Problems)的方法。²⁴

蟻群演算法是由Marco Dorigo在 1992年提出的博士論文應用於旅行銷售員問題,為一種啟發式演算法。蟻群演算法在解決路徑規劃、網路優化和資源調度等方面表現出色,特別適用於動態環境中的最短路徑問題。該演算法廣泛應用於物流管理、網路優化、交通管理及工作排程等問題。例如,徐志明等²⁵(2008)應用基因演算法及蟻群最佳化於台鐵乘務人員排班問題、林雨蓁²⁶(2008)運用蟻群最佳化演算法提升物流倉儲揀貨路徑,減少揀貨路徑的距離及揀貨時間,提高作業效率與服務水準。張家鴻²⁷(2014)運用城市監視系統涵蓋的路徑,規劃具較安全性交通路徑規

²² 陳冠宇、丁慶榮(2021年6月),〈以蟻群最佳化演算法求解動態車輛途程問題〉,《運輸學刊》, 33(2),135-164。

²³ 徐志明、黄廷合、劉雙火(2008年8月),〈應用基因演算法及蟻群最佳化於台鐵乘務人員排班問題之研究〉,《明新學報》,34(2),107-118。

²⁴ 同註12。

²⁵ 同註23。

²⁶ 林雨蓁、徐志明、游凱鈴、吳珮如、何明龍、林瑞勇、馮鳳瑩(2008年),〈運用蟻群最佳化演算 法解決物流中心傳統倉儲揀貨路徑問題〉,《明新學報》,34(1),247-262。

²⁷ 張家鴻(2014年),〈基於安全性導向之路徑規劃〉(碩士論文,淡江大學資訊工程學系),臺灣博碩士論文知識加值系統。

劃、劉正達²⁸(2011)透過蟻群演算法聖 火傳遞路徑較原規劃路徑總里程大幅減 少,可免去人員路線探勘的風險及費用 等,透由演算法優化交通路線的、工作排 程貨揀貨路徑等都採用蟻群演算法來降 低運作成本及提高效率(如表三)。

(二) 蟻群演算法在軍事上及選址路徑運用

蟻群演算法在軍事領域上,蟻群演算法廣泛應用於後勤路徑規劃及目標跟蹤。例如,楊政玹²⁹(2017)研究將蟻群演算法應用於無人機隊伍的巡航路徑規

劃中,透過最佳化路徑,使無人機能在短時間內完成值查任務,並迅速返回基地。 盧久章等人(2009)針對戰時軍品物資的 研究指出,在後勤補給中,運用蟻群演算 法能規劃出最佳補給路徑,有效減少燃 料消耗並縮短補給時間,提升部隊的持續作戰能力。³⁰

蟻群演算法的優勢在於可動態調整 路徑,特別適用不確定性強的戰場環境。 對於戰時油料補給系統,利用蟻群演算 法可針對補給站點與部隊位置進行路徑

研究者	運用範圍	蟻群演算運用			
徐志明等(2008)	工作排程	以臺灣鐵路管理局列車乘務人員排班作業為研究對象,利用 蟻群最佳化演算法尋找總工作時數最短的乘務串接,並以最 少工作班總數為目標。			
林雨蓁等(2008)	揀貨路徑	運用蟻群最佳化演算法提升物流倉儲揀貨路徑 [,] 減少揀貨路徑的距離及揀貨時間。			
張家鴻(2014)	安全路網	運用城市監視系統涵蓋的路徑,規劃具較安全性交通路徑規劃。			
		透過蟻群演算法聖火傳遞路徑較原規劃路徑總里程大幅減			

表三 蟻群演算法運用文獻一覽表

資料來源:本研究彙整

劉正達(2011)

少,可免去人員路線探勘的風險及費用。

聖火傳遞

²⁸ 劉正達(2011年12月),〈人工智慧方法應用於聖火傳遞路徑最佳化〉,《大專體育學刊》, 13(4),368-378。

²⁹ 楊政玹(2017年),〈無人機於數值地形模型建置之路徑規劃方法-以沖積扇為例〉,(碩士論文,國立臺灣大學土木工程學系),臺灣博碩士論文知識加值系統。

³⁰ 盧久章(2009年),〈建構國軍地面運補最佳化模式之研究〉,(碩士論文,國防大學理工學院國 防科學研究所),臺灣博碩士論文知識加值系統。

規劃,以降低總路徑長度並提高補給效率。³¹在選址問題中,結合K-means演算法所選出的最佳補給站點,蟻群演算法可用來規劃後勤車輛的最短路徑,以最大化後勤補給系統的效能。

K-means與蟻群演算法的結合,通常 是利用K-means進行初步的分群分析,將 資料點劃分成若干聚類,再利用蟻群演 算法進行路徑優化。此種結合在軍事後 勤補給中應用廣泛。透過K-means選址, 能大幅縮短補給站點與部隊間的距離, 隨後藉由蟻群演算法的路徑規劃,達成 快速、精確的補給任務。研究顯示,這種 混合模式不僅能提升後勤運作效率,還 能節省大量人力資源。

所以綜合上述,本研究將運用 K-means演算法選出的最佳油料補給站 點再結合蟻群演算法規劃油料補給的順 序,以確保部隊在最短時間內完成油料 補給作業。

參、研究流程

本研究主要針對中苗作戰分區之加 油站配置與軍事部隊位置,透過聚類分 析與路線規劃等方法,擬定前支開設及 運補支援配置策略。以下說明本研究之 整體架構、數學模式設計、實驗流程、程 式實作步驟,以及如何於雲端環境(如 Colab)利用Python產生圖表與流程圖, 以提供後續章節分析與應用。

一、研究架構

本研究主透由作戰分區油料前支需求為前提,聚焦於下列幾項主要目標:

(一) 尋找合適的前支點位置

透過K-means聚類分析篩選若干個加油站,做為選定油料前支點,確保能在該區域內能有效支援多數作戰部隊。

(二) 分配部隊至最近支援站點

根據距離限制與國儲能量等條件, 將部隊分配至適合的加油站,避免過度 集中或資源重複配置。

(三) 規劃行車路線

使用蟻群演算法對路線進行優化,以 降低運補成本或行車里程,並考量單位服 務時間、最大支援範圍等實務條件。

上述流程之核心包含兩個步驟:其 一為K-means聚類分析以尋找最適油料 前支點;其二為使用蟻群演算法進行部 隊運補路線設計。各階段之內容與對應

³¹ 張旭明、薛培明(2011年),〈以蟻群演算法應用於國軍主動運補路徑規劃之研究-以某後勤區 九類零附件為例〉,發表於《國防管理學術暨實務研討會論文集》,(頁563-583),國防管理學 會。

程式執行程序。

二、方程式建構說明

(一) K-Means聚類演算法分析說明

本研究初始採用K-Means演算法進行加油站之群集劃分,並在空間上選取最能代表各群集中心的站點。K-Means之目標函數可表達為最小化群內平方誤差和(SSE),其公式如下:

SSE= $k=1\sum Kx\in Ck\sum ||x-\mu k||2$ 其中:

- 1、K 為指定之聚類數量。
- 2、x表示資料點(加油站之地理座標)。
- 3、表示第Uk個群集之中心。
- 4、Ck個群集包含的所有資料點。

(二) 蟻群演算法路徑設計

為規劃各前支點往返多個部隊之路徑,本研究引用蟻群演算法。設想每隻「螞蟻」在圖中走訪所有目標節點(部隊輜重)後返回起點(油料前支點),在完成路徑時釋放費洛蒙,以引導後續螞蟻朝較佳路徑前進。令ij表示由節點i至節點j的費洛蒙濃度,與為權重參數,則選擇下一個節點的機率可表達為:

Pij=(ij)(ij)k∈未辦訪節點(ij)(ij) 其中:

ij=1dij為啟發函式(dij為為節點i至j 的距離)。

所謂未辦訪節點(也可稱為「未訪問

節點」、「未走訪節點」),即螞蟻目前規 劃路徑中,尚未經過的其他節點(例如尚 未配送的部隊據點或輜重位置)。這些 節點會被視為候選目標,供螞蟻在下一 步進行選擇。當螞蟻行走完畢或費洛蒙 隨時間衰退,需依據路徑品質更新ij,以 逐漸強化優質解並弱化次優解。

三、實驗流程

綜上所述,本研究的整體實驗流程 可分為六大階段:

(一)研究問題與限制條件定義

- 1、明訂最大支援範圍、單位運補容量、 服務時間等軍事物流條件。
- 2、設定支援範圍(公里)、加油站可支援之部隊上限、車輛行進速度等參數。

(二)資料蒐集與資料前處理

- 1、匯入臺中地區加油站之座標資料,以 及模擬產生之部隊位置座標。
- 2、確保欄位格式一致,避免缺失值對後 續演算造成誤差。

(三) K-Means 聚類演算法分析

- 1、以K-Means進行聚類,並逐次檢驗是 否符合「每個前支點可支援之部隊 數」與「行駛距離」等限制。
- 2、若不符條件,動態增加聚類數量,直 到符合最大支援範圍、部隊覆蓋率等 要求。

(四)部隊指派與路徑設計

- 1、將部隊指派給對應前支點(加油站),若不符合範圍限制則排除該部隊或繼續增加支援站點數量。
- 採用蟻群演算法對每個前支點的運補順序進行優化,計算最短路徑總距離或最小運補時間。

(五)結果視覺化與報表產出

- 1、建立地圖並在其上標示最佳前支點 位置及其支援之部隊分布情況。
- 2、雲端環境(Colab)以Python程式產生流程圖、路徑圖、及最終報表。

(六)評估與結論

- 1、根據地圖視覺化、路徑距離與支援範 圍等評估指標,歸納加油站優化配置 與後續調整建議。
- 2、整合結果提出對軍事運補體系之實用建議與研究後續發展方向。

四、程式實作與步驟說明

以下分別說明於Colab環境中進行程 式實作的關鍵步驟,以供重現或後續擴 充應用之參考。

(一)環境設定與套件安裝

1、連線至Colab後,安裝所需Python套件 (如:numpy(處理數據化的資料)、pandas (處理數據化的資料),scikit-learn(演 算法)、matplotlib(繪圖)、seaborn(繪 圖),folium(地理資訊)等)。 2、匯入並設定字體(如台北思源黑體), 使繪製之圖表與報告能顯示繁體中 文。

(二)加油站與部隊位置之讀取與生成

- 1、以pandas讀取Excel檔內加油站之地 址與站名,並加上地理座標(若缺失 則隨機生成)。
- 2、隨機產生軍事部隊位置,模擬其分布 於臺中地區。

(三)最佳加油站點選擇

- 1、運用K-Means演算函數式,以不同聚 類數進行加油站群集化。
- 2、不斷檢查「支援範圍」、「可支援部 隊數量」等條件,若不符則增大聚類 數,直到符合或到達設定之最大站點 數量。

(四)部隊配置與路線演算

- 1、針對每個前支點,將距離在支援範圍內的部隊分配給該站點。
- 2、使用蟻群演算法計算前支點至各部 隊的造訪順序與回程路線,取得總 距離與運輸時間。

(五) 視覺化地圖與報告

- 1、透過folium繪製gis地圖,標示所有加油站、最佳前支點與其支援之部隊位置。
- 2、使用matplotlib與seaborn繪製各項指標圖表(如混淆矩陣、群集分布、路

線視覺化等)。

3、生成HTML報告,並自動下載至使用者 端電腦,以利線下參考與決策制定。

(六)示意圖產生

在Colab中可安裝graphviz後,引用 graphviz繪圖套件產生套件示意圖,如以 下簡易範例所示:

(五)流程示意圖與範例圖表

- 1、分析流程示意圖:依據上述程式碼所 產出的research_flow.gv檔案,可得到 如圖二之示意圖,簡要顯示自資料收 集到最終報告各階段之關聯。
- 2、聚類分布圖:使用matplotlib與seaborn 繪製加油站之聚類結果,協助觀察群 集中心之空間分布。亦可疊合地理地 圖背景,強調臺中地區的地形資訊與 交通動線。

3、路線規劃可視化:以folium在地圖上 動態顯示前支點、部隊位置與運補路 線,並以不同顏色標示各條路徑。便 於評估整體路線長度與可能之交通 壅塞區域。

由上述可知,自軍事物流需求出發, 闡述研究分析步驟的六大階段與核心方 法,包括K-Means聚類分析之最佳站點選 擇,以及運用蟻群演算法針對前支點與 部隊間的路線優化。整體過程採用Colab 環境以Python實作,透過資料前處理、參 數檢驗、實驗結果分析與視覺化報告等 步驟,協助評估各加油站配置之可行性 與效益。後續章節將進一步討論實驗結 果與策略建議,期望為軍事運補決策提 供具體目有效的參考。

```
# !pip install graphviz
import graphviz

dot = graphviz.Digraph(comment='研究流程')

dot.node('A', '資料收集\n(加油站+部隊)')
dot.node('B', '聚類分析\n(K-Means)')
dot.node('C', '檢查限制條件\n(支援範圍、上限)')
dot.node('D', '指派部隊與路線\n(蟻群演算法)')
dot.node('E', '視覺化與報告產出')

dot.edges(['AB', 'BC', 'CD', 'DE'])

dot.render('research_flow.gv', view=False)
dot
```

圖二 graphviz套件示意圖 資料來源:本研究彙整

肆、研究結果與分析

本章將透過上一章節方法 (包括K-means聚類分析執行 集群分析、蟻群演算法執行路 線優化與限制條件之檢核等) 期能獲得有關有關中苗加油站 數量最佳化與區域運補效率提 升之成效。

一、尋找區域內加油站數量 及位置

(一)地區加油站查詢

首先本研究透過臺灣中油全球資訊 網查詢臺中地區中油直營加油站數量、 地址及相關參數,如圖三、四。

(二)地區加油站座標分布

臺灣中油全球資訊網可得知,臺中市計臺中市大甲站等53家詳細地址、聯絡方式,供應油品等資訊,透過google earth pro軟體匯入取得加油站分配及座標,轉化座標位置及加油站分布進行分

圖三 臺灣中油網站查詢系統

資料來源:本研究彙整

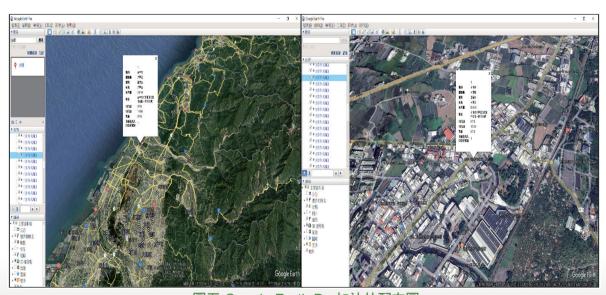
圖四 臺中地區加油站查詢圖

資料來源:本研究彙整

群(如圖五)。

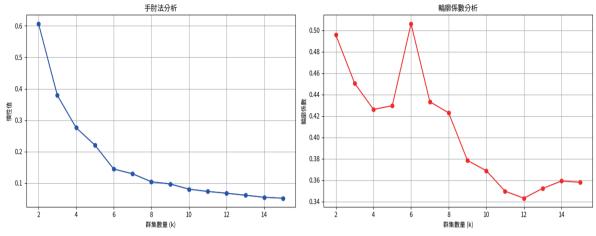
二、進行K-means集群分群

臺中地區直營加油站計臺中市大甲站等53家直營加油站,但53家加油站該分層幾群才是最具效益的,透過手肘法(Elbow Method)與輪廓係數(Silhouette Coefficient)進行測試。


手肘法(Elbow Method)主要是計算每一個群中的每一個資料到群中心的距離,找出對應平緩的資料點稱為拐點(Inflection Point),並以此拐點作為群數;而輪廓係數(Silhouette Coefficient)是判斷集群分析好壞,目的是要找出同一群的資料點最近(凝聚度越小的值),而不同群越分散(分離度越高的值),用來滿足集群主要的目表。如圖六,可得知,當加油站數為6時,出現拐點且集群效果最佳。最

終選擇6個加油站作為最佳配置數量。此舉不僅將原本中油加油站數量從53個大幅降至6個,減少47站,也顯著對現有油料部隊人力配置更為有效;另外對於軍民共用的油料物資在分配更具彈性,如53站中將6站提供給軍方輸具使用,另將47站提供給民間輸具使用。

三、蟻群演算空間分布及指派機制


在經過手肘法分析以及輪廓係數測 試後,便可初步找出數個可能的群集數 量範圍;再綜合每站可支援的範圍上限 與最大負載條件,逐步遞增或遞減群集數 量,使整個加油站佈局兼顧地理距離與均 衡性。最終保留下來的6個加油站分布位 置主要涵蓋臺中各大區域。

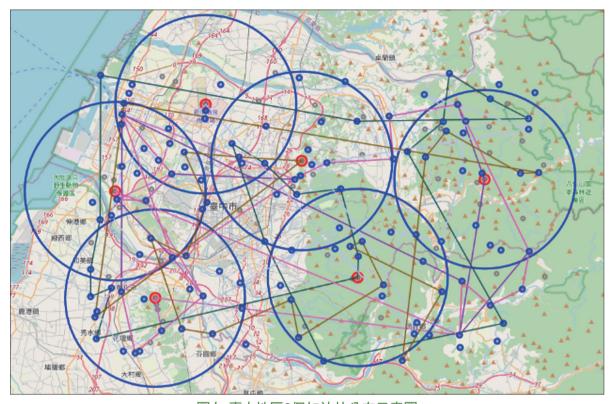
接續隨機建立120個部隊,由系統依不同的地理位址,由K-means分群出6群加

圖五 Google Earth Pro加油站配布圖

資料來源:本研究彙整

圖六 手肘法與輪廓係數分析法

資料來源:本研究彙整

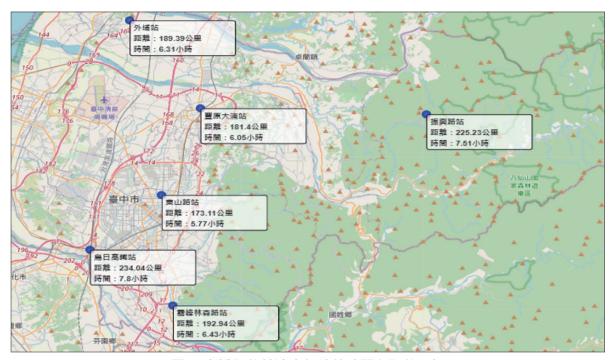

油站分配至距離最近或運輸時間較為合理的站點(如圖七)。此一配置相較於原先53站的全域散佈,不僅減少47個站點可能帶來資源浪費及人力負荷,亦可將油料部隊人力集中至庫儲整備及設施維管。就目前研究結果來看,站點數量精簡並未影響整體覆蓋率,因為在設定支援半徑與負載限制後,原先過多、位置過度重疊的站點也確實並無必要持續保留。

針對加油站可否便利戰甲砲車進出、 檢視有無汽(柴)油油槽等條件,最終選定 的6處加油站(如表四及圖八),明顯與市區 以及鄉鎮的空間密度呈正相關關係。也就 是說,部隊較密集或交通路網較重要之地 區,較易成為聚類中心,進而被評定為最 具代表性的加油站。這種區位因素與交通 便利性在軍事決策中顯得格外關鍵,因 為軍事運補除日常油料提供外,也涵蓋緊 急應變與臨時性任務的動員需求。

在部隊與加油站指派上,若設定將每個加油站負責支援約20個軍事單位,且平均距離與時間皆維持在可接受區間內。若有特定區域因地勢或道路交通的不便性,導致距離偏遠或時間偏長時,也可透過跨站支援來進行應變調度。此種模式若配合持續的動態資料蒐集(如交通尖離峰資訊、局部道路施工或封閉等),將能使最佳化結果更貼近實際空間配置,也更具備彈性與擴充性。

伍、結論與建議

本章綜整前四章之研究脈絡與分析 結果,進一步說明本研究在國軍油料補給 體系如何結合民間油料資源,有效支援後 勤補給,確保油料戰力不墜,期望能在未


圖七臺中地區6個加油站分布示意圖

資料來源:本研究彙整

表四 加油站支援分析表

站點	站名	地址	加油站可進出	可知支援油品		支援	運補距離	運補時間
編號			戰(甲)車整補	汽油	柴油	單位數	(km)	(小時)
20	外埔站	大同里甲后路三段 758號	$\sqrt{}$	$\sqrt{}$		20	189.39	6.31
14	東山路站	東山路一段377-5號	\checkmark	\checkmark		20	173.11	5.77
30	振興路站	泉源里建成路556號	\checkmark	\checkmark		20	225.23	7.51
53	霧峰林森路站	林森路455號	\checkmark	\checkmark		20	192.94	6.43
50	豐原大湳站	三豐路一段432號	\checkmark	\checkmark		20	181.40	6.05
39	鳥日高鐵站	建國路265號	\checkmark	\checkmark	$\sqrt{}$	20	234.04	7.80
平均				20	199.35	6.65		

資料來源:本研究彙整

圖八 支援距離較遠之加油站時間與距離分析

資料來源:本研究彙整

來落實於軍事後勤的決策與執行層面,亦 為後續研究者提供更多參考。

一、結論

(一) K-means聚類分群與民間加油站結合 之可行性

本研究在第二章文獻探討時,曾多次 提及軍事設施選址與民間資源整合的重 要性,並綜合張大剛(2004)、羅裕耀等人 (2019)及賴智明等人(2020)等研究對於 軍用設施部署與距離等條件。藉此推論, 若能將K-means聚類方法應用於實際地理 環境與運輸資料,則可在既有的環境條件 中,兼顧覆蓋率及軍事需求的情況下,快 速篩選出合適的開設地點。本研究於第三 章描述了聚類演算法與距離權重的設計原理,第四章則將之實際應用於中油加油站選址後,確實發現透過K-means能有效分群出最適的加油站點。透過這些加油站點配合作戰部隊需求開設油料前支點,不僅藉此有效整合軍民通用物資,有助於分散國儲風險,達油料整補的精簡與集中,亦能確保後勤支援能量不墜。

透過印證第二章文獻回顧之指標, 包含設施容量、道路條件、防護力、作業 區大小及距離等,結果佐證:在面臨人力 與空間資源皆有限的情況下,選定固定數 量的加油站作為「前支點」的模式確具可 行性。尤其臺中地區加油站密度高,使得 K-means演算法在分群時更能兼顧地理與 運輸效率要素,最終得出縮減自53站至6 站之目標成果。此一結論與文獻中強調的 「分區供補」「就近支援」等政策相互結 合呼應。

(二) 蟻群演算法與油料運補路線設計的優化

與文獻中對動態路線規劃及軍事 運輸最短路徑之強調類似(如楊政玹 (2017)、王春和等人(2009)所提出的軍 事補給路線探索),本研究第四章以蟻群 演算法為基礎,針對前支點與受支援部隊 進行連線與路徑設計。實際結果顯示:

假設同一前支點需採單位分配法方式整補20個部隊的情況下,運補距離與時間可被壓縮於可控範圍內(平均距離約199.35公里,平均時間約6.65小時)。若出現道路中斷或需求變動,也可透過更新距離矩陣與費洛蒙濃度,再度計算更適合的路徑。

此一演算法運用,也可在戰況及戰術 作為的「不確定環境」下,提高油料整補 的彈性及擴充性。也就是說,只要能即時 擁有交通路況資訊或人員狀況變動,便 能進行局部調整,雖可能於原本的配置及 整補路線不同,但也不至於完全推翻之前 的整補配置。

(三)縮減站點與人力節省的連動效益

透由手肘法(Elbow Method)與輪廓係

數(Silhouette Coefficient)進行測試後,將原本全區的油料站點自53處縮減至6處後,若假設以一個站點最少派遣3員(組長、記帳及作業人員等),執行油料加油站加油、記帳及管理,可望節省約141(47*3=141)名人力,且運補效率並未因站點減少而產生衝擊。呼應本研究的動機「若能根據戰場環境及部隊需求,選出適當的油料前支點,將大幅提升補給效率,減少後勤人員」,使得油料前支點更能集中資源與調度機具,創造規模效益,也使得補給任務可更具彈性。這與多篇文獻相呼應:在後勤人力緊縮、兵力精簡的情況下,以「集中運補」與「少量但質精」的原則,不僅可維持現有補給水準,亦能增加人力調度彈性。

二、建議事項

基於上述結論,歸納出以下幾點在 油料支援、選址部署及後續研究方向的建 議,期能進一步落實本研究成果,並補足 局部限制。

(一)落實分階段推行前支點整合機制

儘管本研究證實只需保留6處重點加油站即可有效覆蓋120個部隊,但在實際執行時,宜採分階段推行的方式,先行驗證關鍵區域的站點,俟驗證成效符合預期後,再逐漸擴及至全區,此舉能避免一次性整併造成的快速整補的不確定性,亦可降低因戰時情勢迅速變動所帶來的風險。

(二)持續更新路網資訊與動態派遣規劃

軍事作戰中,道路毀損、交通管制或 氣候條件皆可能影響油料運補效率。故在 運用蟻群演算法時,應結合地理資訊系統 (GIS)或即時交通資料庫,定期或隨時更 新路徑權重,以確保演算法,藉以獲得貼 近現況的運補序列。若能在防衛作戰演 習中模擬多種突發狀況,並檢視系統反應 與費洛蒙更新機制是否足以適應,將更能 提升動態運補之可靠度。

(三)納入設施防護力與油槽整補條件之探討

雖然本研究於後勤設施「達成任務能力選址」參考準則計「設施容量」、「道路條件」、「作業區大小」、「防護力」等構面,但實際執行時,加油站所在位置是否能免於敵軍空襲或封鎖,亦屬一大變數。後續可納入敵方火力覆蓋半徑、山區隱蔽度或強化結構設施等更多防護力參數,並應審視防衛作戰油料國儲需求,檢視各加油站抽槽國儲容量能否全數滿足作戰需求,並研擬油槽後續補充作為,讓K-means與蟻群演算法在分群與路徑規劃時,同步考量防護能力及油槽再整補作為等條件,如此得出的結果將更趨近實際戰場環境。

(四)與地方政府及中油單位協調合作

由於民間加油站之運用牽涉公共利益與地方經濟,建議在平時即應建立「軍

民協調平臺」,由作戰區後勤指揮官與中油公司、地方政府共同協調預演,確立戰時接管及跨站調度機制,包括地理位置、油品存量、車道寬度、安全檢修等。另本文加油整補人力係以一個站僅精簡設置3員人力計算(管理、記帳及加油人力各乙員),若戰時整補可將整補最佳人力,納入再整補、警戒及防衛作戰之人力,結合作業納編中油民力及友軍協同,更達遂行油料前支點整補之效;再者油料屬戰力持續的重要物資,故民間加油站可視為重要基礎設施,透由遴選6處重點加油站實施整補,亦可作為重要目標防護及關鍵基礎設施的防護要點。

三、後續研究方向

雖然本研究對臺中地區之加油站優 化配置與部隊支援需求提供整合建議, 仍有若干議題可於未來進一步探討:

(一)全國或跨區域驗證

由於不同作戰區或都會區的加油站 密度與地理條件迥異,若能以北部或南部 區域作為對照,可更全面驗證K-means與 蟻群演算法應用於我國整體油料補給的 可行度。

(二)結合國軍後勤設施或軍事設施統合評估

除加油站外,彈藥庫、保修廠與醫療 設施亦為戰時關鍵據點。若在未來將各 式軍事設施統合評估,可進一步強化整體 後勤部署的協同效益。

(三)導入即時監控與深度學習

若能收集車隊運動軌跡、油量消耗 及部隊行動模式,並運用深度學習或其他 預測模型,便能提早研判高峰需求與風 險區域,及時啟動備援路線。

本研究自第一章敘述國軍面臨人力精簡與作戰需求升高的雙重壓力,並強調結合民間加油站開設油料前支點之必要性;第二章則透過軍事設施選址與最短路徑理論,建構出K-means聚類與蟻群演算法可行之依據;第三章將此方法具體化為程式實作流程,並於第四章針對臺中地區53個加油站與120個部隊位置進行實證,成功從多個候選站點中抽取6處最優配置,藉此大幅節省人力成本(141人)並維持良好的運補效率(平均199.35公里、6.65小時)。

歸納言之,經由科學化分群與路線優 化兩大策略,可協助國軍達成「前推預置、 就近支援、縮短時效」之目標,亦為後勤 策略制定者提供動態調整的空間。民間資 源結合雖然仍需考量地方政府協調、交通 尖峰管理與戰場安全因素,但本研究已證 明其在防衛作戰中具有高度價值與應用潛 力。未來若能持續擴充至其他作戰區,並 導入更即時與先進的技術(如深度學習預 測),將更進一步強化整體國防後勤之效 率與韌性,讓國軍在面臨複雜多變的威脅時,依舊能保持穩固且持久之戰力。

作者簡介

陳鴻鈞上校,雲林科技大學工業工程管理研究所畢業。國防大學管理學院87年班、國防大學管理學院正規班89年班、國防大學管理學院指參99年班,曾任排長、分庫長、後參官,現為國防大學管理學院國管中心後勤組指參教官。

作者簡介

羅能成中校,國防大學管理學院運籌所100年班畢業。國防大學採購正規班97年班、國防大學指參班107年班、國防大學戰略班114年班。曾任後訓中心中任教官、花東補油庫長、五支部補給科長,現為五支部補油庫副庫長。

作者簡介

羅裕耀備役中校,後校正規班96年,國防大學運籌所103年畢業,元智大學工管系博士班候選人,曾任後校補給組組長、國防醫學院預防醫學所研究助理、國光客運維保研究專員,現為聯華神通神耀科技公司無人機系統整合部經理。