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Background: Myocardial infarction (MI) is a leading cause of mortality worldwide. Electrocardiograms (ECGs) are primary diagnostic 
tools but face limitations with high‑dimensional, imbalanced data. Combining manual ECG waveform feature extraction with machine 
learning may improve diagnostic accuracy. Aim: The aim of this study is to improve the accuracy and efficiency of MI diagnosis by 
integrating manually extracted ECG waveform features with ensemble machine learning models and evaluating their performance 
on a comprehensive, large‑scale ECG dataset. Methods: We utilized the PTB‑XL dataset, which consists of 15,014 12‑lead ECG 
recordings. Manual feature extraction was conducted on 94 waveform‑specific variables, including the durations and areas of P‑waves, 
QRS complexes, and T‑waves. The preprocessing steps included signal filtering, detrending, and data augmentation to mitigate noise 
and address class imbalance issues. Three ensemble learning algorithms – XGBoost, Random Forest, and AdaBoost – were trained and 
validated using a 70%, 20%, and 10% split for training, validation, and testing, respectively. Results: Compared with the other models, 
the XGBoost model demonstrated superior performance, with an accuracy of 86.12%, a sensitivity of 84.81%, a specificity of 87.43%, 
and an area under the receiver operating characteristic curve (AUROC) of 93.59%. Subcategory analyses indicated strong diagnostic 
performance in detecting anterior MI (AUROC: 94.09%), inferior MI (AUROC: 90.14%), and lateral MI (AUROC: 89.76%). The ST 
interval emerged as the most influential feature for accurate diagnosis. Conclusion: Manual ECG feature extraction combined with 
ensemble learning improves MI diagnosis. Future work should explore automated deep learning and additional physiological features.
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with symptoms such as chest pain and difficulty breathing. 
However, some patients may be asymptomatic, especially 
elderly patients and those with diabetes,3 which makes early 
diagnosis even more crucial.

Electrocardiography  (ECG) is the primary tool for 
diagnosing MI and is capable of recording cardiac electrical 
potential changes and analyzing waveform characteristics, 
such as ST‑segment and T‑wave changes, to detect diseases.4 
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INTRODUCTION

Cardiovascular diseases have become the leading 
cause of death globally. According to the World Health 
Organization (WHO), approximately 17.9 million people die 
from cardiovascular diseases annually, accounting for 32% 
of all deaths worldwide. It is estimated that by 2030, the 
number of deaths due to cardiovascular diseases will increase 
to 23 million worldwide.1 In Taiwan, according to the 2022 
statistics from the Ministry of Health and Family Welfare, 
heart disease ranks second among the top 10 causes of death 
and causes 23,668 deaths, with an annual increase rate of 8.3%, 
second only to cancer.2 Myocardial infarction  (MI), one of 
the most common cardiovascular diseases, typically presents 
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However, traditional 12‑lead ECGs are used mainly within 
medical institutions, which may be inconvenient for 
many people and thus reduce their willingness to undergo 
examination. Moreover, this detection method requires 
connecting multiple leads, which makes it less flexible 
for detecting sudden symptoms, and may fail to detect 
abnormalities when symptoms disappear. All of these factors 
contribute to delays in diagnosis and treatment.5

This study aims to explore improvements in the accuracy 
and efficiency of MI diagnosis through ECG feature extraction 
and ensemble learning models. ECG signal features, such 
as the wave peak amplitude, interval, duration, and area, 
are crucial for diagnosing heart diseases.6‑9 Researchers10‑13 
have extensively used techniques such as wavelet transform, 
time‑domain morphology, and gradient analysis to 
automatically extract key physiological indicators such as 
P‑waves, QRS complexes, and T‑waves that play important 
roles in early diagnosis and treatment.

However, traditional machine learning techniques face 
performance challenges when dealing with high‑dimensional 
and imbalanced data. To address this, ensemble learning 
methods such as Random Forest, XGBoost, and AdaBoost have 
demonstrated excellent performance in handling imbalanced 
data and significantly improved prediction accuracy. Early or 
subtle manifestations of MI may be difficult to identify through 
standard ECGs, and the limitations of traditional machine 
learning models further highlight the necessity of using 
advanced techniques. Therefore, this study manually extracts 
waveform and area features from a publicly available 12‑lead 
ECG dataset, combines ensemble learning models such as 
Random Forest, XGBoost, and AdaBoost to develop an assisted 
MI diagnosis model, and evaluates the impact of different data 
augmentation strategies on model prediction accuracy.

MATERIALS AND METHODS

Data source
This study uses the Physikalisch‑Technische 

Bundesanstalt  (PTB)‑XL ECG dataset provided by 
PhysioNet. The dataset was compiled by the German Federal 
Institute for Physics and Technology  (PTB) and included 
ECG data collected by Schiller AG equipment between 
1989 and 1996. The PTB‑XL dataset was made public in 
2020 and included 21,837  12‑lead ECG recordings from 
18,885  patients. Each recording lasts 10 s and is sampled 
at 500 Hz and 100 Hz.14 The institutional review board 
(IRB) approval was exempted from our IRB as this study 
used publicly available and fully de‑identified data from the 
PhysioNet PTB‑XL dataset.

Data collection
The PTB‑XL dataset records patients’ ECG data, is 

sex balanced, covers a wide age range, and is annotated 
by cardiology experts. The recordings include five major 
diagnostic categories and are converted into up to 71 
different diagnostic statements according to the Standard 
Communications Protocol (SCP)‑ECG standard.14 In addition, 
the data are stored in WFDB format, with corresponding 
metadata provided for research analysis. This study focuses on 
MI data and selects 15,014 ECG recordings, including 9528 
normal recordings and 5486 MI recordings.

Research methods
This study manually extracts 11 base waveform variables 

per lead  (e.g., P‑wave duration, PR interval, QRS width, QT 
interval, R‑peak amplitude, etc.). For each of these 11 variables, 
we then compute seven summary statistics across the 12 
leads – maximum, minimum, median, standard deviation (SD), 
25th percentile, 75th percentile, and 99th percentile – yielding a total 
of 77 features. In addition, we include six clinical/demographic 
features  (age, sex, heart rate, P‑wave area, T‑wave area, and 
QRS‑wave area), bringing the grand total to 94 input features 
for our models. Multiple signal processing techniques are 
subsequently used to analyze the ECG data. First, the convolve 
function from the NumPy package is used to implement moving 
average filtering, with a Window size of 10, to smooth the data. 
Next, the signal_filter function from the NeuroKit2 toolkit is 
applied, using a second‑order Butterworth bandpass filter with 
cutoff frequencies of 0.5 Hz to 50 Hz to enhance R‑wave peak 
recognition. In addition, 10th‑order polynomial detrending is 
performed using NeuroKit2’s signal_detrend function to remove 
baseline drift. To detect R‑wave peaks, this study adopts the 
hamilton_segmenter and correct_rpeaks functions from the 
BioSPPy toolkit package and further calculates RR intervals and 
heart rate. The QRS region is set to 0.14 s to precisely capture 
the QRS waveform by defining time Windows before and after 
the R‑wave. We then apply a previously utilized methodology15 

to locate the onset and offset points of the QRS complex and 
determine the onset of the S‑wave and offset of the Q‑wave 
based on slope changes. P‑wave detection adopts a previously 
utilized strategy16 that identifies the P‑wave peak, onset, and 
offset by analyzing the signal portion before QRS onset. T‑wave 
detection is based on setting time Windows after each QRS offset 
to identify the T‑wave peak, onset, and offset. Finally, this study 
uses the trapz function from the SciPy package to calculate the 
area of each waveform on the ECG.

Statistical analysis
This study uses Python for data analysis, first cleaning missing 

values and excluding data that do not meet the research criteria. 
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The descriptive statistical analysis includes variables such as 
sex, age, heart rate, waveform duration, and waveform area. 
For machine learning analysis, three classification algorithms 
are adopted: XGBoost, Random Forest, and AdaBoost. Data 
preprocessing includes missing value imputation, dataset 
splitting (70% training, 20% validation, and 10% testing), and 
the use of random undersampling techniques to handle class 
imbalance problems. According to Supplementary Table  1, 
the best model configuration is selected through a parameter 
grid search and multiple performance metric tests, and a final 
performance evaluation is conducted on an independent test set 
to verify the model’s prediction accuracy and generalization 
ability, which ensures its reliability in practical applications.

RESULTS

After data augmentation and 1:1 data splitting, this study 
balanced the samples of MI and normal, with 5400 samples 

for each category to ensure equal representation of both 
conditions in the analysis. The data were then split into 70% 
training, 20% validation, and 10% testing proportions.

As shown in Table  1, there were no significant differences 
in demographic variables such as age or heart rate between 
the training, validation, and testing groups, which indicated a 
consistent distribution (P > 0.05). In terms of waveform duration, 
none of the features reached statistical significance. With respect 
to the waveform area, there were no significant differences in the 
distributions of the P‑wave, T‑wave, and QRS wave areas. For the 
statistical values of various waveform durations in Supplementary 
Table  2, such as the maximum, minimum, median, standard 
deviation, and percentiles, all features did not reach statistical 
significance, which indicated a consistent distribution of these 
statistical values across different groups. The proportions of MI 
samples and NORM samples were similar  (P  =  1.000). These 
results show that the distributions of most features were consistent 
among the training, validation, and testing sets.

Table 1: Descriptive statistical analysis based on a 1:1 split strategy with augmented data
Variable Training set (n=7559) Validation set (n=2160) Testing set (n=1081) P

Demographic characteristics

Age 59.68±16.79 58.85±16.97 59.28±16.13 0.116

Sex, n (%) 0.355

Male 4082 (54.0) 1199 (55.5) 600 (55.5)

Female 3477 (46.0) 961 (44.5) 481 (44.5)

Heart rate 73.51±15.87 73.82±16.32 74.03±16.46 0.498

Wave duration time

P-wave duration 102.79±5.32 102.94±5.42 102.94±5.20 0.384

Q-wave duration 38.54±5.13 38.41±5.21 38.45±5.08 0.523

S-wave duration 37.80±5.03 37.83±4.78 37.83±4.93 0.959

T-wave duration 251.98±35.69 251.01±36.31 251.09±36.86 0.455

PR interval 151.64±14.32 152.07±14.49 152.10±14.41 0.348

QT interval 460.61±40.22 459.25±40.93 459.08±40.61 0.245

ST interval 328.96±39.36 327.73±39.96 327.45±39.72 0.275

RR interval 853.27±170.62 850.29±170.12 847.94±170.10 0.537

QRS interval 131.66±5.90 131.52±5.83 131.63±5.85 0.646

ST segment 76.97±24.21 76.72±24.62 76.36±25.79 0.708

PR segment 48.86±13.88 49.14±13.94 49.15±13.70 0.622

Wave area

P-wave area 2.02±1.05 2.00±0.97 2.03±1.02 0.760

T-wave area 9.37±4.81 9.41±4.42 9.33±4.49 0.878

QRS-wave area 7.74±3.83 7.65±3.49 7.55±3.66 0.202

MI (%)

NORM 3779 (50.0) 1080 (50.0) 541 (50.0) 0.999

MI 3780 (50.0) 1080 (50.0) 540 (50.0)
*P<0.05. NORM=Normal; MI=Myocardial infarction
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Predictive ability of myocardial infarction and 
its subcategories in various machine learning 
models

To predict MI, this study compared three different machine 
learning models. As shown in Table  2, the XGBoost model 
achieved an accuracy of 86.12%, a sensitivity of 84.81%, 
a specificity of 87.43%, a precision of 87.07%, and an F1 
score of 85.92%. The Random Forest model achieved an 
accuracy of 83.81%, a sensitivity of 80.92%, a specificity of 
86.69%, a precision of 82.50%, and an F1 score of 83.31%. 
In addition, the AdaBoost model achieved an accuracy of 
85.29%, a sensitivity of 83.14%, a specificity of 87.43%, a 
precision of 79.60%, and an F1 score of 80.32%. As shown in 
Figure 1, the area under the receiver operating characteristic 
curve (AUROC) for XGBoost, Random Forest, and AdaBoost 
reached 94%, 91%, and 92%, respectively. The XGBoost 
model had the best performance based on the AUROC.

Next, predictions for four subcategories were performed. 
For anterior MI  (AMI), as shown in Table  2, the XGBoost 
model achieved an accuracy of 88.66%, a sensitivity of 
85.33%, a specificity of 92.0%, a precision of 91.42%, and 
an F1 score of 88.27%. The Random Forest model achieved 
an accuracy of 82.0%, a sensitivity of 78.66%, a specificity of 
85.33%, a precision of 84.28%, and an F1 score of 81.37%. In 
addition, the AdaBoost model achieved an accuracy of 86%, a 
sensitivity of 83.66%, a specificity of 88.33%, a precision of 
87.76%, and an F1 score of 85.66%. According to Figure 2a, 
the AUROC for XGBoost, Random Forest, and AdaBoost 
reached 94%, 91%, and 92%, respectively. The XGBoost 
model had the best performance based on the AUROC.

For the inferior MI  (IMI), according to Table  2, the 
XGBoost model achieved an accuracy of 80%, a sensitivity of 
80%, a specificity of 80%, a precision of 80%, and an F1 score 
of 80%. The Random Forest model achieved an accuracy of 
77.81%, sensitivity of 76.87%, specificity of 78.75%, precision 
of 78.34%, and F1 score of 77.60%. In addition, the AdaBoost 
model achieved an accuracy of 80.78%, a sensitivity of 80%, a 
specificity of 81.65%, a precision of 81.26%, and an F1 score 
of 80.62%. As shown in Figure 2b, the AUROCs for XGBoost, 
Random Forest, and AdaBoost reached 90%, 88%, and 90%, 
respectively. The XGBoost and AdaBoost model had the best 
performance.

Finally, for the lateral MI (LMI), according to Table 2, the 
XGBoost model achieved an accuracy of 80.46%, a sensitivity 
of 80%, a specificity of 80.95%, a precision of 80%, and an 
F1 score of 80.00%. The Random Forest model achieved 
an accuracy of 80.48%, sensitivity of 85.0%, specificity 
of 76.19%, precision of 77.27%, and F1 score of 80.95%. 
In addition, the AdaBoost model achieved an accuracy of 
78.04%, a sensitivity of 75.00%, a specificity of 80.95%, a 
precision of 75.94%, and an F1 score of 76.92%. As shown 
in Figure 2c, the AUROC for XGBoost, Random Forest, and 
AdaBoost reached 90%, 89%, and 85%, respectively. The 
XGBoost model had the best performance.

Next, feature importance ranking was performed. As shown 
in Figure  3a, for MI, the top 10 important features were the 
standard deviation of the S‑wave duration, 75th percentile of 
the QT interval, the median QT interval, age, 75th percentile 
of the ST interval, 75th percentile of the S‑wave duration, 
75th percentile of the PR segment, sex, the median T‑wave 

Table 2: Evaluation metric results for myocardial infarction 
and subtypes across different machine learning models
Model Category Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)
Precision 

(%)
F1 score 

(%)

XGBoost MI 86.12 84.81 87.43 87.07 85.92

AMI 88.66 85.33 92.00 91.42 88.27

IMI 80.00 80.00 80.00 80.00 80.00

LMI 80.46 80.00 80.95 80.00 80.00

Random 
Forest

MI 83.81 80.92 86.69 82.50 83.31

AMI 82.00 78.66 85.33 84.28 81.37

IMI 77.81 76.87 78.75 78.34 77.60

LMI 80.48 85 76.19 77.27 80.95

AdaBoost MI 85.29 83.14 87.43 79.60 80.32

AMI 86.00 83.66 88.33 87.76 85.66

IMI 80.78 80.00 81.65 81.26 80.62

LMI 78.04 75 80.95 78.94 76.92
MI=Myocardial infarction; AMI=Anterior MI; IMI=Inferior 
MI; LMI=Lateral MI

Figure  1: Area under the receiver operating characteristic curve of 
three different models under a 1:1 data split. ROC  =  Receiver operating 
characteristic; AUC = Area under the curve
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duration, and the median ST interval. For AMI, the XGBoost 
model had the best performance. As shown in Figure 3b, the 
top 10 important features were the minimum PR segment, the 
minimum S‑wave duration, the maximum ST interval, the ST 
interval, the median Q‑wave duration, the maximum S‑wave 
duration, the QRS‑wave area, the S‑wave duration, age, and 
the PR segment. For inferior MI, the XGBoost model had the 
best performance. As shown in Figure 3c, the top 10 important 
features were sex, the minimum S‑wave duration, age, the 

median Q‑wave duration, the ST interval, the QT interval, the 
maximum PR segment, the PR segment, the standard deviation 
of the S‑wave duration, and the T‑wave duration. For LMI, the 
XGBoost model performed best. As shown in Figure  3d, the 
top 10 important features were the minimum S‑wave duration, 
the maximum ST interval, the standard deviation of the QRS 
interval, the S‑wave duration, the minimum T‑wave duration, the 
median QT interval, the maximum RR interval, the minimum 
S‑wave duration, heart rate, and the maximum PR segment.

Figure 2: Area under the receiver operating characteristic curve (AUROC) analysis of each subclass under different machine learning models. (a) AUROC 
analysis for anterior myocardial infarction, (b) AUROC analysis for inferior myocardial infarction, (c) AUROC analysis for lateral myocardial infarction. 
ROC=Receiver operating characteristic; AUC= Area under the curve

cba

Figure 3: Top 10 feature importance rankings for myocardial infarction (MI) and its subcategories across three models: (a) MI, (b) anterior MI, (c) inferior 
IMI, (d) lateral MI

dc

ba



ECG feature extraction for MI diagnosis

234

DISCUSSION

This study employed manual feature extraction and 
waveform analysis techniques to locate and analyze 
P‑waves, QRS complexes, and T‑waves precisely in 
Electrocardiograms  (ECGs). The duration and area of each 
waveform were calculated to predict MI. Through data 
augmentation, the overall AUROC for MI reached 93.59%, 
with an AUROC of 94.09% for AMI diagnosis and 90.14% 
and 89.76% for inferior and LMI, respectively. The study 
identified the ST interval as the most crucial feature, which is 
consistent with clinical diagnosis, because changes in the ST 
segment and T‑wave are vital for MI diagnosis. The XGBoost 
model achieved an accuracy of 86.21% for MI prediction. In 
contrast to previous studies that used automatically generated 
ECG data, this study utilized the PTB‑XL dataset provided by 
PhysioNet and employed manual feature extraction to increase 
model performance. The manual approach more accurately 
captured key ECG characteristics, reduced the impact of 
instrumental errors in automatic extraction, and improved 
model accuracy. However, manual feature extraction is 
tedious and time‑consuming and heavily depends on expert 
knowledge and experience. The accuracy of feature extraction 
largely depends on the precise detection of reference points, 
and any deviation may affect diagnostic reliability.

Several previous studies have employed different 
methodologies and achieved varying results in MI detection. 
An earlier study by Ibrahim et al.17 used the ECG‑ViEW II 
dataset, which was comprised 979,273 ECG records from 
371,401  patients, and achieved an AUROC of 96.5% with 
XGBoost. The study used RobustScaler for standardization 
and synthetic minority oversampling technique  (SMOTE) 
to address class imbalance, which are techniques not 
employed in the current study. Another study by Sharma and 
Sunkaria18 proposed a method based on stationary wavelet 
transform (SWT) and machine learning to detect inferior MI 
using ECG data from leads II, III, and aVF. Their support vector 
machine model achieved an impressive AUROC of 99.94% 
for inferior MI detection and significantly outperformed this 
study’s XGBoost model  (AUROC of 90.14%) for the same 
task. The superior performance of Sharma and Sunkaria’s 
study may be attributed to their focus on specific leads most 
sensitive to changes in the inferior wall of the heart and 
their use of SWT for signal processing, which maintains 
signal translation invariance and allows multiscale analysis. 
In contrast, this study employed Butterworth and moving 
average filters, which may introduce phase delays. A  study 
by Chumachenko et  al.19 using heart rate variability  (HRV) 
indicators for feature extraction achieved an accuracy of 
99.629% with a Random Forest model, demonstrating 

superior predictive capability compared with this study’s 
86.21% accuracy.

Recent research has increasingly utilized deep learning 
approaches for MI detection20 and developed hybrid models that 
combine convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs), specifically the CNN‑long short‑term 
memory  (LSTM) and CNN‑ bidirectional LSTM (BILSTM) 
models. When trained on the PTB‑XL dataset, these models 
achieved accuracies ranging from 89% to 91%, which slightly 
outperformed this study’s XGBoost model. The advantages 
of their approach lie in the automatic feature extraction 
capabilities of deep learning models, which can effectively 
learn important patterns in ECG data. The combination of 
CNNs and RNNs allows the learning of both spatial and 
temporal features, which is particularly important for ECG 
data processing. Another study by Zhang and Li21 employed a 
Bi‑LSTM network based on a heartbeat‑attention mechanism, 
which achieved an accuracy of 94.77% on the PTB diagnostic 
ECG database. Compared with the manual feature extraction 
approach in this study, the ability of the Bi‑LSTM model to 
automatically extract features and weight important heartbeat 
signals significantly improved the predictive performance.22 

and proposed a multichannel lightweight CNN (MCL‑CNN) 
for detecting AMI using ECG data from leads v1, v2, and 
v3 and achieved an AUROC of 95.50%. While this study’s 
XGBoost model demonstrated better performance for AMI 
detection, with an AUROC of 96.19%, it is likely due to the 
use of complete 12‑lead ECG data, which provides more 
comprehensive information than the three‑lead approach does.

This study identified the ST interval as the most important 
feature for MI detection, which aligns with clinical diagnosis 
practices. This finding contrasts with a previous study 
by Kalmady et  al.,23 which identified patient sex as a key 
feature, possibly because of significant sex distribution 
effects in their dataset. The current study relied primarily on 
ECG morphological features  (such as P‑waves, Q‑waves, 
S‑waves, T‑waves, and ST segments), whereas other studies, 
such as Chumachenko et  al.,19 utilized HRV indicators such 
as interbeat intervals and beats per minute. HRV indicators 
can consistently reflect short‑term cardiac activity changes 
and have strong discriminative power for MI. However, they 
may require hospital visits for examination, which may delay 
diagnosis and treatment. The impact of applying different 
filters on feature extraction results is a subject for further 
investigation. This study used Butterworth and moving average 
filters, whereas others employed various types, such as notch 
filters, finite impulse response filters, and bandpass filters. 
Future research should explore the effects of different filters 
on machine learning model performance. In addition, focusing 
on specific ECG leads that are most sensitive to changes in 
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the heart (such as leads II, III, and aVF for inferior MI) could 
optimize model performance in future studies. Although 
manual feature extraction allows for precise control over 
the extracted features, it may not fully capture the complex 
patterns in the data compared with the automatic feature 
extraction methods used in deep learning approaches. Future 
studies may benefit from combining the strengths of manual 
and automatic feature extraction techniques, which may lead 
to more robust and accurate MI detection models.

CONCLUSION

This study employed manual feature extraction and waveform 
analysis techniques to accurately locate and analyze P‑waves, 
QRS complexes, and T‑waves in ECGs and calculate the 
duration and area of each waveform to successfully predict MI. 
Through data augmentation, the overall AUROC for MI reached 
93.59%, with 94.09% and 90.14% for anterior and inferior MI 
diagnosis, respectively. However, the AUROC was 89.76% 
for lateral wall MI. This study suggests that future research 
could incorporate additional parameters such as HRV, explore 
more class imbalance handling techniques such as SMOTE 
or adaptive synthetic sampling, and compare the effects of 
different filtering techniques. Furthermore, the adoption of deep 
learning models to enhance the automation of feature extraction 
and improve diagnostic accuracy is recommended.
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Supplementary Table 2: Expanded manually extracts waveform data
Variable Training set Validation set Testing set P

Wave duration time

Maximum P-wave duration 116.08±5.12 116.21±5.12 116.28±5.13 0.334

Maximum Q-wave duration 65.17±10.36 65.16±10.40 65.13±10.09 0.994

Maximum S-wave duration 57.23±12.13 57.24±11.82 57.00±11.79 0.829

Maximum T-wave duration 341.95±24.82 342.29±24.45 341.53±24.84 0.700

Maximum PR interval 183.57±15.21 184.24±15.32 183.93±15.41 0.180

Maximum QT interval 549.90±46.29 549.78±46.96 549.21±45.79 0.901

Maximum ST interval 414.35±46.45 413.94±46.62 413.52±45.45 0.828

Maximum RR interval 875.62±183.15 870.68±181.84 870.59±187.44 0.434

Maximum QRS interval 152.59±9.30 152.50±9.51 152.47±9.15 0.866

Maximum ST segment 146.97±41.08 147.48±42.23 146.08±41.77 0.664

Maximum PR segment 77.11±15.56 77.62±15.77 77.56±15.46 0.312

Minimum P-wave duration 81.36±10.19 81.69±10.08 81.77±10.20 0.241

Minimum Q-wave duration 23.52±7.44 23.42±7.41 23.54±7.38 0.844

Minimum S-wave duration 27.04±6.69 26.98±6.60 27.09±6.78 0.900

Minimum T-wave duration 172.40±34.27 171.96±35.09 173.45±33.92 0.506

Minimum PR interval 119.82±16.00 120.09±16.06 119.75±16.12 0.757

Minimum QT interval 380.00±42.11 380.11±42.38 379.65±40.96 0.956

Minimum ST interval 250.30±38.72 250.83±38.39 249.71±37.60 0.721

Minimum RR interval 819.95±184.52 816.90±185.99 816.00±181.61 0.683

Minimum QRS interval 112.24±13.08 112.01±13.02 112.26±13.00 0.757

Minimum ST segment 12.71±17.11 12.26±16.68 12.64±18.13 0.553

Minimum PR segment 27.03±11.71 26.97±11.65 26.87±11.17 0.904

Median P-wave duration 104.72±6.02 104.81±6.13 104.83±5.92 0.731

Median Q-wave duration 35.08±5.30 34.93±5.28 34.98±5.14 0.480

Median S-wave duration 35.90±4.42 35.97±4.25 36.04±4.28 0.585

Median T-wave duration 247.23±47.59 245.19±48.47 246.25±49.19 0.209

Median PR interval 151.64±16.29 152.09±16.55 152.17±16.41 0.385

Median QT interval 457.96±49.19 455.38±50.13 456.03±49.69 0.070

Median ST interval 326.85±48.14 324.61±49.12 325.06±48.70 0.116

Median RR interval 853.80±171.80 850.97±170.88 848.13±170.44 0.522

Median QRS interval 131.30±6.24 131.22±6.18 131.28±6.21 0.888

Median ST segment 78.31±28.95 77.92±29.52 77.50±30.80 0.637

Median PR segment 47.03±15.97 47.41±15.99 47.45±15.75 0.506

Standard P-wave duration 10.02±3.02 9.95±2.97 9.99±3.06 0.644

Supplementary Table 1: Hyperparameter settings for various machine learning models
Model Hyperparameters

XGBoost n_estimators=200, learning_rate=0.1, reg_alpha=0.05, gamma=0.5, max_depth=4, subsample=0.8, colsample_bytrees=1.0

Random Forest n_estimators=200, max_depth=8, min_samples_split=2, min_samples_leaf=1, bootstrap=True

AdaBoost n_estimators=300, learning_rate=0.1

Contd...



Supplementary Table 2: Contd...
Variable Training set Validation set Testing set P

Standard Q-wave duration 12.42±3.51 12.43±3.55 12.32±3.38 0.639

Standard S-wave duration 8.61±4.19 8.61±4.15 8.49±4.12 0.685

Standard T-wave duration 52.75±12.75 53.28±12.75 52.20±12.43 0.060

Standard PR interval 17.93±5.06 18.00±5.01 18.03±5.15 0.728

Standard QT interval 50.00±15.79 50.20±16.01 49.85±15.42 0.808

Standard ST interval 48.40±15.20 48.41±15.44 48.20±14.87 0.918

Standard RR interval 15.98±35.39 15.31±34.49 15.50±33.42 0.701

Standard QRS interval 11.40±4.34 11.42±4.48 11.33±4.19 0.872

Standard ST segment 39.65±12.33 40.23±12.71 39.37±12.39 0.094

Standard PR segment 14.65±4.41 14.79±4.36 14.87±4.42 0.161

Perc25 P-wave duration 97.95±7.02 98.17±7.16 98.11±6.86 0.384

Perc25 Q-wave duration 30.36±5.06 30.20±5.12 30.43±4.96 0.357

Perc25 S-wave duration 32.46±4.92 32.45±4.97 32.60±4.93 0.663

Perc25 T-wave duration 215.85±41.82 214.54±43.04 215.29±42.89 0.436

Perc25 PR interval 141.08±15.15 141.57±15.24 141.57±15.09 0.307

Perc25 QT interval 428.88±44.70 426.99±44.87 427.37±44.87 0.166

Perc25 ST interval 297.90±43.15 296.38±43.44 296.54±43.21 0.266

Perc25 RR interval 852.73±171.70 850.26±171.11 847.29±170.53 0.566

Perc25 QRS interval 125.14±7.55 125.03±7.53 125.25±7.13 0.717

Perc25 ST segment 51.62±27.05 50.76±27.02 51.02±28.21 0.384

Perc25 PR segment 39.11±14.37 39.38±14.43 39.27±14.31 0.725

Perc75 P-wave duration 109.63±5.23 109.66±5.34 109.74±5.15 0.79

Perc75 Q-wave duration 43.76±7.79 43.67±7.94 43.53±7.77 0.619

Perc75 S-wave duration 40.87±7.04 40.90±6.56 40.76±6.78 0.854

Perc75 T-wave duration 285.58±45.15 284.96±45.44 283.76±46.19 0.439

Perc75 PR interval 162.13±16.93 162.45±17.05 162.68±17.06 0.505

Perc75 QT interval 490.40±47.36 489.06±48.31 488.35±47.98 0.263

Perc75 ST interval 358.32±46.92 357.04±47.74 356.05±47.43 0.227

Perc75 RR interval 856.36±173.11 853.43±172.53 850.59±170.96 0.514

Perc75 QRS interval 137.62±6.34 137.48±6.38 137.46±6.42 0.518

Perc75 ST segment 100.41±31.85 100.70±32.87 99.88±33.31 0.791

Perc75 PR segment 56.99±16.44 57.28±16.49 57.59±16.37 0.465

Perc99 P-wave duration 115.76±5.05 115.89±5.06 115.95±5.05 0.342

Perc99 Q-wave duration 64.12±10.04 64.09±10.09 64.05±9.77 0.970

Perc99 S-wave duration 56.26±11.74 56.27±11.42 56.04±11.42 0.834

Perc99 T-wave duration 339.61±25.13 339.96±24.76 338.99±25.10 0.581

Perc99 PR interval 182.34±15.10 182.99±15.22 182.74±15.29 0.184

Perc99 QT interval 546.66±45.28 546.55±46.00 545.93±44.81 0.885

Perc99 ST interval 411.30±45.49 410.89±45.73 410.42±44.51 0.808

Perc99 RR interval 874.00±181.56 869.24±180.44 868.98±185.46 0.446

Perc99 QRS interval 151.79±8.93 151.68±9.11 151.67±8.81 0.845

Perc99 ST segment 144.14±39.70 144.65±40.92 143.20±40.45 0.622

Perc99 PR segment 76.04±15.38 76.55±15.61 76.50±15.30 0.307




