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Integrating Manual ECG Feature Extraction with Ensemble Learning for
Myocardial Infarction Diagnosis
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Background: Myocardial infarction (MI) is a leading cause of mortality worldwide. Electrocardiograms (ECGs) are primary diagnostic
tools but face limitations with high-dimensional, imbalanced data. Combining manual ECG waveform feature extraction with machine
learning may improve diagnostic accuracy. Aim: The aim of this study is to improve the accuracy and efficiency of MI diagnosis by
integrating manually extracted ECG waveform features with ensemble machine learning models and evaluating their performance
on a comprehensive, large-scale ECG dataset. Methods: We utilized the PTB-XL dataset, which consists of 15,014 12-lead ECG
recordings. Manual feature extraction was conducted on 94 waveform-specific variables, including the durations and areas of P-waves,
QRS complexes, and T-waves. The preprocessing steps included signal filtering, detrending, and data augmentation to mitigate noise
and address class imbalance issues. Three ensemble learning algorithms — XGBoost, Random Forest, and AdaBoost —were trained and
validated using a 70%, 20%, and 10% split for training, validation, and testing, respectively. Results: Compared with the other models,
the XGBoost model demonstrated superior performance, with an accuracy of 86.12%, a sensitivity of 84.81%, a specificity of 87.43%,
and an area under the receiver operating characteristic curve (AUROC) of 93.59%. Subcategory analyses indicated strong diagnostic
performance in detecting anterior MI (AUROC: 94.09%), inferior MI (AUROC: 90.14%), and lateral MI (AUROC: 89.76%). The ST
interval emerged as the most influential feature for accurate diagnosis. Conclusion: Manual ECG feature extraction combined with
ensemble learning improves MI diagnosis. Future work should explore automated deep learning and additional physiological features.
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INTRODUCTION with symptoms such as chest pain and difficulty breathing.
However, some patients may be asymptomatic, especially
Cardiovascular diseases have become the leading elderly patients and those with diabetes,” which makes early

diagnosis even more crucial.
Electrocardiography (ECG) is the primary tool for
diagnosing MI and is capable of recording cardiac electrical

cause of death globally. According to the World Health
Organization (WHO), approximately 17.9 million people die
from cardiovascular diseases annually, accounting for 32%

of all deaths worldwide. It is estimated that by 2030, the
number of deaths due to cardiovascular diseases will increase
to 23 million worldwide.! In Taiwan, according to the 2022
statistics from the Ministry of Health and Family Welfare,
heart disease ranks second among the top 10 causes of death
and causes 23,668 deaths, with an annual increase rate of 8.3%,
second only to cancer.”> Myocardial infarction (MI), one of
the most common cardiovascular diseases, typically presents
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potential changes and analyzing waveform characteristics,
such as ST-segment and T-wave changes, to detect diseases.*
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ECG feature extraction for MI diagnosis

However, traditional 12-lead ECGs are used mainly within
medical institutions, which may be inconvenient for
many people and thus reduce their willingness to undergo
examination. Moreover, this detection method requires
connecting multiple leads, which makes it less flexible
for detecting sudden symptoms, and may fail to detect
abnormalities when symptoms disappear. All of these factors
contribute to delays in diagnosis and treatment.’

This study aims to explore improvements in the accuracy
and efficiency of MI diagnosis through ECG feature extraction
and ensemble learning models. ECG signal features, such
as the wave peak amplitude, interval, duration, and area,
are crucial for diagnosing heart diseases.®” Researchers!®!?
have extensively used techniques such as wavelet transform,
time-domain  morphology, and gradient analysis to
automatically extract key physiological indicators such as
P-waves, QRS complexes, and T-waves that play important
roles in early diagnosis and treatment.

However, traditional machine learning techniques face
performance challenges when dealing with high-dimensional
and imbalanced data. To address this, ensemble learning
methods such as Random Forest, XGBoost, and AdaBoost have
demonstrated excellent performance in handling imbalanced
data and significantly improved prediction accuracy. Early or
subtle manifestations of MI may be difficult to identify through
standard ECGs, and the limitations of traditional machine
learning models further highlight the necessity of using
advanced techniques. Therefore, this study manually extracts
waveform and area features from a publicly available 12-lead
ECG dataset, combines ensemble learning models such as
Random Forest, XGBoost, and AdaBoost to develop an assisted
MI diagnosis model, and evaluates the impact of different data
augmentation strategies on model prediction accuracy.

MATERIALS AND METHODS

Data source

This  study uses the Physikalisch-Technische
Bundesanstalt (PTB)-XL ECG dataset provided by
PhysioNet. The dataset was compiled by the German Federal
Institute for Physics and Technology (PTB) and included
ECG data collected by Schiller AG equipment between
1989 and 1996. The PTB-XL dataset was made public in
2020 and included 21,837 12-lead ECG recordings from
18,885 patients. Each recording lasts 10 s and is sampled
at 500 Hz and 100 Hz." The institutional review board
(IRB) approval was exempted from our IRB as this study
used publicly available and fully de-identified data from the
PhysioNet PTB-XL dataset.
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Data collection

The PTB-XL dataset records patients’ ECG data, is
sex balanced, covers a wide age range, and is annotated
by cardiology experts. The recordings include five major
diagnostic categories and are converted into up to 71
different diagnostic statements according to the Standard
Communications Protocol (SCP)-ECG standard.' In addition,
the data are stored in WFDB format, with corresponding
metadata provided for research analysis. This study focuses on
MI data and selects 15,014 ECG recordings, including 9528
normal recordings and 5486 MI recordings.

Research methods

This study manually extracts 11 base waveform variables
per lead (e.g., P-wave duration, PR interval, QRS width, QT
interval, R-peak amplitude, etc.). For each of these 11 variables,
we then compute seven summary statistics across the 12
leads — maximum, minimum, median, standard deviation (SD),
25" percentile, 75™ percentile, and 99" percentile — yielding a total
of 77 features. In addition, we include six clinical/demographic
features (age, sex, heart rate, P-wave area, T-wave area, and
QRS-wave area), bringing the grand total to 94 input features
for our models. Multiple signal processing techniques are
subsequently used to analyze the ECG data. First, the convolve
function from the NumPy package is used to implement moving
average filtering, with a Window size of 10, to smooth the data.
Next, the signal filter function from the NeuroKit2 toolkit is
applied, using a second-order Butterworth bandpass filter with
cutoff frequencies of 0.5 Hz to 50 Hz to enhance R-wave peak
recognition. In addition, 10®-order polynomial detrending is
performed using NeuroKit2’s signal _detrend function to remove
baseline drift. To detect R-wave peaks, this study adopts the
hamilton segmenter and correct rpeaks functions from the
BioSPPy toolkit package and further calculates RR intervals and
heart rate. The QRS region is set to 0.14 s to precisely capture
the QRS waveform by defining time Windows before and after
the R-wave. We then apply a previously utilized methodology'?
to locate the onset and offset points of the QRS complex and
determine the onset of the S-wave and offset of the Q-wave
based on slope changes. P-wave detection adopts a previously
utilized strategy'® that identifies the P-wave peak, onset, and
offset by analyzing the signal portion before QRS onset. T-wave
detection is based on setting time Windows after each QRS offset
to identify the T-wave peak, onset, and offset. Finally, this study
uses the trapz function from the SciPy package to calculate the
area of each waveform on the ECG.

Statistical analysis
This study uses Python for data analysis, first cleaning missing
values and excluding data that do not meet the research criteria.



The descriptive statistical analysis includes variables such as
sex, age, heart rate, waveform duration, and waveform area.
For machine learning analysis, three classification algorithms
are adopted: XGBoost, Random Forest, and AdaBoost. Data
preprocessing includes missing value imputation, dataset
splitting (70% training, 20% validation, and 10% testing), and
the use of random undersampling techniques to handle class
imbalance problems. According to Supplementary Table 1,
the best model configuration is selected through a parameter
grid search and multiple performance metric tests, and a final
performance evaluation is conducted on an independent test set
to verify the model’s prediction accuracy and generalization
ability, which ensures its reliability in practical applications.

RESULTS

After data augmentation and 1:1 data splitting, this study
balanced the samples of MI and normal, with 5400 samples
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for each category to ensure equal representation of both
conditions in the analysis. The data were then split into 70%
training, 20% validation, and 10% testing proportions.

As shown in Table 1, there were no significant differences
in demographic variables such as age or heart rate between
the training, validation, and testing groups, which indicated a
consistent distribution (P > 0.05). In terms of waveform duration,
none of the features reached statistical significance. With respect
to the waveform area, there were no significant differences in the
distributions of the P-wave, T-wave, and QRS wave areas. For the
statistical values of various waveform durations in Supplementary
Table 2, such as the maximum, minimum, median, standard
deviation, and percentiles, all features did not reach statistical
significance, which indicated a consistent distribution of these
statistical values across different groups. The proportions of MI
samples and NORM samples were similar (P = 1.000). These
results show that the distributions of most features were consistent
among the training, validation, and testing sets.

Table 1: Descriptive statistical analysis based on a 1:1 split strategy with augmented data

Variable Training set (n=7559) Validation set (n=2160) Testing set (n=1081) P
Demographic characteristics
Age 59.68+16.79 58.85+16.97 59.28+16.13 0.116
Sex, n (%) 0.355
Male 4082 (54.0) 1199 (55.5) 600 (55.5)
Female 3477 (46.0) 961 (44.5) 481 (44.5)
Heart rate 73.51+15.87 73.82+16.32 74.03+16.46 0.498
Wave duration time
P-wave duration 102.79+5.32 102.94+5.42 102.94+5.20 0.384
Q-wave duration 38.54+5.13 38.41+5.21 38.45+5.08 0.523
S-wave duration 37.80+5.03 37.83+4.78 37.83+4.93 0.959
T-wave duration 251.98+35.69 251.01+36.31 251.09+36.86 0.455
PR interval 151.64+14.32 152.07+14.49 152.10+14.41 0.348
QT interval 460.61+40.22 459.25+40.93 459.08+40.61 0.245
ST interval 328.96+39.36 327.73+39.96 327.45+39.72 0.275
RR interval 853.27+170.62 850.29+170.12 847.94+170.10 0.537
QRS interval 131.66+5.90 131.52+5.83 131.63+5.85 0.646
ST segment 76.97+24.21 76.72+24.62 76.36+25.79 0.708
PR segment 48.86+13.88 49.14+13.94 49.15+13.70 0.622
Wave area
P-wave area 2.02+1.05 2.00+0.97 2.03+1.02 0.760
T-wave area 9.37+4.81 9.41+4.42 9.33+4.49 0.878
QRS-wave area 7.74+3.83 7.65+3.49 7.55+3.66 0.202
MI (%)
NORM 3779 (50.0) 1080 (50.0) 541 (50.0) 0.999
MI 3780 (50.0) 1080 (50.0) 540 (50.0)

*P<0.05. NORM=Normal; MI=Myocardial infarction
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Predictive ability of myocardial infarction and
its subcategories in various machine learning
models

To predict MI, this study compared three different machine
learning models. As shown in Table 2, the XGBoost model
achieved an accuracy of 86.12%, a sensitivity of 84.81%,
a specificity of 87.43%, a precision of 87.07%, and an F1
score of 85.92%. The Random Forest model achieved an
accuracy of 83.81%, a sensitivity of 80.92%, a specificity of
86.69%, a precision of 82.50%, and an F1 score of 83.31%.
In addition, the AdaBoost model achieved an accuracy of
85.29%, a sensitivity of 83.14%, a specificity of 87.43%, a
precision of 79.60%, and an F1 score of 80.32%. As shown in
Figure 1, the area under the receiver operating characteristic
curve (AUROC) for XGBoost, Random Forest, and AdaBoost
reached 94%, 91%, and 92%, respectively. The XGBoost
model had the best performance based on the AUROC.

Next, predictions for four subcategories were performed.
For anterior MI (AMI), as shown in Table 2, the XGBoost
model achieved an accuracy of 88.66%, a sensitivity of
85.33%, a specificity of 92.0%, a precision of 91.42%, and
an F1 score of 88.27%. The Random Forest model achieved
an accuracy of 82.0%, a sensitivity of 78.66%, a specificity of
85.33%, a precision of 84.28%, and an F1 score of 81.37%. In
addition, the AdaBoost model achieved an accuracy of 86%, a
sensitivity of 83.66%, a specificity of 88.33%, a precision of
87.76%, and an F1 score of 85.66%. According to Figure 2a,
the AUROC for XGBoost, Random Forest, and AdaBoost
reached 94%, 91%, and 92%, respectively. The XGBoost
model had the best performance based on the AUROC.

Table 2: Evaluation metric results for myocardial infarction
and subtypes across different machine learning models

Model

Category Accuracy Sensitivity Specificity Precision F1 score

(%) (%) (%) (%) (%)

XGBoost MI 86.12  84.81 8743 87.07 8592
AMI 83.66 8533 9200 9142 8827

IMI 80.00  80.00 80.00  80.00  80.00

LMI 8046 80.00 80.95  80.00  80.00

Random MI 8381  80.92 86.69 8250 8331
Forest  Am1 8200  78.66 8533 8428 8137
IMI 7781 76.87 7875 7834 77.60

LMI 80.48 85 7619 7727 80.95
AdaBoost MI 8529  83.14 8743 79.60  80.32
AMI 86.00  83.66 8833 8776  85.66

IMI 80.78  80.00 81.65 8126  80.62

LMI 78.04 75 80.95 7894  76.92

MI=Myocardial infarction; AMI=Anterior MI; IMI=Inferior
MI; LMI=Lateral MI

232

For the inferior MI (IMI), according to Table 2, the
XGBoost model achieved an accuracy of 80%, a sensitivity of
80%, a specificity of 80%, a precision of 80%, and an F1 score
of 80%. The Random Forest model achieved an accuracy of
77.81%, sensitivity of 76.87%, specificity of 78.75%, precision
of 78.34%, and F1 score of 77.60%. In addition, the AdaBoost
model achieved an accuracy of 80.78%, a sensitivity of 80%, a
specificity of 81.65%, a precision of 81.26%, and an F1 score
0f 80.62%. As shown in Figure 2b, the AUROCSs for XGBoost,
Random Forest, and AdaBoost reached 90%, 88%, and 90%,
respectively. The XGBoost and AdaBoost model had the best
performance.

Finally, for the lateral MI (LMI), according to Table 2, the
XGBoost model achieved an accuracy of 80.46%, a sensitivity
of 80%, a specificity of 80.95%, a precision of 80%, and an
F1 score of 80.00%. The Random Forest model achieved
an accuracy of 80.48%, sensitivity of 85.0%, specificity
of 76.19%, precision of 77.27%, and F1 score of 80.95%.
In addition, the AdaBoost model achieved an accuracy of
78.04%, a sensitivity of 75.00%, a specificity of 80.95%, a
precision of 75.94%, and an F1 score of 76.92%. As shown
in Figure 2c, the AUROC for XGBoost, Random Forest, and
AdaBoost reached 90%, 89%, and 85%, respectively. The
XGBoost model had the best performance.

Next, feature importance ranking was performed. As shown
in Figure 3a, for MI, the top 10 important features were the
standard deviation of the S-wave duration, 75" percentile of
the QT interval, the median QT interval, age, 75" percentile
of the ST interval, 75" percentile of the S-wave duration,
75" percentile of the PR segment, sex, the median T-wave

» Receiver Operating Characteristic (ROC) Curve
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’ - Random Forest (AUC = 0.91)
g —— AdaBoost (AUC = 0.93)
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Figure 1: Area under the receiver operating characteristic curve of
three different models under a 1:1 data split. ROC = Receiver operating
characteristic; AUC = Area under the curve
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Figure 2: Area under the receiver operating characteristic curve (AUROC) analysis of each subclass under different machine learning models. (a) AUROC
analysis for anterior myocardial infarction, (b) AUROC analysis for inferior myocardial infarction, (c) AUROC analysis for lateral myocardial infarction.

ROC=Receiver operating characteristic; AUC= Area under the curve
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Figure 3: Top 10 feature importance rankings for myocardial infarction (MI) and its subcategories across three models: (a) MI, (b) anterior MI, (c) inferior

IML, (d) lateral MI

duration, and the median ST interval. For AMI, the XGBoost
model had the best performance. As shown in Figure 3b, the
top 10 important features were the minimum PR segment, the
minimum S-wave duration, the maximum ST interval, the ST
interval, the median Q-wave duration, the maximum S-wave
duration, the QRS-wave area, the S-wave duration, age, and
the PR segment. For inferior M1, the XGBoost model had the
best performance. As shown in Figure 3c, the top 10 important
features were sex, the minimum S-wave duration, age, the

median Q-wave duration, the ST interval, the QT interval, the
maximum PR segment, the PR segment, the standard deviation
of the S-wave duration, and the T-wave duration. For LMI, the
XGBoost model performed best. As shown in Figure 3d, the
top 10 important features were the minimum S-wave duration,
the maximum ST interval, the standard deviation of the QRS
interval, the S-wave duration, the minimum T-wave duration, the
median QT interval, the maximum RR interval, the minimum
S-wave duration, heart rate, and the maximum PR segment.
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DISCUSSION

This study employed manual feature extraction and
waveform analysis techniques to locate and analyze
P-waves, QRS complexes, and T-waves precisely in
Electrocardiograms (ECGs). The duration and area of each
waveform were calculated to predict MI. Through data
augmentation, the overall AUROC for MI reached 93.59%,
with an AUROC of 94.09% for AMI diagnosis and 90.14%
and 89.76% for inferior and LMI, respectively. The study
identified the ST interval as the most crucial feature, which is
consistent with clinical diagnosis, because changes in the ST
segment and T-wave are vital for MI diagnosis. The XGBoost
model achieved an accuracy of 86.21% for MI prediction. In
contrast to previous studies that used automatically generated
ECG data, this study utilized the PTB-XL dataset provided by
PhysioNet and employed manual feature extraction to increase
model performance. The manual approach more accurately
captured key ECG characteristics, reduced the impact of
instrumental errors in automatic extraction, and improved
model accuracy. However, manual feature extraction is
tedious and time-consuming and heavily depends on expert
knowledge and experience. The accuracy of feature extraction
largely depends on the precise detection of reference points,
and any deviation may affect diagnostic reliability.

Several previous studies have employed different
methodologies and achieved varying results in MI detection.
An earlier study by Ibrahim et al."” used the ECG-VIEW II
dataset, which was comprised 979,273 ECG records from
371,401 patients, and achieved an AUROC of 96.5% with
XGBoost. The study used RobustScaler for standardization
and synthetic minority oversampling technique (SMOTE)
to address class imbalance, which are techniques not
employed in the current study. Another study by Sharma and
Sunkaria'® proposed a method based on stationary wavelet
transform (SWT) and machine learning to detect inferior MI
using ECG data from leads I1, III, and aVF. Their support vector
machine model achieved an impressive AUROC of 99.94%
for inferior MI detection and significantly outperformed this
study’s XGBoost model (AUROC of 90.14%) for the same
task. The superior performance of Sharma and Sunkaria’s
study may be attributed to their focus on specific leads most
sensitive to changes in the inferior wall of the heart and
their use of SWT for signal processing, which maintains
signal translation invariance and allows multiscale analysis.
In contrast, this study employed Butterworth and moving
average filters, which may introduce phase delays. A study
by Chumachenko et al.'” using heart rate variability (HRV)
indicators for feature extraction achieved an accuracy of
99.629% with a Random Forest model, demonstrating
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superior predictive capability compared with this study’s
86.21% accuracy.

Recent research has increasingly utilized deep learning
approaches for MI detection?’ and developed hybrid models that
combine convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), specifically the CNN-long short-term
memory (LSTM) and CNN- bidirectional LSTM (BILSTM)
models. When trained on the PTB-XL dataset, these models
achieved accuracies ranging from 89% to 91%, which slightly
outperformed this study’s XGBoost model. The advantages
of their approach lie in the automatic feature extraction
capabilities of deep learning models, which can effectively
learn important patterns in ECG data. The combination of
CNNs and RNNs allows the learning of both spatial and
temporal features, which is particularly important for ECG
data processing. Another study by Zhang and Li*' employed a
Bi-LSTM network based on a heartbeat-attention mechanism,
which achieved an accuracy of 94.77% on the PTB diagnostic
ECG database. Compared with the manual feature extraction
approach in this study, the ability of the Bi-LSTM model to
automatically extract features and weight important heartbeat
signals significantly improved the predictive performance.?
and proposed a multichannel lightweight CNN (MCL-CNN)
for detecting AMI using ECG data from leads v1, v2, and
v3 and achieved an AUROC of 95.50%. While this study’s
XGBoost model demonstrated better performance for AMI
detection, with an AUROC of 96.19%, it is likely due to the
use of complete 12-lead ECG data, which provides more
comprehensive information than the three-lead approach does.

This study identified the ST interval as the most important
feature for MI detection, which aligns with clinical diagnosis
practices. This finding contrasts with a previous study
by Kalmady et al.,”® which identified patient sex as a key
feature, possibly because of significant sex distribution
effects in their dataset. The current study relied primarily on
ECG morphological features (such as P-waves, Q-waves,
S-waves, T-waves, and ST segments), whereas other studies,
such as Chumachenko et al.,” utilized HRV indicators such
as interbeat intervals and beats per minute. HRV indicators
can consistently reflect short-term cardiac activity changes
and have strong discriminative power for MI. However, they
may require hospital visits for examination, which may delay
diagnosis and treatment. The impact of applying different
filters on feature extraction results is a subject for further
investigation. This study used Butterworth and moving average
filters, whereas others employed various types, such as notch
filters, finite impulse response filters, and bandpass filters.
Future research should explore the effects of different filters
on machine learning model performance. In addition, focusing
on specific ECG leads that are most sensitive to changes in



the heart (such as leads II, III, and aVF for inferior MI) could
optimize model performance in future studies. Although
manual feature extraction allows for precise control over
the extracted features, it may not fully capture the complex
patterns in the data compared with the automatic feature
extraction methods used in deep learning approaches. Future
studies may benefit from combining the strengths of manual
and automatic feature extraction techniques, which may lead
to more robust and accurate MI detection models.

CONCLUSION

This study employed manual feature extraction and waveform
analysis techniques to accurately locate and analyze P-waves,
QRS complexes, and T-waves in ECGs and calculate the
duration and area of each waveform to successfully predict MI.
Through data augmentation, the overall AUROC for MI reached
93.59%, with 94.09% and 90.14% for anterior and inferior MI
diagnosis, respectively. However, the AUROC was 89.76%
for lateral wall MI. This study suggests that future research
could incorporate additional parameters such as HRV, explore
more class imbalance handling techniques such as SMOTE
or adaptive synthetic sampling, and compare the effects of
different filtering techniques. Furthermore, the adoption of deep
learning models to enhance the automation of feature extraction
and improve diagnostic accuracy is recommended.
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Supplementary Table 1: Hyperparameter settings for various machine learning models

Model Hyperparameters

XGBoost n_estimators=200, learning_rate=0.1, reg_alpha=0.05, gamma=0.5, max_depth=4, subsample=0.8, colsample bytrees=1.0
Random Forest n_estimators=200, max_depth=8, min_samples_split=2, min_samples_leaf=1, bootstrap=True

AdaBoost n_estimators=300, learning_rate=0.1

Supplementary Table 2: Expanded manually extracts waveform data

Variable Training set Validation set Testing set P
Wave duration time
Maximum P-wave duration 116.08+5.12 116.21+5.12 116.28+5.13 0.334
Maximum Q-wave duration 65.17+10.36 65.16+10.40 65.13+10.09 0.994
Maximum S-wave duration 57.23+12.13 57.24+11.82 57.00+11.79 0.829
Maximum T-wave duration 341.95+24.82 342.29+24.45 341.53+24.84 0.700
Maximum PR interval 183.57+15.21 184.24+15.32 183.93+15.41 0.180
Maximum QT interval 549.90+46.29 549.78+46.96 549.21+45.79 0.901
Maximum ST interval 414.35+46.45 413.94+46.62 413.52+45.45 0.828
Maximum RR interval 875.62+183.15 870.68+181.84 870.59+187.44 0.434
Maximum QRS interval 152.5949.30 152.50+9.51 152.47+9.15 0.866
Maximum ST segment 146.97+41.08 147.48+42.23 146.08+41.77 0.664
Maximum PR segment 77.11+15.56 77.62+15.77 77.56£15.46 0.312
Minimum P-wave duration 81.36+10.19 81.69+10.08 81.77+10.20 0.241
Minimum Q-wave duration 23.52+7.44 23.42+7.41 23.54+7.38 0.844
Minimum S-wave duration 27.04+6.69 26.98+6.60 27.09+6.78 0.900
Minimum T-wave duration 172.40+34.27 171.96+35.09 173.45+33.92 0.506
Minimum PR interval 119.82+16.00 120.09+16.06 119.75+16.12 0.757
Minimum QT interval 380.00+42.11 380.11+42.38 379.65+40.96 0.956
Minimum ST interval 250.30+38.72 250.83+38.39 249.71+37.60 0.721
Minimum RR interval 819.95+184.52 816.90+185.99 816.00+181.61 0.683
Minimum QRS interval 112.24+13.08 112.01+13.02 112.26+13.00 0.757
Minimum ST segment 12.71£17.11 12.26+16.68 12.64+18.13 0.553
Minimum PR segment 27.03£11.71 26.97+11.65 26.87+11.17 0.904
Median P-wave duration 104.72+6.02 104.81+6.13 104.83+5.92 0.731
Median Q-wave duration 35.08+5.30 34.93+5.28 34.98+5.14 0.480
Median S-wave duration 35.90+4.42 35.97+4.25 36.04+4.28 0.585
Median T-wave duration 247.234+47.59 245.19+48.47 246.25+49.19 0.209
Median PR interval 151.64+16.29 152.09+16.55 152.17+16.41 0.385
Median QT interval 457.96+49.19 455.38+50.13 456.03+49.69 0.070
Median ST interval 326.85+48.14 324.61+49.12 325.06+48.70 0.116
Median RR interval 853.80+171.80 850.97+170.88 848.13+170.44 0.522
Median QRS interval 131.30+6.24 131.22+6.18 131.28+6.21 0.888
Median ST segment 78.31+28.95 77.92+29.52 77.50+30.80 0.637
Median PR segment 47.03£15.97 47.41+15.99 47.45+15.75 0.506
Standard P-wave duration 10.02+3.02 9.95+2.97 9.99+3.06 0.644

Contd...



Supplementary Table 2: Contd...

Variable Training set Validation set Testing set P
Standard Q-wave duration 12.42+3.51 12.43+3.55 12.32+3.38 0.639
Standard S-wave duration 8.61+4.19 8.61+4.15 8.49+4.12 0.685
Standard T-wave duration 52.75€12.75 53.28+12.75 52.20£12.43 0.060
Standard PR interval 17.93+5.06 18.00+5.01 18.03+5.15 0.728
Standard QT interval 50.00+15.79 50.20+16.01 49.85+15.42 0.808
Standard ST interval 48.40+15.20 48.41+15.44 48.20+14.87 0.918
Standard RR interval 15.98+35.39 15.31+34.49 15.50+33.42 0.701
Standard QRS interval 11.40+4.34 11.4244.48 11.33+4.19 0.872
Standard ST segment 39.65+12.33 40.23+12.71 39.37+12.39 0.094
Standard PR segment 14.65+4.41 14.79+4.36 14.87+4.42 0.161
Perc25 P-wave duration 97.95+7.02 98.17£7.16 98.11+6.86 0.384
Perc25 Q-wave duration 30.36+5.06 30.20+5.12 30.43+4.96 0.357
Perc25 S-wave duration 32.46+4.92 32.45+4.97 32.60+4.93 0.663
Perc25 T-wave duration 215.85+41.82 214.54+43.04 215.29+42.89 0.436
Perc25 PR interval 141.08+15.15 141.57+15.24 141.57+15.09 0.307
Perc25 QT interval 428.88+44.70 426.99+44.87 427.37+44.87 0.166
Perc25 ST interval 297.90+43.15 296.38+43.44 296.54+43.21 0.266
Perc25 RR interval 852.73+171.70 850.26+171.11 847.29+170.53 0.566
Perc25 QRS interval 125.14+7.55 125.03+7.53 125.25+7.13 0.717
Perc25 ST segment 51.62+27.05 50.76+27.02 51.02+28.21 0.384
Perc25 PR segment 39.11+14.37 39.38+14.43 39.27£14.31 0.725
Perc75 P-wave duration 109.63+5.23 109.66+5.34 109.74+5.15 0.79
Perc75 Q-wave duration 43.76£7.79 43.67+7.94 43.53+£7.77 0.619
Perc75 S-wave duration 40.87+7.04 40.90+6.56 40.76+6.78 0.854
Perc75 T-wave duration 285.58+45.15 284.96+45.44 283.76+46.19 0.439
Perc75 PR interval 162.13+16.93 162.45+17.05 162.68+17.06 0.505
Perc75 QT interval 490.40+47.36 489.06+48.31 488.35+47.98 0.263
Perc75 ST interval 358.32+46.92 357.04+47.74 356.05+47.43 0.227
Perc75 RR interval 856.36+173.11 853.43£172.53 850.59+170.96 0.514
Perc75 QRS interval 137.62+6.34 137.48+6.38 137.46+6.42 0.518
Perc75 ST segment 100.41+31.85 100.70+32.87 99.88+33.31 0.791
Perc75 PR segment 56.99+16.44 57.28+16.49 57.59+16.37 0.465
Perc99 P-wave duration 115.76+5.05 115.89+5.06 115.9545.05 0.342
Perc99 Q-wave duration 64.12+10.04 64.09+10.09 64.05+9.77 0.970
Perc99 S-wave duration 56.26+11.74 56.27+11.42 56.04+11.42 0.834
Perc99 T-wave duration 339.61425.13 339.96+24.76 338.99+25.10 0.581
Perc99 PR interval 182.34+15.10 182.99+15.22 182.74+15.29 0.184
Perc99 QT interval 546.66+45.28 546.55+46.00 545.93+44.81 0.885
Perc99 ST interval 411.30+45.49 410.89+45.73 410.42+44.51 0.808
Perc99 RR interval 874.00+181.56 869.24+180.44 868.98+185.46 0.446
Perc99 QRS interval 151.79+£8.93 151.68+9.11 151.67+8.81 0.845
Perc99 ST segment 144.14+39.70 144.65+40.92 143.20+40.45 0.622
Perc99 PR segment 76.04+15.38 76.55+15.61 76.50+15.30 0.307






