

札波羅熱核電廠事件給我國戰時核防護啟示

作者簡介

作者康庭華士官長,畢業於陸軍化生放核訓練中心儲備士官班 101 年班、十高班 105 年班、陸軍專科學校十正班 111 年班,曾任班長、 人事士、副排長、作戰士、核防士,現職為六軍團化學兵組核防士 官長。

提要

- 一、2022 年俄烏戰爭爆發後,世界首次目睹核能設施在戰爭前線實際被占用的 實例。札波羅熱核電廠(Zaporizhzhia Nuclear Power Plant, ZNPP)位於 烏克蘭南部,歐洲最大核能發電基地,自 2022 年 3 月起被俄軍占領,成為 全球矚目的核風險焦點。其後數度遭受砲擊與停電事故,引發國際原子能總 署(IAEA)與歐盟高度關注,進一步凸顯出核能設施於戰時面對的威脅與地 緣戰略價值。
- 二、回顧机波羅熱核電廠事件為研究核心,探討其軍事行動中札波羅熱核電廠遭 占領模式、核風險操控技術及心理戰操弄運用,對占領核設施實施戰略評 析。
- 三、觀察中國當前核能戰略與核工業軍民融合,在 2022 年札波羅熱核電廠事件 後,2023 年中國核安保綜合演練,首次展開陸、海、空、網全要素綜合演 練。同時比對中國《2023 國防白皮書》所述,其「軍隊須具備全域聯合作 戰能力與複合場景應變能力」。可見中國 2023 年即納入核電廠攻防演練。 相對的,守方與攻方均可找出克敵對策,更何況中國始終不放棄武力犯臺, 而臺灣目前有 3 處核電廠,亦讓人須思考其複製札波羅熱核電廠模式、策略 及研判可能模式,俾提供我國全社會防衛韌性核防護參考依據。
- 四、透過歷史回顧、戰爭歷程、戰術運用、戰況分析、觀察敵方、自我檢討及研 析對策、針對我國現有核災防護體系提出檢討與強化建議,以期建構一套符 合現代戰爭需求的戰備型核防架構,強化全民國防韌性。希望我國政府與國 軍能從「和平時期防災」邁向「戰爭時期防護」,才能因應未來高強度衝突 與複合戰威脅下核設施遭占領的風險,以確保國家安全。

關鍵詞:札波羅熱、核設施遭占領、俄烏戰爭、核災防護、全社會防衛韌性 前言

當戰爭不再止於前線交火,當核電廠成為軍事盾牌,札波羅熱核電廠命運揭示現代戰爭的變化。自 2022 年俄羅斯全面入侵烏克蘭以來,俄軍占領位於札波羅熱州最大的核能設施,並長期部署軍事力量於其內部及周邊,將該地轉化為「軍事掩體」與「戰略籌碼」。此舉不僅挑戰國際核安全制度,更打破核設施「民用中立」的國際共識。

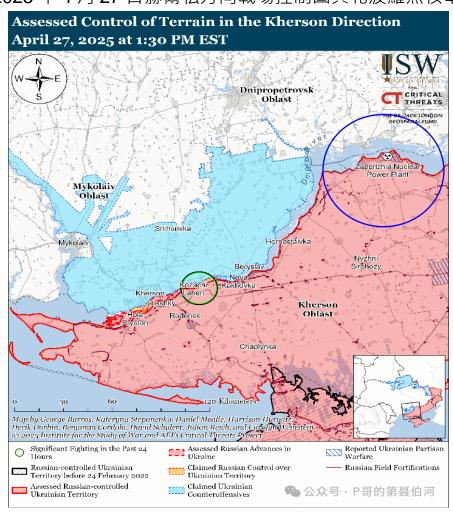
傳統上,核能設施常被視為和平利用象徵,但在複合戰與不對稱衝突中,核電廠逐漸淪為地緣戰略高風險地點。札波羅熱案例不僅對烏克蘭民眾構成潛在災難威脅,也令全球關注其一旦遭攻擊或操作失誤所引發的輻射外洩風險。國際原子能總署(IAEA)多次發出警告,呼籲交戰雙方尊重核安全原則,然而在兵臨城下與戰略對峙下,核設施反而成為「核威懾」的工具之一。

相較之下,我國 2025 年邁向非核家園,核能機組均全數退役,但核設施(如儲存廠、研究設施)仍為潛在目標;更重要者,中國「軍民融合」政策下之核能發展及其戰略模仿俄方「核武器非傳統化」作法,為我國構成實質戰略壓力與輿論操弄風險。因此,針對札波羅熱核電廠遭占領的過程進行剖析,並探究其對我國防衛整備的啟示,成為當前安全研究的重要課題。

札波羅熱核電廠遭占領歷程與戰略分析

俄烏戰爭焦點核電廠遭占領,並非偶然,其戰略地理位置、電力輸出重要性 與輻射風險,使其具備「高價值、低可攻性」的戰場屬性,為完整理解遭占領過 程,有必要從歷史經過審視此事件攻防演變,進而剖析俄軍如何將核電廠納入軍 事戰略中,最後觀察其影響。

一、核電設施變為戰場的歷史背景


札波羅熱核電廠是烏克蘭最大的核能發電站,同時也是歐洲最大、全球排名第三的核電廠。它坐落於第聶伯河卡霍夫卡水庫河畔,鄰近艾那荷達市(Енергодар)。核電廠始建於 1977年,目前建有六座 VVER-1000型壓水式反應爐,每座反應爐的輸出功率為 100 萬千瓦。前五座反應爐於 1985年至 1989年間陸續完工並投入運營,第六座則於 1995年建成。札波羅熱核電廠供應了超

過烏克蘭一半的核能電力,約占全國總發電量的五分之一。1

自 2022 年 2 月俄烏戰爭爆發後。同年 3 月 4 日,俄羅斯攻打烏克蘭南部全 歐洲最大核電廠-札波羅熱核電廠。2並被納入俄軍南部戰區防禦體系。儘管該電 廠仍由烏籍工程人員維持最低限度運作,但實際控制權已轉移至俄方。俄軍於核 電廠(如圖 1)內部與周邊部署火砲、飛彈發射車與無人機,並設置軍事指揮中心, 使其兼具「能量來源控制」、「軍事攻擊掩護」與「輿論威懾」等三重戰略用途。此 舉一方面可迫使烏克蘭軍隊不敢反攻、避免釀成核災,一方面亦可作為對西方施 壓的心理戰工具,引發歐洲對能源安全恐慌與政治壓力。

1.本圖顯示烏克蘭南部地區截至 2025 年 4 月 27 日戰場控制情勢,圖中紅色區域

^{1.} 易電智庫、〈俄鳥衝突下的札波羅熱核電站〉(2022年09月04日), https://mp.weixin.qq.com/s, 2025年5月15日下載。

^{2.}黎蝸藤,《帝國解體與自由堡壘:屋俄戰爭的歷史源起、地緣政治與正義之辯》(臺北:八旗 文化,2023年8月),第十章、頁13。

代表俄軍控制區;藍色區域則為烏克蘭掌控地;灰色區域為雙方交戰激烈或未 明確劃定的「灰色地帶」。

- 2.札波羅熱核電廠位於俄軍實質控制區域內。但接近戰線,受烏軍砲擊與無人機 干擾影響劇烈,該核電廠安全形勢日趨嚴峻。
- 3.資料來源:P 哥的第聶伯河,〈俄烏戰線評估報告_2025-04-28〉(2025 年 4 月 28 日發表於山東),https://mp.weixin.qq.com/s/ikrD8fzj-09VPcy Gh6ciNw。

二、事件時序回顧

俄軍自2022年3月占領札波羅熱核電廠(Zaporizhzhia Nuclear Power Plant, ZNPP)以來·該電廠成為戰爭攻防焦點之一。從雙方攻防時序回顧表 (如表 1)來分析,雙方圍繞該地展開多次軍事與政治行動,包含砲擊、斷電、軍事駐紮、國際原子能總署 (IAEA) 介入監控、雙方相互指責等,迄 2025 年 4 月雙方仍持續部署,但暫未有突破。此一系列攻防動態不僅對地區安全構成長期威脅,更使全球核能安全監控體系面臨嚴峻考驗。

表 1 札波羅熱核電廠雙方攻防時序回顧表

农工们 灰雁然仅电顾支力交份的力户概象					
時間	事件內容	備註			
	俄軍與240名烏克蘭國民警衛隊士兵在				
2022 3	札波羅熱核電廠發生激戰・迫使烏軍投	為全球首次大型核電廠於			
4	降,順利控制了核電廠;烏軍激烈抵抗,	戰爭中被武裝部隊占領。			
·	廠區外一度發生火災。				
2022 3-7 月	俄軍將核電廠轉為軍事據點·部署重型 武器與兵力·持續砲擊對岸尼柯波爾。	俄烏雙方相互指責,形成「核盾牌戰術 ³ 」,企圖利用核電廠防止反擊。			
2022 8 5 ` 6	札波羅熱核電廠遭到 2 次砲擊,兩條電線被炸毀。首次全廠停機(冷關機),供電系統一度斷電,引發核安危機。	國際原子能總署(IAEA)介入,關切核電廠安全。			
2022	札波羅熱核電廠最後一條輸電線由於砲	核電廠與外部電力輸送系			

^{3.}核盾牌(Nuclear Shield)戰術是一種在戰爭或衝突情境中,將核能設施(如核電廠)作為戰略遮蔽或政治籌碼的行為或構想。具體而言,交戰一方藉由佔領、部署部隊或火炮於核電廠周邊, 迫使對手不敢輕易攻擊,從而達到「以核設施作為保護傘」的戰術。

8 25	擊被燒毀,核電廠與烏克蘭國家「電網脫離」4。	統(電網)完全中斷連結。
2022 8 27	俄羅斯國防部 27 日發布公告稱,過去 24 小時,烏克蘭砲兵三次砲擊了札波羅 熱核電廠區域,共發射了 17 枚砲彈,其中 4 枚擊中了一個核燃料儲存設施的 屋頂。	烏軍則對核電廠持續進行 砲擊,意圖驅趕駐守於核 電廠內的俄軍。
2022 9 1	國際原子能總署(IAEA)專家首次駐札核電廠,實地檢視安全狀況。	國際原子能總署(IAEA)主 任格羅西親赴現場。
2022 9 11	最後一個反應爐進入冷停機(Cold shutdown) ⁵ 狀態,全面中止運轉,防止砲擊風險。	冷停機為核電廠反應爐停 機狀態。
2022 10-12 月	廠區多次遭受砲擊(11月19、20日烏軍向札波羅熱核電廠發射了12枚火箭彈,其中6枚擊中了反應爐冷卻池,2枚擊中了「用過核燃料」棒儲存區域),雙方互指對方為襲擊者。俄軍進一步加固工事,限制烏籍員工行動。	員工壓力大增,部分人員 逃離。
2023 1 20	烏軍兩次砲擊了核電廠區域·其中一枚 砲彈落在了核電廠一座建築的屋頂上。	烏軍則對核電廠持續進行 砲擊,意圖驅趕駐守於核 電廠內的俄軍。
2023 2 10	國際原子能機構(IAEA)在官網發表聲明稱·札波羅熱核電廠周圍的局勢仍然不穩定。	機構專家小組的輪換計劃已被推遲。

^{4.} 電網脫離(grid disconnection 或 grid off-line)定義:核電廠或其他大型發電設施與外部電力 輸送系統(電網)完全中斷連結的情況,無法對外供電或從外部獲得電力。

^{5.}冷停機(Cold shutdown)定義:核反應爐已經完全停止連鎖反應),並且反應爐壓力容器內的 冷卻水溫度低於100℃、處於常態狀況。此時反應爐核心不再產生能量,處於相對安全的狀 態。

2023	烏軍無人機曾嘗試穿越廠區防空洞,拍	顯示俄軍使用核電廠作為
3月	攝俄軍軍事部署影片。	武器庫。
2022	烏軍推進南部攻勢,外界關注是否將攻	
2023 6月	擊廠區。國際原子能總署(IAEA)重申不	國際壓力升高。
0 / 1	得將核電廠作為軍事目標。	
2023	俄軍在廠內鋪設地雷、導引線與碉堡,	烏軍稱俄軍可能策動「偽
8-12月	將核設施全面軍事化。	旗攻勢」6。
2024	廠區二號機組曾短暫重啟測試,但隨即	無發電,處於高風險低運
1月	停擺。全區維持「冷停機」狀態。	作狀態。
2024	國際原子能總署(IAEA)報告,指廠內安	國際關切升溫。
4月	全區域多處破壞,工作人員嚴重不足。	
2024	烏軍再次接近廠區・俄軍以核電廠為據	 廠區外圍電網多次中斷。
10月	點與附近村落交火。	
2025	俄軍將部分核設施外牆進行「混泥土軍	 類似碉堡結構·難以攻入。
1月	事化強化」,企圖永久固守。	類以响空和伸, 類以以入。
2025	據報烏軍可能計畫奪回廠區,但國際壓	美國與歐盟強烈反對動用
3月	力要求避免造成核災風險,攻勢暫緩。	火力攻廠。
2025	廠區進行「交火中休眠」,已不發電、無	 雙方仍持續部署,但暫未
4月	法運作,國際原子能總署(IAEA)表示對	受力仍持續部者,但首本 有突破。
4 月	安全風險極度擔憂。	万犬似 °

資料來源:

- 1.張世展 藍德智庫 · 《圍繞札波羅熱核電廠的「混合戰爭」》 · 2023 年 03 月 27 日 · https://mp.weixin.qq.com/s/7twl_sfi5HIPRYw6lj9eow ·
- 2.BBC News 中文、〈俄軍攻擊烏克蘭札波羅熱核電廠、外圍築起起火〉(2022 年 3 月 4 日)、https://www.bbc.com/zhongwen/trad/world-60614960。
- 3.本研究自行整理。

^{6.}偽旗攻勢(Faise Flag Operation)是指一方勢力在衝突中假冒敵方身分發動攻擊或挑釁行動, 藉誤導語論、誣陷對手或為自身行動尋求合法性。這種戰術通常用於製造藉口開戰、激化仇 恨或爭取國際支持。

三、核設施遭占領戰略運用

札波羅熱核電廠地處烏南戰區交通與能源交會地帶,具備三項戰略意涵:一 是作為能源供應中心,供應烏克蘭全國 20%電力;二是成為控制南部地區通信、 後勤及民生基礎設施核心;三是具備心理恐慌與外交籌碼,可藉此吸引國際關注 並作為談判工具,是烏南戰區極具爭議月高敏感的戰略據點,對雙方而言均須在 戰略(術)效益做出審慎權衡利弊分析,因此俄軍將占領核電廠戰略運用,達到軍 事局部優勢目的。

(一)「核盾」概念與軍事運用新樣態

札波羅熱核電廠事件的核心創新,並非核能災害本身,而是俄軍如何將其 轉化為「戰略盾牌」與「戰術槓桿」」。所謂「核盾」(Nuclear Shielding). 即诱過控制核設施來達成以下目的:

- 1.阻止敵軍火力反擊:利用核電廠高風險特性,迫使敵軍在國際輿論與人道 壓力下,不敢輕啟大規模攻勢。
- 2. 綁架國際法與多邊監管機制:將國際原子能總署(IAEA)與其他國際機 構牽入戰場運作,形成外交緩衝。
- **3.心理戰手段:**對敵方軍民造成核恐慌與壓力,破壞民心士氣。此一運用方 式儘管未直接釋放放射性物質,卻已達到「核威脅非傳統化」的目的。

(二)電網綁架與冷卻系統操控技巧

除戰略層面的威懾,俄軍對札波羅熱核電廠的戰術操作亦顯精密,主要表 現於以下三個方式:

- **1.電網綁架**:刻意使反應爐與周邊城市電力互相依賴,藉此作為壓力籌碼。
- 2.控制冷卻系統:冷卻系統一旦停擺,將可能導致反應爐過熱與爐心熔毀, 成為高度危險的技術施壓手段。
- 3. **脅迫工作人員**: 部分員工遭拘禁或替換, 削弱電廠操作的中立性與效率。

(三)非對稱戰爭下的核威脅升級

俄烏戰爭展現非對稱作戰的極致,烏軍運用無人機、游擊部隊與國際支持 作為主要防衛力量;而俄軍則結合常規軍與戰略威脅進行整合式戰術操控。當

^{7.}戰術槓桿(tactical leverage)是指一方在軍事或戰略行動中,運用某種資源、優勢或布局,在 不對稱或受限條件下獲得局部優勢或壓力手段,不在於全面致勝。

企化生放核防護半年刊第120期

中,核電廠不再只是民生與能源設施,而是被升級為「戰略壓迫工具」。札波羅熱核電廠成為俄方實質占領控制後最長時間持續運用的「非傳統武器」,具備以下軍事意義,這些特質使其成為 21 世紀戰場上一種全新戰略資產類型-「灰色區域戰力工具」(Gray Zone Strategic Asset)。茲說明如次:

1.持久性:不同於飛彈或地雷,核設施可長期部署使用。

2.難以制裁:因其地位特殊,國際干預空間有限。

3.技術門檻高:非典型武器無法由烏軍輕易奪回或癱瘓。

4.外交衝突緩衝器:利用國際原子能總署(IAEA)干預過程作為衝突緩衝 與主權模糊操作空間。

四、戰略評析

個人戰略評析結果「誰先占領核電廠,就占有地利」。以「2022 年世界核能產業現況報告」中「核電與戰爭」強調現代戰爭新概念-「戰爭中核電廠攻擊方(烏軍)會比被攻擊方(俄軍)懼怕發生核能意外事故,當成政治壓力工具」,如若俄軍預期會失去核電廠掌握,先放棄後故意引爆核電廠,迫使烏軍屈服。雖然美國智庫認為俄軍因為無法掌握核災所造成的事故,恐輻射外釋影響俄軍占領烏南戰區,故較不可能引起核災。但在相互保證毀滅理論中核武是主要工具。本次事件中顯示,核電廠雖在戰爭中不至於被直接攻擊,唯獨在作戰階段中誤擊或蓄意破壞仍有可能發生,因此仍具有巨大的威懾力,因此,札波羅熱核電廠被俄軍占領後,已經造成烏軍進退兩難局面。

中國核能戰略與軍民融合

2021年11月3日發布《中華人民共和國國民經濟和社會發展第十四個五年規劃和2035年遠景目標綱要》(簡稱「十四五」(2021-2025年)規劃),在「十四五規劃」不僅提出「安全穩妥推動沿海核電設施,建設一批多能互補的清潔能源基地」,而且列出了未來五年核能產業須要重點建設和推進的項目計畫表,體現出國家對核電發展節奏、技術路線、產業多元應用、廢物處置等關鍵環節部署,8並設立若干核技術研究與軍工融合實驗區。由此可進一步對中國核能戰略趨勢、

^{8.} IAEA-The Power Reactor Information System database(PRIS 網址 http://www.iaea.org/PRIS/home.aspx) , 2025 年 8 月 10 日。 第 142 頁

軍民融合(MCF)戰略中核能定位、對臺複製札波羅熱場景實施探討分析。

一、中國核能戰略趨勢

中國於 1983 年提出熱堆、快堆、聚變堆的「核能三步走戰略」(如表 2),在 此戰略指導下,熱堆發電是中國核能利用「三步走戰略」的第一步,也是當前中 國核能規模化發展的主要技術與堆型。持續發展熱堆的同時,將快堆核能發展提 上快車道,同時加強可控核聚變技術研發。9規劃於 2025 年前後完成聚變堆商用 核電廠建設,實現聚變堆商用發電。10而聚變能是無汙染、無長壽命放射性核廢 料、無核事故風險、資源無限的理想潔淨能源。

區分 特點 備註 熱堆燃燒的是天然鈾中含量只占 當前中國核能規模化發展的主要 0.7%的鈾-235,大部分的鈾資源 熱堆 技術和堆型。 沒有得到利用。 利用天然鈾資源中占比 99%的鈾 快堆 快堆比熱堆提高鈾資源利用率。 -238,極大提高鈾資源利用率。 國際熱核聚變實驗堆(ITER)目標 聚變能是無汗染、無長壽命放射 就是驗證托卡馬克運行模式,此模 聚變堆 式稱為「人造太陽」,被全球廣泛 性核廢料、資源無限的理想能源。 用來研發可控核聚變發電。

表 2 中國核能三步走戰略

資料來源:中國新聞網。

依據 IAEA-The Power Reactor Information System Database 資料顯示,中 國核電廠 2025 年 8 月營運中 57 機組、興建中 29 機組(詳如表 3) 11。中國現有核 電堆型以第二代改進型(2+代)為主,基礎上採用改進型壓水堆技術。同時以有第 三代核電廠(3 代)投入商運,採用非能動安全系統、數字化控制等先進技術、抗震

^{9.}國防安全小組,〈中國商用核反應爐發展概況研析〉(2025年05月28日)。 https://share.google/z4nd9pPfCje1FxLC3,檢索日期:2025年10月11日。

^{10.}國防安全小組,〈中國商用核反應爐發展概況研析〉(2025年05月28日)。 https://share.google/z4nd9pPfCje1FxLC3,檢索日期:2025年10月11日。

^{11.}汪永平,〈「十四五」核電產業發展重點解讀〉《中國能源報》,2021年03月29日第 11版。

念化生放核防護半年刊第120期

/抗海嘯能力強·安全性提升百倍。並正在建設更先進的第三代及第四代示範項目。 第四代核電技術主要包括六種堆型,氣冷快堆、鉛冷快堆、鈉冷快堆、熔鹽堆、 超臨界水堆、高溫氣冷堆,石島灣核電廠就是高溫氣冷堆技術(清潔無汙染、成本 較低)。12可見中國核能戰略朝向穩三代、促四代、強化模組化小型壓水堆(SMR) 創新,實現雙碳(碳達峰13、碳中和14)目標。

表 3 中國現有核電廠統計表(資料持間: 2025年8月)

編號	核電廠名稱	所在地	機組	狀態	開始營運 年/月	至臺灣本島 直線概要距 離(公里)
1	中國實驗快堆	北京市		營運中	2011/07	1,812
	昌江核電廠		1 號機	数海击	2015/11	
	第三代核電:		2 號機	營運中	2016/06	
2	CNP-600(1、2 機) 第三代核電: HPR1000 中國自主 研發壓水堆(3、4 機)	河海南省 3 、財 3 、財 號模	3、4 號機	興建中		1,231
	大亞灣核電廠	廣東省 術	1 號機	 營運中 	1993/08	
3	第二代改進型: M310 引進法國技術 (1、2 機)		2 號機		1994/02	565
	防城港核電廠		1 號機		2015/10	
	第二代改進型:		2 號機		2016/07	
4	CPR1000 中國改進	rian (n	3 號機	757 NED 1	2023/01	1 010
4	型壓水堆(1、2 機) 第三代核電: HPR1000 中國自主 研發壓水堆(3、4 機)	廣西省	4 號機	營運中 	2024/04	1,219
5	方家山核電廠	浙江省	1 號機	營運中	2014/11	569

^{12.}核能號,〈中國大陸現有核電堆型介紹〉(2025 年 08 月 15 日), https://mp.weixin.qq.com/s/4JuV3wHJIDF1x4zD6cFLQA,檢索日期:2025 年 10 月 11 日。

^{13.}碳達峰定義:碳排放量在達到峰值後,不再增長,並逐漸下降的過程。

^{14.}碳中和定義:在特定時間內,每一個對象未來「排放的碳」和「吸收的碳」相等。

	55 - 112742 TU	1												
	第二代改進型:		- DE 1/1/c		2015/01									
	CPR1000 中國改進		2 號機											
	型壓水堆(1、2 機)													
	福清核電廠		1號機		2014/08									
	第二代改進型:		2 號機		2015/08									
	CPR1000 中國改進		3 號機		2016/09									
6	型壓水堆(1-4 機)	福建省	4 號機	營運中	2017/07	162								
	第三代核電:		5 號機		2020/11									
	HPR1000 中國自主 研發壓水堆(5、6 機)		6 號機		2022/01									
	海陽核電廠		1 號機	營運中	2018/08									
	第三代核電:		2 號機	1,21	2018/10									
7	AP1000 美國西屋技	山東省				1,263								
	術(1、2 機) CAP-1000 中國自主		3~4 號	興建中										
	研發壓水堆(3、4機)		機											
	WI 致崖小炬(J 平 I戏)		1 旦市 松悠		2012/02									
	紅沿河核電廠		1 號機		2013/02									
	第二代改進型:	2 號機 3 號機 3 號機		2013/11										
8	CPR1000 中國改進		遼寧省	遼寧省	遼寧省	遼寧省	遼寧省	遼寧省	遼寧省	遼寧省	遼寧省		· 營運中	2015/03
	型壓水堆(1-4 機)		4 號機		2016/04	1,011								
	ACPR1000 中國改進		5 號機		2021/06									
	型壓水堆(5、6 機) 		6 號機		2022/05									
	廉江核電廠 第三代核電:													
9	第二八核电. CAP1000 中國吸取	 廣東省	1~2 號	 興建中		1,080								
	AP1000 中國級取		機	火 灶干 		1,000								
	術自主研發													
	嶺澳核電廠		1 號機		2002/2									
	第二代改進型:		2 號機		2002/9									
10	M310 引進法國技術	廣東省	3 號機	営運中	2010/7	565								
	(1、2 機) CPR1000 中國改進		4 號機		2011/5									

	型壓水堆(3、4 機)					
11	玲瓏核電廠 第四代核電(示範階段) 模組化小型壓水堆 (SMR)	海南省	1號機	興建中		1,231
12	陸豐核電廠 第三代核電: 龍華一號中國自主研 發(5、6 機)	廣東省	5~6 號 機	興建中		477
	寧德核電廠		1 號機		2012/12	
	第二代改進型:		2 號機	数评击	2014/01	
10	CPR1000 中國改進	== 7+ 시시	3 號機	營運中	2015/03	220
13	型壓水堆(1-4 機) 第三代核電:	福建省	4 號機		2016/03	229
	第二尺板电. 龍華一號中國自主研 發(5、6 機)		5 號機	興建中		
14	秦山核電廠(一期) 第二代改進型: CNP 系列中國自主設計		1號機	營運中	1991/12	
	+1.15=+1-m] [1 號機		2002/02	
1 -	秦山核電廠(二期)		2 號機	冰汽车中	2004/03	569
15	第二代改進型: CNP 系列中國自主設計	浙江省	3 號機	營運中	2010/8	
	CINP 系列中國日土設計		4 號機		2011/11	
	秦山核電廠(三期)		1 號機		2002/11	
16	第二代改進型: CANDU-6 加拿大重 水堆	2 號機	營運中	2003/6		
17	三 <mark>澳核電廠</mark> 第三代核電: 龍華一號中國自主研 發(1、2 機)	浙江省	1~2 號 機	興建中		234
18	三門核電廠	浙江省	1號機	營運中	2018/06	418

	第三代核電:		ついまと数		2010/00	
	カーバタ电: AP1000 美國西屋技		2 號機		2018/08	
	術(1、2機)					
	CAP1000 中國吸取		3~4 號	 興建中		
	AP1000 丰國级级		機	興 建中		
	術自主研發(3、4機)					
	石島灣核電廠					
19	第四代核電(示範階段)	山東省	┃ ┃ 1 號機	營運中	2021/12	1,292
	高溫冷氣堆		2 3//0 1/20			1,232
	石島灣核電廠(壓水式)					
	第三代核電:	. . + 4		(C) 7-h		1 000
20	CAP1400 中國自主	山東省	│ 1 號機	興建中		1,292
	研發國和1號					
	太平嶺核電廠					
21	第三代核電: 廣東省	1~2 號	興建中		519	
	HPR1000 中國自主)	機	光廷(
	研發壓水堆(1、2機)					
	臺山核電廠		1 號機		2018/06	
22	第三代核電:	廣東省		營運中		741
	EPR 歐洲先進壓水堆	澳木日	2 號機		2019/06	
	(1、2機)					
	田灣核電廠		1號機		2006/05	
	第二代改進型:		2 號機		2007/05	
	VVER-1000 俄羅斯		3 號機	数评击	2017/12	
22	壓水堆(1-4 機)	ハエ ナキ ハン	4 號機	營運中	2018/10	1,058
23	第三代核電: VVER-1200 俄羅斯	江蘇省 	5 號機		2020/08	
	■ 壓水堆(5-6 機)		6 號機		2021/05	
	壁水堆(5-0 1歲) 龍華一號中國自主研		7~8 號		,	
	たま		, 機	興建中		
	霞浦核電廠					
24	第四代核電(示範階段)	福建省	1~2 號	興建中		435
	鈉冷/鉛冷		機			
25	徐大堡核電廠	遼寧省	1~4 號	興建中		1,676
	1	1	1	I .	1	

	第三代核電:		機			
	AP1000 美國西屋技					
	術(1、2 機)					
	VVER-1200 俄羅斯					
	壓水堆(3、4 機)					
	 陽江核電廠		1 號機		2013/12	
	第二代改進型: CPR1000 中國改進		2 號機	· 營運中	2015/3	816
26		廣東省	3 號機		2015/10	
20			4 號機		2017/1	
	ACPR1000 中國改進		5 號機		2018/5	
	型壓水堆(5、6 機) 		6 號機		2019/06	
	漳州核電廠		1 號機	營運中	2024/11	
27	第三代核電: 龍華一號中國自主研	福建省	2~4 號	興建中		273
	雅辛		機	興 建中 		

資料來源:

- 1.IAEA-The Power Reactor Information System database(PRIS 網址 http://www.iaea.org/PRIS/home.aspx) 2025 年 8 月 10 日。(檢索日期: 2025/10/10)
- 2.核能號,《中國大陸現有核電堆型介紹》,2025 年 08 月 15 日,https://mp.weixin.qq.com/s/4JuV3wHJIDF1x4zD6cFLQA。

二、軍民融合(MCF)戰略中核能定位

中國核工業集團(簡稱:中核集團)成立於 1999 年 7 月 1 日 · 在「軍民融合」 戰略指引下 · 不斷拓展業務版圖 · 一方面 · 繼續承擔國防核研生產任務 · 保障「國 家戰略核力量」的發展;另一方面 · 大力發展核電 · 核燃料循環 · 核科技等民用 產業 · 進入 21 世紀 · 中國核電迎來加速發展期 · 2005 年國家將核電發展方針從 「適度發展」調整為「積極發展」 · 中核集團抓住機遇 · 在沿海地區布局多個核 電項目 · 2006 年 · 中核集團與法國阿海琺公司合作引進第三代核電技術 EPR; 2007 年 · 又與美國西屋公司合作引進 AP1000 技術; 2010 年啟動了具有自主知 識產權的三代核電技術研發 · 代號「龍華一號」 · 2021 年 1 月 30 日正式投入商

業運行。¹⁵

中核集團在核燃料循環、核技術應用等領域也取得長足進步。2010年中核集 團成立中核鈾業公司·加強天然鈾資源的勘探開發和海外布局。2011 年中核集團 與哈薩克斯坦國家原子能公司合資建設巴甫洛達爾鈾濃縮場投資,成為中國在海 外的首個鈾濃縮項目。在核技術應用方面,中核集團開發了醫用鈷-60 放射源、 加速器質譜儀等產品,廣泛用於醫療、安檢、環保等領域。162018 年 1 月 31 日 中核集團與中國核工業建設集團公司實施重組,使中核集團成為集科研開發、工 程建設、裝備製造、運營服務於一體的完整核工業體系。未來將繼續發揚「兩彈 一星(原子彈、氫彈、衛星)」和「四個一切」的核工業精神。17

上述是中國官方網站公開發布數據,敘述中核集團演進,可看出「核技術」 被納為國防工業核心領域之一。文中提到中核集團「承擔國防核研生產任務,保 障『國家戰略核力量』的發展:另一方面,大力發展核電、核燃料循環、核科技 等民用產業」,可見中核集團是一個軍民融合企業,研判中核集團具備四個能力:

- (一)技術共享:中核集團是中國核科技的開拓者。先後創造第一顆原子彈成功 爆炸、第一顆氫彈成功爆炸、第一艘核潛艦成功下水、第一座自行設計核 電廠(秦山)18成功運轉,具備核動力裝置、核子材料提煉技術等,可服務核 導彈、核潛艦、航空母艦與民用反應爐。
- (二)人力互用:核電工程人才與國防核工體系人員共通訓練,形成「雙軌調用」 制度。
- (三)核能經濟:中國核電集中在沿海各省,靠近經濟發達地區,能夠滿足當地 巨大電力需求,減少電力傳輸過程損耗,亦考慮交通條件,海運港口更是 核運輸核電廠大型裝備,可方便對國外輸出核電機組。
- (四)戰略布局:標繪中國核電廠半徑 40 公里內軍事基地(如表 4),多為雷達站 基地,就戰略意涵來看,為將核能設施納入防禦體系,建構軍民融合戰略

^{15.}睿央京采,〈國之重器:解密中國核工業集團70年戰略演進與未來布局〉,2025年8月28 日,https://mp.weixin.qq.com/s/IZO3qpcj1FNyLnkm9uAmA,檢索日期:2025 年 10 月 13 日。 16.同 15。

^{17.}同 15。

^{18.} 體制內工作, 〈中核集團(央企排名第一)〉(2024年 05月 28日)https://mp.weixin.qq.com/s/ IB8Zqek3K8OAtQPdDudQ,檢索日期:2025年10月13日。

布局。

表 4 中國核電廠半徑 40 公里內軍事基地

編號	核電廠 名稱	所在地	Google Maps 座標	至臺灣本島 直線概要距 離(公里)	核電廠半徑 40 公里 內軍事基地
1	中國實驗快堆	北京市郊外 房山區的 中國原子能 科學研究院	39.138277 116.031379	1,812	1.中部戰區定興陸 航基地(32KM) 2.白溝河防基地 (40KM) 3.高碑店訓場 (40KM)
2	昌江 核電廠	海南省昌江 黎族 自治縣海尾 鎮塘興村	19.472072 108.907200	1,231	1.昌化大嶺雷達站 (28KM) 2.昌江電子對抗基 地(35KM)
3	大亞灣 核電廠	廣東省深圳 大鵬新區 大鵬街道鵬 社區城 大亞灣麻嶺 角	22.598147 114.543171	565	無
4	防城港 核電廠	廣西省壯族 自治區 防城港市港 口區 光坡鎮紅沙 村	21.684690 108.359425	1,219	無
5	方家山 核電廠	浙江省嘉興 市海鹽縣 方家山(距離 秦山核電廠 600 公尺)	30.437400 120.951968	569	1.東部戰區九龍山 基地 (38KM) 2.東部戰區嘉興基 地空7旅(40KM)
6	福清	福建省福州	25.437128	162	1.東部戰區73集團

150	

	核電廠	市福清市三山鎮	119.446654		軍陸航第73旅(32KM) 2.東部戰區龍田防空基地(南、北)(32KM) 3.龍田潭庫(32KM) 4.紅嶼雷達站(22 KM) 5.江陰雷達站(15 KM) 5.江陰雷達站(15 KM) 6.東部戰區前園洞庫(15 KM) 7.東戰區大營門之等(25KM) 8.塘頭基地(32KM) 9.下坪基地(40KM) 10.東張基地(40KM)
7	海陽 核電廠	山東省煙台 市海陽市 留格庄鎮卲 家庄村	36.710153 121.389618	1,263	東方航天港(27 KM)
8	紅沿河 核電廠	遼寧省大連 市 瓦房店市紅 沿鎮	39.796046 121.477653	1,641	瓦房店基地(26KM)
9	廉江 核電廠	廣東省湛江 市廉江市 車板鎮田螺 嶺	21.551372 109.814555	1,080	無
10	嶺澳	廣東省深圳	22.602621	565	坪坦角雷達站

	核電廠	大鵬新區	114.559664		(37.5KM)
		大鵬半島(大			
		亞灣			
		核電廠以比1			
		公里)			
11	玲瓏 核電廠	海南省昌江 黎族 自治縣海尾 鎮塘興村	19.472072 108.907200	1,231	1.昌化大嶺雷達站 (28KM) 2.昌江電子對抗基
		(於昌江核電 廠內)			地(35KM)
12	陸豐 核電廠	廣東省汕尾 市 陸豐市碣石 鎮田尾山	22.748551 115.806619	477	1.南部戰區捷勝基 地(40 KM) 2.南澳山雷達站 (27.5 KM) 3.神泉港雷達陣地 (36 KM)
13	寧德核電廠	福建省寧德 市福鼎市 太姥山鎮備 灣村	27.048576 120.278449	229	1.柴橋灣雷達站 (14.5KM) 2.新橋頭雷達站 (20.8KM) 3.東部戰區霞浦防 空基地(20.8KM) 4.霞浦空軍基地 (20.8KM) 5.霞浦雷達站 (28KM)
14	秦山 核電廠	浙江省嘉興 市海鹽縣 秦山鎮楊柳 山腳下錢塘 江入海口北 岸	30.432775 120.917468	569	1.東部戰區九龍山 基地 (38KM) 2.東部戰區嘉興基 地空7旅(40KM)
15	三澳	浙江省溫州	27.195961	234	1.鶴頂山雷達站

	核電廠	 市蒼南縣	120.520734		(14.5KM)
		霞關鎮三澳			
		村			空氣球基地/陣地
					(30.4KM)
16	三門核電廠	浙江省台州 市三門縣 健跳貓頭山 半島 三門灣	29.107813 121.634956	418	無
17	石島灣 核電廠 (高溫冷 氣堆)	山東省威海 市榮成市 石島管理局 寧津街道	36.973183 122.534462	1,292	1.馬他角雷達 (27.1KM) 2.北部戰區空34旅/ 大水泊基地 (35.7KM)
18	石島灣 核電廠 (壓水式)	山東省威海 市榮成市 石島管理局 寧津街道	36.973183 122.534462	1,292	1.馬他角雷達 (27.1KM) 2.北部戰區空34旅/ 大水泊基地 (35.7KM)
19	太平嶺核電廠	廣東省惠州 市惠東縣 黃埠鎮東頭 村太平嶺	22.699814 114.996435	519	1.坪坦角雷達站 (16.6 KM)
20	臺山 核電廠	廣東省江門 市臺山市 赤鎮銅鼓村	21.914069 112.986366	741	1.沙提灣雷達站 (40KM)
21	田灣 核電廠	江蘇省連雲 港市 連雲區田灣 鎮	34.686991 119.459658	1,058	1.雲臺山雷達站 (4.6KM)
22	霞浦 核電廠	福建省寧德 市霞浦縣 長春鎮長門 村長表島	26.801451 120.158920	435	1.新橋頭雷達站 (13.75KM) 2.柴橋灣雷達站 (17KM)

					3.過洋雷達站 (20.8KM) 4.東部戰區霞浦防 空基地(19.4KM) 5.霞浦空軍基地 (17.4KM) 6.霞浦雷達站 (25KM)
23	徐大堡核電廠	遼寧省葫蘆 島市 興城 堡鎮 方安村	40.358760 120.545619	1,676	1.緩中基地/北部戰 區海軍航空兵/海 航7師(17.8KM) 2.興城基地/海軍綜 合試驗訓練基地/ 艦載航空兵第1 聯隊(戰鬥機) (18.5KM) 3.興城基地/海軍綜 合試驗訓練基地 (直升機) (30KM) 4.菊花島雷達站 (30KM) 5.北部戰區菊花島 基地(30KM)
24	陽江 核電廠	廣東省陽江 市陽東區 東平鎮	21.7.4425 112.266936	816	1.南部戰區大灣澳 基地(30KM) 2.臺山下川島基地/ 潛艦第52支隊 (32.5KM)
25	漳州 核電廠	福建省漳州 市雲霄縣 列嶼鎮刺仔 尾 東山灣西岸	23.828975 117.496458	273	1.東部戰區城南基 地(10.4KM) 2.東部戰區下井尾 基地(13KM) 3.詔安雷達站二站 (15KM)

		4.大馬頭雷達站
		(25.8KM)
		5.詔安雷達站一站
		(31.25KM)
		6.詔安雷達站控制
		中心(18.3)

資料來源:

- 1.IAEA-The Power Reactor Information System database (PRIS 網址 http:// www.iaea.org/PRIS/home.aspx) 2025 年 8 月 10 日。(檢索日期: 2025/10/10)
- 2 溫約瑟,中國人民解放軍基地及設施,https://umap.openstreetmap.fr/zh-tw/ map/by 77487 ? fbclid=lwdGRjcANVpkpjbGNrA1WmQmV4dG4DYVtAjExA AEeL5qcvkCCGHI9v7oj90hwf NZz5WkevxiYuFDv7OhOdRdLVtlbKRIRTZU 88 aem XYdSvPBFNsC8foFMohjcLg#7/26.574/114.922

觀察中國核安保綜合演練暨核威脅演練(如表 5),發現 2022 年全球首次大型 核電廠(札波羅熱核電廠)於戰爭中被武裝部隊占領後。更值得警惕者,中國核安 保綜合演練風暴-2023、風暴-2025 投入陸、海、空、網全要素綜合演練,模擬敵 方攻擊核設施後續處置,顯示其已將核設施納入作戰準則思維框架;另外香港南 華早報2024年10月20日報導中國執行核戰末日背景下的數據鏈通信模擬演習, 意味著中國積極面對核戰爆發,提前做好準備。

表 5 中國核安保綜合演練暨核威脅演練統計表

演習代號/名稱	時間	地點	特色與模擬能力
風暴-2016	2016/8/6	待查	首次綜合性核安保突發事
(第一次綜合演練)	2010/0/0	付旦	件應對演練。
風暴-2018	2018/11/26	福建省	推進實戰化、制度化、規
		寧德核電廠	範化,提升突發狀況應處
【(第二次核安保綜合演練) 【			能力。
	2020/8/13	海南省昌江核電廠	● 首次將演練範圍從固
風暴-2020			定場所拓展到運輸活
			動;從傳統威脅拓展到
(第三次綜合演練) 			「低慢小」飛行器等新
			型威脅。

	_		
			● 首次軍警民聯動應對
			超設計基準威脅,首次
			將通訊衛星、北都衛
			星、高分遙感等高新科
			技術融入應用。
風暴-2021	2021/9/18	廣東省	麻布核钙族细致安全。
(第四次核安保綜合演練)	2021/9/10	陽江核電廠	磨練核設施網路安全。
2022/03/03、02 為全球首	 首次大型核電	廠(札波羅熱核	逐電廠)於戰爭中被武裝部隊
占領。			
			● 首次展開陸、海、空、
風暴-2023	2023/6/29	山東省 海陽核電廠	網全要素綜合演練。
			● 二維平面拓展三維立
【(第五次核安保綜合演練) 【			滑豊 。
			● 實戰能力第一次大練兵
	香港南華 早報 2024 年10月20 日報導	待查	模擬平流層爆炸產生高空
			電磁脈衝(HEMP)。將通信
核戰末日背景下			設備能夠承受的電場強度
製據鏈通信模擬演習			要達到 50kv/m 提高到
数1% 疑型 LI (失) 从 (央 日			80kv/m·依然保障裝備沒
			有受損,數據鏈網路在短
			暫中斷後迅速恢復。
			模擬恐怖份子入侵機組,
 核安保一體化桌面兵推	2025/3/20	海南省	啟動應急組織機構・協調
1次女体一腔儿未叫共推	2025/3/20	昌江核電廠	警衛、駐廠武警、醫療救
			護、消防隊等聯合處置。
国星 2025	2025/4/12	福建省福清核電廠	● 驗證核設施應對極端突
風暴-2025			發事件的應急處理能
┃(第六次核安保綜合演練) ┃			力。

	•	模擬對我國核設施侵擾
		和襲擊,藍軍與紅軍對
		抗。

資料來源:

- 1.中核集團、《我國成功舉辦風暴-2025 核安保演練活動》、2025 年 04 月 13 日、 https://mp.weixin.qq.com/s/3LV9wChm5kugk9Ob7tSow •
- 2. 黃杰記事本、《全球首次,我國實現核爆中心通信能力,超越美國》,2024年 10月22日, https://mp.weixin.gq.com/s/5rt2CZURH83e8g7HwT9oNA。
- 3.華能昌江核電、《海南昌江核電基地組織核安保一體化響應桌面兵推》, 2025 年03月21日,

https://mp.weixin.qq.com/s/P8FWzGAkGZCJDUK2SHKvow •

4.本研究自行整理。

三、攻臺複製札波羅熱場景

觀察 2022 年札波羅熱核電廠事件後,「2023 年中國核安保綜合演練首次展 開陸、海、空、網全要素綜合演練」。同時比對中國《2023 國防白皮書》所述, 其「軍隊須具備全域聯合作戰能力與複合場景應變能力」。可見 2022 年札波羅 熱核電廠事件給全世界上了一課,中國 2023 年即納入攻防演練。相對的,守方 與攻方均可找出克敵對策,更何況中國始終不放棄武力,而臺灣計有3處核電廠, 亦讓人思考,若其複製札波羅熱策略,研判可能模式:

- (一)對臺戰略掩蔽:若未來中國攻臺,解放軍登陸占領臺灣核設施,亦採類似 占領札波羅熱模式,可宣稱「接管危險設施、避免核災外洩」,藉此在國 際輿論上包裝成「維穩、防災行動」,達到戰略掩蔽效果。
- (二)心理戰操弄:製造臺灣核災假訊息或假攻擊畫面,操作民眾恐慌,促成社 會動搖。
- (三)政治施壓工具:在國際談判場合中,透過對臺核安全議題施壓,製造「災 變邊緣態勢」以牽制干預國。

我國核災防護體系現況與挑戰

札波羅熱核電廠多次淪為交戰雙方控制目標,反映出戰時核設施不僅是戰略 資產,亦可能成為輻射災難的引爆點。此案例對臺灣具高度參照價值,尤其本島 核電廠大多緊鄰人口稠密區,核災防護作為尤須完備,進一步檢視體系面臨的挑 戰,並提出具體強化建議。

一、我國核能設施分布與軍事影響

儘管我國已於 2025 年 5 月 17 日核三廠正式除役,成為「非核家園」,但境內仍保留數處高放射性廢料貯存設施、核研機構(如國家原子能科技研究院)等核技術應用單位。此外,部分民間醫療與工業部門亦持有輻射源。換言之,臺灣並非完全無核之島,戰時依舊可能遭受針對性攻擊與操弄。

就軍事面向而言,我國核設施(如表 6)實際有運作者計有核一廠(新北市石門區)、核二廠(新北市萬里區)及核三廠(屏東縣恆春鎮)等三處,地理位置均具備若干共同點,第一位於沿海,易受海上兵力、空中火力及遠距封鎖影響;第二鄰近交通要道(沿海公路、港口),後勤補給與要點控制;第三多位於高人口密度區域,一旦被占領控制將衍生民眾恐慌。此段僅就個人淺見,將戰時敵、我雙方對這三座核電廠的可能軍事行動概析如下:

(一)敵軍而言

敵軍占領或控制除役核電廠,仍有多重戰略價值。其一,廠區堅固設施,可提供防護與指揮所用途,降低攻方常規火力打擊風險;其二,敵藉由在廠區部署兵力與火力,利用「核風險」作為心理威懾,可抑制守軍火力打擊;其三,控制沿海關鍵要點,有助於確保自身海上及沿海公路補給線安全,形成戰略上壓迫;其四,即便除役電廠不再發電,仍有核輻射威脅,可做為威脅工具與談判籌碼。

(二)我軍而言

除役核電廠被占領或控制,最直接影響即是交火限制,我軍採取火力或空襲手段須加倍謹慎,避免引發國際譴責與核災難,限制我軍在該區域戰術運用;再者,核電廠周邊人口不少,攻防交戰之中,迫使我軍兼顧軍事目標與保護人民做出艱難取捨,增加作戰困難度。

(三)綜合而言

核電廠雖在戰爭中雖不至於直接攻擊,唯獨在作戰階段中誤擊或蓄意破壞仍有可能發生,因此仍具有巨大的威懾力,國內三處除役核電廠在「電力干擾」價值不受影響,但在戰略、戰術、心理層面仍有顯著,一旦被敵方

占領或控制,勢必造成我軍進退兩難局面。

表 6 臺灣現有核電廠統計表(2025年5月20日)

編	核電廠	所在地	機組	狀態	開始營運	屆期時間
號	名稱	別往地	饿組	水態	年/月/日	年/月/日
1	│ │ 核一廠	新北市	1 號機	已除役	1978/12/5	2018/12/5
1	杉 一	石門區	2 號機	已除役	1979/7/15	2019/7/15
		新北市	1 號機	已除役	1981/12/2	2021/12/27
2	核二廠	利北川 萬里區	1 5次16交	□际1文	7	2021/12/27
		禺 圭四 	2 號機	已除役	1983/3/14	2023/3/14
3	核三廠	屏東縣	1 號機	已除役	1984/7/26	2024/7/26
3		恆春鎮	2 號機	已除役	1985/5/17	2025/5/17
	核四廠	新北市		1999/3/17		
4			1-2 號機	始建	未商轉	無
		貢寮區		2015/8 封存		

- 1.核設施除役過程仍具潛在風險
- (1)用過核燃料池尚未遷移完畢:

已除役機組內部的「用過核燃料(乏燃料)¹⁹」池仍須長時間冷卻與管理· 若冷卻系統故障,仍可能導致放射性釋出。

備 (2)高放射性設施未即時拆除:

> 除役過程長達 10-30 年,在此期間仍有大量放射性物質存在,如輻射 源、汙染設備與建築結構。

2.符合法規與國際規範要求

依據國際原子能總署(IAEA)建議,核設施即便停運,仍維持最基本的 災防應變與物理防護能力。

資料來源:

考

- 1.臺灣電力公司、《核能營運現況與績效》、2024年12月16日。
- 2.本研究自行整理。

^{19.}乏燃料(Spent Fuel)是指在核反應爐中經過一段時間運轉後,已使用過、但仍具有放射性語 部分裂變潛在的核燃料棒。雖然這些燃料無法再有效產生電力,但它們仍含有大量放射性 物質與熱能,需長時間妥善管理。

二、現行核災防護體系評估

我國核災防護體系以行政院核能安全委員會(簡稱為核安會20)為主軸,輔 以內政部消防署、國防部、各地方政府防災中心及臺灣電力股份有限公司(以下 簡稱臺電)等組成跨部會應變機制,依據《核子事故緊急應變法》與《災害防救 法》實施。雖每年舉辦「核安演習(兵棋推演與實兵演練)」,但各部會機關仍須 強化「戰時整備」演練:

- (一)平戰時核災體系應縝密整合:目前我國災防體系由「核能安全委員會」主 導,核安實兵演習無戰時模擬,未考慮敵襲狀態下如何兼顧防空與核災應 變,一旦發生戰爭,缺乏統一指揮架構,不符戰時決策效率要求。
- (二)高人口密度暴露核災風險:核一、核二廠所在的新北市金山區,核三廠原 址恆春半島,均鄰近重要城鎮,交通路線單一,雖有演練海空運疏散,如 發生若發生札波羅熱場景(準戰爭型態),地方政府恐無法應處疏散民眾。
- (三)戰時民眾疏散與心理鞏固:雖然每年定期實施核安實兵演練,當地民眾對 核輻射、防護作法有相對認知。但強調戰時疏散路線、避難中心設計未充 分模擬戰時核威脅情境,易受假訊息與心理戰操弄。
- (四)無人機與非傳統攻擊威脅上升:俄烏戰爭中,無人機頻繁干擾核電廠監控 與供電系統。臺灣未來亦須納入電磁干擾、防空武力整合規劃,才能面對 新型態威脅。

三、我國核災應處準備分析

雖然核安會於每年度舉辦「核安演習」,然 2022 年俄烏戰爭爆發後,札波 羅熱核電廠產生核安全、輻射外洩、軍事占領、無人機頻繁干擾與戰略勒索等多 重風險。我國核安會亦將此事件納入核安 29、30 號兵棋推演, 多為議題式探討, 缺乏實際整合演練;亦有部分民眾認為「類似情境不會發生於臺灣」、「臺灣核 電廠已除役,預期敵不會攻擊核設施」等看法,導致軍民整合演練上出現頭重腳 輕現況,仍然聚焦於平時核子事故,面對對戰爭恐引起札波羅熱核電廠產生核安 全問題遠拋於腦後,產生「整備偏誤」問題。

^{20.}核能安全委員會(簡稱為核安會),為中華民國核能業務主管機關,前身為1955年5月31 日所成立的「行政院原子能委員會」,於2023年9月27日改制,設有附屬機關輻射偵測 中心,主要負責核能發電廠、核子設施及輻射作業場所的安全監督。

- (一)檢討核防護裝備戰場適應性:化學兵部隊歷年採購防護裝備(如消除站、輻 射儀器、便攜式劑量器、防護裝備等)多根據演習預設情境與和平時期災防 任務為基礎籌購,僅用於演訓展示而未進行戰時整備,形成「制度性閒置 資源」現象;另民防團隊、政府機關或國軍支援部隊缺乏在戰場上電磁干 擾、無人機攻擊、長時間被敵軍占領環境中的所需武器獲得規劃。
- (二)提升輻射情傳與通資體系整合:札波羅熱事件顯示,核災可能與電網中斷、 資通癱瘓同步發生。國內民間機關與國軍支援單位情傳通報軍依賴傳統通 訊鏈,未建構「戰場輻射情報通報」系統,未來札波羅熱事件在臺灣發生, 可能導致反應延遲。
- (三)全社會防衛韌性核防護仍待強化:國軍與地方政府、核安會等單位於核安 演習中,多停留演練預錄、分段演練、裝備展示等階段,未模擬實際敵情 下聯合應變作戰,更有軍事單位認為核安演練屬於地方權責,反映出全社 會防衛韌性建構仍待強化。

札波羅熱事件給我國的啟示與建議

俄羅斯違反了〈1949 年日內瓦協議〉(Geneva Conventions),該協議規定, 進攻水壩、岩脈、核電廠等可能導致平民傷亡的設施和地理結構,都屬於戰爭時 非法行為。國際原子能總署(IAEA)於 2022 年 3 月 4 日通過決議譴責俄羅斯入 侵烏克蘭行為。21惟自 2022 年至 2025 年,事隔 3 年,札波羅熱事件雙方至今(2025 年 10 月)無解,戰爭持續進行中。由此可知,札波羅熱事件提供臺灣一項嚴峻提 醒:核設施不僅是科技資產,更是潛在於戰場,這場占領核電廠歷史可提供我國 啟示與建議。

一、從占領核電廠行為辨識戰略預警徵候

札波羅熱核電廠被俄軍納為軍事要塞,實際體現了低強度核威懾策略。從中 可見,當敵軍有意將核設施作為戰略籌碼,常伴隨下列徵候:

- **(一)軍事單位進駐核區:**以「保護電廠安全」為由,部署部隊、裝備重兵。
- **(二)操作人員被迫續留或撤離:**人力控制轉由敵方主導·降低設施運作透明度。

^{21.}黎蝸藤,《帝國解體與自由堡壘:屋俄戰爭的歷史源起、地緣政治與正義之辯》(臺北:八旗 文化,2023年8月),第十章、頁14。

- (三)媒體輿論刻意渲染風險:釋放放射外洩假訊息、操作恐慌心理,操控社會 輿論。
- (四)國際監管干擾:阻撓國際機構進駐監察,斷絕資訊流通,擴大不確定感。 我國應建立「核設施戰略風險等級分類機制」,將國內與鄰近區域核設施納 入國安情報偵蒐重點,平時透過情資、衛星、網路等手段,及早發現類似占領核 設施行徑。

二、強化核災防護訓練體系五項策略

(一)重建軍民一體指管架構

重新檢討「核災變聯合應變中心」,由「國安會」統籌、整合國防部、核 安會、消防署、地方政府及民防團隊等單位,使戰時指揮鏈無縫接軌。

(二)提升國軍核災實戰訓練

國軍應強化各部隊訓練強度,強化「戰時」的「民眾疏散」、「碘片發放」、「核電廠固守與歸復」、「核災防護訓練」、「除汙區演練」及「心戰鞏固」等,並定期與民防演練協同作戰。

(三)推動全民核防基礎教育

編撰《全民核災自救手冊》,搭配實體演練、校園課程、電視公益廣告等管道,提升社會對核恐攻擊的基本應變能力。且制訂軍民整合訓練大綱、強化各部隊及民防團隊裝備、建立核汙染區模擬訓場,並將核災訓練列入常備與後備部隊年訓計畫。對一般民眾則藉由教育、演練與政策,推動核災防護素養,提升全社會防衛韌性。

(四)建置核災通訊與反假訊息平臺

推動國家核輻射地圖建置、即時通報系統、核汙染預測模型(如 HYSPLIT模式²²)導入國軍與中央災防中心作業流程,形成戰時決策資訊底圖。開發專屬核災應變 APP,內建即時輻射資訊、疏散路線、假訊息澄清通報功能,統一資訊窗口,穩定民心。

^{22.} HYSPLIT 模式(Hybrid Single-Particle Lagrangian Integrated Trajectory)為美國國家海洋暨大氣總署(NOAA)氣象局空氣資源實驗室(ARL)所開發的軌跡與擴散模式。其主要功能是模擬空氣中粒子或氣體的移動軌跡與擴散行為,可追蹤汙染源擴散範圍、濃度分布與落塵預測。

(五)規劃戰時核設施安全機制

檢討我國現有核設施的保防規格,包含資訊封控、地面武力防衛、反無人 機系統,防止戰時被敵滲透或挾持。

三、建立「複合戰」下核防安全戰略

根據《2022 年世界核能產業現況報告23》,指出全球從未有任何一座核電廠 是為了於戰爭中運作而設計。24札波羅熱核電廠案例揭示一項根本問題:現代戰 爭早已模糊傳統戰略區分。在戰爭進入無人機、資訊戰、心理戰與能源戰交錯之 「複合戰」新型態下,核設施不再只是物理空間,更是政治、輿論與軍事交錯的 攻防焦點。因此,臺灣必須以「核安即國安」思維,將核設施、核廢料、核研究 設施等納入總體防衛戰略,並於全民防衛架構中賦予其特定定位。此不僅關乎戰 術應變,更關平國家存亡與民心維穩的核心要素。

結語

本研究以俄烏戰爭中札波羅熱核電廠為案例,提出核設施的戰略角色轉變, 「占領核設施」歷程與戰略分析,比較中國核能戰略與軍事融合模式,提出個人 建議。盼為我國國防政策、全社會防衛韌性提供警示與方向。占領札波羅熱核電 廠顛覆了過去國際社會對於核能設施「非戰爭目標」的普遍共識。俄羅斯的實戰 策略不僅將核電廠作為地面軍事防禦堡壘,更成功操弄心理戰、輿論戰與外交籌 碼,使其成為一種新型態的「低烈度核威懾工具」。中國在觀察此案例後,已著 手在「軍民融合」架構下,加速核設施的軍事潛能整合,並建立模擬戰場訓練(第 五、六次核安保綜合演練),顯示核設施攻防戰略思維正在成形。

我國雖已實施非核政策,但仍有軍事科研機構、醫療設施、核廢料處理廠等 高敏感度單位,戰時仍易成為心理戰與混合戰首波攻擊目標。在軍事衝突轉向「無 界線、混合式」的今日,我國現行的核災防護體系仍持續強化,面對札波羅熱模 式的潛在外溢威脅,必須儘速建立符合現代戰爭邏輯的應對體系。

^{23.2022} 年世界核能產業現況報告(The World Nuclear Industry Status Report):自 1922 年起至 今,每年針對世界各國核電廠的運轉狀況與全球核能產業趨勢進行分析,以完整客觀、具 有公信力的資料分析著稱,報告由來自世界各國的學者專家共同撰寫。

^{24.}林正原(綠色公民行動聯盟研究員),〈全世界沒有一座核電廠考慮過如何在戰爭中運作〉 《2022年世界核能產業現況報告》,2022年11月19日刊。

參考資料

一、書籍

- (一)黎蝸藤·《帝國解體與自由堡壘:烏俄戰爭的歷史源起、地緣政治與正義之辯》·2022 年 8 月版。
- (二)臺灣電力公司、《核能營運現況與績效》, 2024年 12月 16日。

二、期刊

- (一)林正原·〈全世界沒有一座核電廠考慮過如何在戰爭中運作〉《2022 年世界 核能產業現況報告》·2022 年 11 月 19 日。
- (二)汪永平·〈「十四五」核電產業發展重點解讀〉《中國能源報》·2021 年 03 月 29 日第 11 版。

三、網路

- (一)易電智庫 ·〈俄烏衝突下的札波羅熱核電廠〉(2022 年 9 月 4 日) · https://mp.weixin.qq.com/s · 檢索日期:2025 年 5 月 15 日 ·
- (二)P 哥的第聶伯河、〈俄烏戰線評估報告_2025-04-28〉(2025 年 4 月 28 日發表於山東)、https://mp.weixin.qq.com/s/ikrD8fzj-09VPcyGh6ciNw、檢索日期: 2025 年 5 月 7 日。
- (三)張世展 藍德智庫、〈圍繞札波羅熱核電廠的「混合戰爭」〉(2023 年 03 月 27 日)、https://mp.weixin.qq.com/s/7twl_sfi5HIPRYw6lj9eow、檢索日期: 2025 年 5 月 8 日。
- (四)BBC News 中文·〈俄軍攻擊烏克蘭札波羅熱核電廠·外圍築起起火〉(2022年3月4日)·https://www.bbc.com/zhongwen/trad/world-60614960·檢索日期:2025年5月8日。
- (五)中核集團 ·〈我國成功舉辦風暴-2025 核安保演練活動〉(2025 年 04 月 13 日)·https://mp.weixin.qq.com/s/3LV9wChm5kugk9Ob7tSow·檢索日期: 2025 年 5 月 19 日。
- (六)黃杰記事本 ·〈全球首次 · 我國實現核爆中心通信能力 · 超越美國 〉(2024年 10月22日)·https://mp.weixin.qq.com/s/5rt2CZURH83e8q7HwT9oNA · 檢索日期: 2025年5月19日。

- (七)華能昌江核電、〈海南昌江核電基地組織核安保一體化響應桌面兵推〉(2025 年 3 月 21 日), https://mp.weixin.gg.com/s/P8FWzGAkGZCJDUK2SHK vow,檢索日期:2025年5月19日。
- (八)IAEA-The Power Reactor Information System database (PRIS 資料庫 http://www.iaea.org/PRIS/home.aspx) 2024 年 10 月 20 日,檢索日期: 2025年5月16日。
- (九)國防安全小組、中國商用核反應爐發展概況研析 〉(2025 年 05 月 28 日)。 https://share.google/z4nd9pPfCje1FxLC3,檢索日期: 2025年10月11日。
- (十)核能號,〈中國大陸現有核電堆型介紹〉(2025年08月15日), https://mp. weixin.qq.com/s/4JuV3wHJIDF1x4zD6cFLQA,檢索日期:2025年10月 11 日。
- (十一)溫約瑟,中國人民解放軍基地及設施,https://umap.openstreetmap.fr/ zh-tw/map/by 77487?fbclid=lwdGRjcANVpkpjbGNrA1WmQmV4dG4D YVtAjExAAEeL5qcvkCCGHl9v7oj90hwf NZz5WkevxiYuFDv7OhOdRdL VtlbKRIRTZU88 aem XYdSvPBFNsC8foFMohjcLg#7/26.574/114.922.
- (十二)睿央京采《國之重器:解密中國核工業集團 70 年戰略演進與未來布局》 (2025年08月28日)·https://mp.weixin.qq.com/s/IZO3qpcj1FNyLnkm9u AmA,檢索日期: 2025年10月13日。
- (十三)體制內工作·〈中核集團(央企排名第一)〉(2024年05月28日)·https://mp. weixin.qq.com/s/IB8Zqek3K8OAtQPdDudQ,檢索日期:2025年10月 13 日。