

電動泵浦連桿式砲身運動保養工具先導研發成果

筆者/江志勝士官長

提要

- 一、砲身運動為裝置液壓及機械制退復進系統之曲、直射火砲,依技令規定之保養週期,透過液壓系統執行制退復進系統往復運動,以替代實彈射擊砲身復進運動,本軍155公厘(含,以上)火砲,因無適當訓場可供實彈射擊,每年以「重砲保養射擊訓練」實施實彈射擊訓練並完成砲身運動,以確保火砲功(性)能作用正常。
- 二、戰車砲依技令規定超過 180 天未實施實彈射擊,必須實施砲身運動,以 保養及檢查液壓及機械系統,作動是否正常,現役 4 型戰車其主砲均採用 液壓同心彈簧制退復進機,其往復運作與砲身運動原理相同,現行 M3 泵 浦系統均可適用。
- 三、砲身運動除以液壓器加壓,迫使火砲復進簧壓縮制退,替代火藥發射回流 高壓氣體作用,戰時緊急狀況下,為快速完成戰鬥準備,可使用「頂砲法」, 以戰車砲口對正貼住堅硬牆面或建物,戰車緩緩前進,直至完成砲身運動 行程,再慢慢倒退將戰車砲身復位,此法於平時禁止使用。
- 四、液壓同心彈簧制退復進系統,彈簧為機械件,如同步槍復進簧必須由人力 拉柄或氣體傳導(氣管或活塞式),產生壓縮與回復槍機,讓槍枝可進行全 (半)自動射擊,而牽動戰車砲身彈簧介質為 FRH 液壓油,貯存於補充器, 液壓油不足狀況下,實施砲身運動或實彈射擊,可能導致制退復進系統損 壞,斷裂濺飛之金屬碎片與液壓油,將導致砲塔內乘員及射控觀瞄損傷。
- 五、現行砲身運動施作方式,以 M3 泵浦,以 FRH 液壓油加注及釋放制退復進簧,但此方式工時較長,援以研發電動泵浦連桿系統,以快速、省時、省力與安全工法,完成砲身運動,應急備戰亦可藉此快速完成戰鬥整備。

關鍵詞:制退復進機、砲身運動、M3 泵浦、輔助泵浦

壹、前言

槍砲預防保養,為延長裝備使用壽命與確保射擊安全之日常勤務,戰車砲是戰車主要火力,精密數位化射砲(控)與觀瞄系統,都是為了提升戰車砲射擊精準度與速度及安全,因此排訂季(Q)、半年(S)、每年(A)及每兩年(B)預防保養勤務與使用前檢查,戰車砲砲身運動(以下簡稱:砲身運動)排定週期為每 180 天,為半年(S)預防保養項目之一,由保修連派遣砲塔保養組,攜帶機(工)具及機械式M3 泵浦,至受支援聯兵(戰車或機步營)二級廠,施作半年(S)預防保養野戰保修項目-砲身運動,傳統工法須以 M3 幫浦採人力手柄壓縮活塞推動液壓油,因液體具有不可壓縮性,因此液壓油在空間飽和產生推進力量,將液壓油注入砲身內,使砲管緩緩向後制退,過程耗時且費力,尤以夏日於砲塔室內執行砲身運動,

瞬間汗流浹背,由於國造 XT-112,105 公厘旋膛戰車砲,復進制退方式改為長程氣液壓式,將 60 餘噸後座力降低 67%,時間縮短於 700 毫秒內,已請生製中心針對新式戰車砲-砲身運動保養機具及施作方式,納入整體後勤文件列述,以銜接新式戰車獲裝預防保養勤務無縫接軌。

本軍使用 M68A1-105 公厘戰車砲以來,實彈射擊曾肇生數起制退復進機損壞狀況,射擊前安全檢查與野戰保修裝備鑑定過濾,攸關安全責任歸屬,各級執行極為嚴謹,須開立證明文件與檢驗人員簽章,按理故障毀損砲身總成情事不應發生,事後調查仍發現人為細節及機械內部無法目視檢查問題所導致,本文鑒於砲身運動對於射擊安全至關重要,針對砲身總成制退復進作用原理,檢討現行人力保養方式,藉小型軍品先導研發,開發電動泵浦連桿系統,以液壓及機械替代人力,達到「快速、經濟及有效」之保養效率,先導研發品交付本部戰車營與部訓砲塔保養班隊,進行保養實作驗證,藉以得到量化數據與發掘缺失,經先導試用並同步著手效益評估分析,綜合測評結果為「具開發效益及可行且有效」之方案,按小型軍品研發程序,陳報權責單位核定, 匡列執行年度,後續研製將以先導成品為基礎,就已獲缺失及零組件強度與韌性進行性能提升,以期開發新式安全可靠砲身運動保養工具,維持裝備高度妥善及消弭實彈射擊潛存危安因子。

貳、砲身組成與制退復進原理

本軍現役 CM11 及 M60A3 等兩款戰車均使用 M68A1-105 公厘戰車砲,砲身總成區分保溫襯套、砲膛排煙器、砲管以及砲尾環等 4 項,安裝於 M104A1 複合砲座,¹以下就砲身總成組件、檢查方式及制退復進原理,列述如次:

一、砲身總成組件:

戰車砲砲身總成組件計有均溫襯套、砲膛排煙器、砲管、砲尾環等 4 項,其功用與檢查方式,(如表 1)。

名 稱 示 功 用 昌 前 前均溫襯套為鋁合金,後均溫襯套為玻璃 均 纖維材質,其功能為保持砲管均勻溫度, 溫 降低砲管受熱不勻產生形變及增加射擊 襯 精度,實彈射擊之後,取下前保溫襯套, 套 實施保養。 後

表 1-戰車砲砲身總成組件

¹ 陸軍司令部 · 《陸軍 M60A3 TTS 戰車操作手冊 (第二版)》· (桃園龍潭:陸軍司令部·中華民國 103 年 07 月 31 日) · 頁 2-255 ∘

砲膛排煙器	本體		砲膛排煙器為於砲管中央,取下後可見 12、3、6及9點鐘位置,30度斜鑽,通 往砲管內4個排氣孔,其功用為吸收殘餘 發射藥氣體,防止回流進入砲塔室。
	孔		
	砲管		長度約 5.35 公尺(含無膛線藥室),51 倍徑加農砲,賦予砲彈飛行方向,覘視歸正基準點。2
砲管	膛線		旋轉穩定砲彈射向,惟現代砲彈以數片包
	砲尾齒環	(a)	結合砲管大王銷粗螺牙與砲尾環平齊並 對標記,上方固定片為公差微調砲管尾部 與砲尾環平齊,再加以旋至定位。
砲尾四	砲尾環		為半橢圓形,上方為平整,下方為橢圓形容納驅動器、開關栓簧及驅動器與手柄、 砲門及頂殼片,為裝彈與退殼重要機件, 為砲身總成鈑件最厚者。3
尾環機構	砲門		直楔式砲閂中央裝置發火機,為砲彈裝填 閉鎖、擊發與退殼機件,本件可使用人力 起重機吊裝拆卸,作為戰車乘員基礎訓練 之用。

² 陸軍司令部·《陸軍 M60A3 TTS 戰車操作手冊(第二版)》·(桃園龍潭:陸軍司令部·中華民國 103 年 07 月 31 日)·頁 2-256。

³ 陸軍司令部 · 《陸軍 M60A3 TTS 戰車操作手冊 (第二版)》· (桃園龍潭:陸軍司令部 · 中華民國 103 年 07 月 31 日) · 頁 2-256。

命尾環機構 象限儀測點

位於砲尾環上方水平面,鐫刻3個1平方公分正方基座點,可供象限儀、水平儀及數位量測儀具使用,可裝定及比對主砲射角及車身傾斜度與校正M13射角儀。

資料來源:作者拍攝及整理製作

二、檢查方式:

戰車砲砲身總成檢查有均溫襯套及砲膛排煙器、砲管、砲尾環等 4 項,其檢查方式及標準,(如表 2)。

表 2-戰車砲砲身總成檢查方式

大 2 大 → 10 10 万 10 10 万 10 10 10 10 10 10 10 10 10 10 10 10 10 				
名	稱	昌	示	檢查方式及標準
均溫襯套及	密封墊圈	墊		前、後均溫襯套本體裂痕長度不得超過1 英吋(約 2.54 公分),螺牙於射擊後或季 (Q)預防保養,以硬膠刷及 WD-40 清潔 劑,去除油垢,再以 10 號機油潤滑,前 後密封墊圈不得破損或遺失。4
A及砲膛排煙器	固定楔鐵及螺栓			固定楔鐵及螺絲不可斷裂或滑牙,排氣孔 不可塗抹黃油造成堵塞,底部排放螺栓射 >凝水。
砲管	砲膛內視鏡			大陰、陽膛線不可鏽 蝕;戰車日常保養乘員僅能以目視檢查; 保修連使用砲膛內視鏡,可檢視內徑鏡頭 可辨之膛線斷裂與裂痕,深入檢查需透過 X光檢視或同位素斷層掃描。5

⁴ 陸軍司令部·《陸軍主官裝備檢查暨妥善鑑定檢查手冊》·(桃園龍潭:陸軍司令部·中華民國 92 年 09 月 01 日)·頁 23。

⁵ 陸軍司令部、《陸軍主官裝備檢查暨妥善鑑定檢查手冊》、(桃園龍潭:陸軍司令部、中華民國 92 年 09 月 01 日)、頁 23。

開 硇 砲尾環機構檢查時,6閂體不可有外觀繡 尾 栓 簧 環 蝕導致無法正常操作,開門簧調節器簧力 調 機 按技令調整至適用速度。 餰 構 砲 開 砲閂細部附件不可有缺損,人力開閂柄不 栓 尾 環 握 可有損壞,如有作動不正常,通知保養排 機 柄 派遣砲保士檢修。 構 總

資料來源:筆者拍攝整理製作

三、制退復進原理:

戰車為直射武器,戰鬥射擊要求速度與精度並重,基此,戰車砲彈發射,制退復進機,將砲閂下降完成再裝填備射準備,首發於13秒內完成,後續射彈須於6秒內完成,戰車砲實彈射擊同時完成砲身運動,戰車砲彈以電流起爆,經導爆管雙基發射藥於50毫秒(1秒=1,000毫秒)瞬間全燃,產生高膛壓推進力,砲彈出砲口前,彈底殼由砲閂藉迫緊與重量封閉砲尾環,將高壓、高溫推進氣體向前推送,在砲彈出砲口同時以7-10%推進發射藥氣體,逆向回衝產生空彈殼及砲尾環並壓縮同心彈簧,產生降砲閂、退彈壳及制退,待退出彈殼,同心彈簧復位,砲閂降閂,完成復進,此時制退及復進力量由補充器液壓油吸收與釋放,1次循環約600毫秒(制退與復進時間約各佔50%)內完成,實彈射擊制退復進程序,(如圖2)。

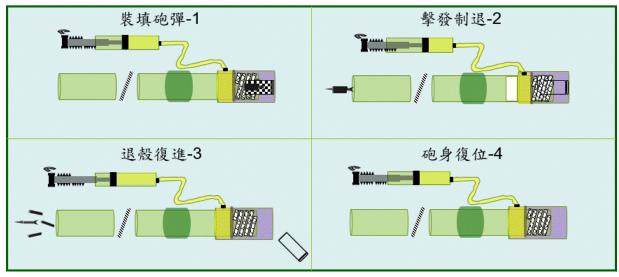


圖 2-實彈射擊制退復進程序

資料來源:筆者整理繪製

⁶ 陸軍司令部·《陸軍主官裝備檢查暨妥善鑑定檢查手冊》·(桃園龍潭:陸軍司令部·中華民國 92 年 09 月 01 日)·頁 24。

四、制退機補充器:

(一)組成:7

補充器本體為長圓筒形構造,橫置於聯合砲架上方,外部前蓋裝設液壓油加注活門,尾端則為觸檢捲簧式油尺,內部由液壓油貯存槽、捲簧活塞及簧式油尺,因液體具不可壓縮性,捲簧活塞隨液壓槽油量多寡,產生前後移動並牽動捲簧油尺,顯示補充器油量狀況,(如圖 3)。

圖 3-制退機補充器

資料來源:筆者拍攝整理製作

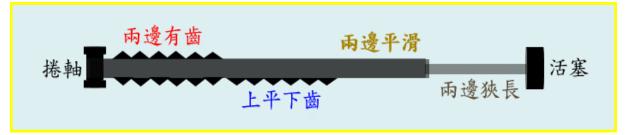
(二)功用:8

- 1.當主砲實彈射擊,約7-10%發射藥燃燒高溫高壓氣體,向後壓縮復進簧,同時將補充器液壓油,注入砲身液壓缸,(如圖2-擊發制退-2),此程序在瞬間會進入(圖2-退殼復進-3),壓縮復進簧快速將砲尾環復位,此時產生強大推擠力量,以液壓油緩衝並吸收衝擊力量,再循液壓油管回注補充器。
- 2.以 M3 泵浦實施砲身運動保養,補充器必須暫停作動,連接砲身液壓缸端液壓油管接頭旋開,封閉油路,換接 M3 泵浦液壓油管。

(三)檢查方式:9

補充器檢查為捲簧油尺前端連接活塞,末端為捲軸隨液壓油量多寡捲收或釋放油尺,油尺區分由活塞端起列為兩邊有齒、上平下齒、兩邊平滑及兩邊狹長等4段,檢查以左手(避免右手可能或進入主砲活動範圍)手觸油齒,並以照明燈具目視確認檢查狀態,(注意事項:油尺須以左手姆食指掐住上下

⁷ 陸軍司令部 · 《陸軍 M60A3 TTS 戰車操作手冊 (第二版)》· (桃園龍潭:陸軍司令部·中華民國 103 年 07 月 31 日) · 頁 2-287。


⁸ 陸軍司令部 · 《陸軍 M60A3 TTS 戰車操作手冊 (第二版)》· (桃園龍潭:陸軍司令部·中華民國 103 年 07 月 31 日) · 頁 2-288。

⁹ 陸軍司令部 · 《陸軍 M60A3 TTS 戰車操作手冊 (第二版)》· (桃園龍潭:陸軍司令部·中華民國 103 年 07 月 31 日) · 頁 2-288。

端往捲軸及活塞方向用力拉動,若可拉出則為油尺斷裂,因檢查未作此項確認導致數起實彈射擊液壓同心彈簧斷裂),噴濺散飛之碎裂金屬與液壓油,傷及砲塔內戰車乘員,檢查時務必完成手觸、目視及拉動 3 項複式檢查,油齒平面展開圖,(如圖 4),油齒檢查狀況及處置,(如表 3)。

圖 4-補充器油齒平面示意

資料來源:筆者整理繪製 表 3- 油齒檢查狀況及處置

檢查狀況	回	示	處 置
兩邊有齒			油量不足,僅可加注 FRH 防燃液壓油,禁用 OHA 液壓油。
上平下齒			液壓油量正常,可實施射擊。
兩邊平滑			液壓油量稍多,少量洩放,但首發射擊後 此狀況為正常,可繼續射擊並檢查,如第 3發之後仍維持此現象,須少量洩放。
兩邊狹長			液壓油量過多,實施洩放。

資料來源:筆者整理製作

參、現行方式-M3 泵浦

砲身運動為維持戰車砲正常制退復進運作之保養勤務,因戰車砲使用液壓同心彈簧制退復進機,卸除補充器液壓油管,接上 M3 泵浦注入液壓油,產生慢速制退與復進作動,使砲身總成組件如軟墊、油封、活塞、活塞桿及液壓油缸等得以潤滑,以防止乾燥鏽蝕及卡死,確保制退復進機於實彈射擊「制退、復進及緩衝」功能正常,戰車砲超過 180 天未進行實彈射擊,配合每半年(S)保養,由保修連前支實施砲身運動與檢查,10如砲兵 155 公厘以上口徑重型曲射火砲屬之氣液壓制退復進機構,加上本軍基地靶場無法射擊,砲身運動必須以實彈射擊方式實施保養,此一保養方式近年已擴大協同參與單位及結合作戰計畫驗證,而非純粹保養射擊。

砲身運動(非使用射擊保養),施作方式依技令區分「液壓千斤頂與 M3 幫浦」兩種方式,¹¹液壓千斤頂方式,技術通報已週知各級保養(修)單位不得再使用,現行需結合每半年(S)保養,實施砲身運動,僅能使用 M3 泵浦方式,其組成與施作程序,列述如後。

一、M3 泵浦組成:

M3 泵浦為手動活塞式往復泵浦,其組成區分為泵浦總成、操作桿連接基座、泵浦操作桿、液壓油加注孔、洩壓閥操作桿及液壓油管等 6 個部分,以木箱箱裝為便於收納,僅將泵浦操作桿取下,餘為單體式整合構件,使用前需裝上操作桿及加注液壓油,其組件及功能,(如表 4)。

表 4-M3 泵浦組成

P:	衣 T-WO 水 用 紅 成				
部件	圖 示	功能			
M3 泵浦		裝置液壓同心彈簧制退復進機之火砲,實 施砲身運動保養時使用。			
泵浦總成		容納泵浦主體及儲存液壓油與連結其他部件。			

¹⁰ TB9-1000-234-30,《後坐機與平衡機之操作》,(桃園龍潭:陸軍總司令部譯印·中華民國 75 年 04 月). 頁 3。

¹¹ TB9-1000-234-30,《後坐機與平衡機之操作》·(桃園龍潭:陸軍總司令部譯印·中華民國 75 年 04 月)· 頁 11。

操作桿連接基座

連接操作桿,對幫浦進行往復式加壓,使液壓油透過高壓軟管送往液壓缸。

液壓油 加注孔

液壓油加注入口,將其儲存於泵浦總成內,加注前先將封口螺栓取下。

洩壓閥 操作桿

啟閉洩壓閥,使液壓油回流泵浦總成內儲 存或輸往制退機液壓缸。

液壓軟管

輸出液壓油以及與砲身制退復進機連接。

資料來源:筆者整理製作

二、施作程序:

使用 M3 泵浦實施砲身運動其程序:按排放補充器液壓油→卸除補充器液壓油管→完成 M3 泵浦整備(含接上操作桿、加注液壓及緊釘封口螺栓)置於砲塔外頂部→關閉洩壓閥→連接泵浦液壓油管至砲身液壓缸接頭→手動往復搖動輸入液壓油使制退復進機緩緩緩後退、檢查有無滲漏及開啟洩壓閥使制退復進機慢慢復進→重複前項動作 3 次(含,以上,視需要增加)→拆卸泵浦及換上補充器液壓油管→取下補充器加注口螺帽→鎖上盘司加油槍將補充器液壓油加注至油齒位於上平下齒適量位置→連接液壓軟管至補充器加注口→再重複 1 次補充器檢查,確認液壓油已加注油尺位於適量位置,完成保養勤務,其程序,(如表 5),此一保養程序必須反覆拆裝補充器與 M3 泵浦液壓油管,且設計上並無關斷閥門設計,液壓油管裝卸過程易導致油品洩漏,FRH液壓油添加防燃劑,具微腐蝕性,若於液壓油管或接頭鬆脫,產生液壓油噴濺,將危及保養人員安全。

表 5-M3 泵浦砲身運動施作程序

程序	工作項目	內容	圖示
1	洩放補充 器液壓油	將補充器液壓油管上端螺帽拆除,以容器盛接流出之液壓油, 直至排空,油齒位於兩邊有齒, 鎖上封閉螺帽。	以 可
2	拆除連接 液壓油管	將油補充器與砲身制退復進機,連結之液壓油管卸除。	
3	完成 M3	(1)組合幫浦操作桿。	
3	泵浦整備	(2)將操作桿扳至關閉,並取下加 注及封口螺栓,完成液壓油加 注,再將兩螺栓鎖緊至定位。	調問位置
4	完成泵浦 液壓油管 連接	(1)手搖泵浦操作桿進行往復式 搖動,直至液壓油從液壓油管 流出(排除油管空氣)。 (2)再將泵浦液壓油管連接至砲 身接點。	
5	泵 浦灌注 液 壓制 退 運縮彈 蟹	繼續以操作桿進行往復式搖動,將泵浦液壓油注入砲身液壓缸,使其緩緩制退,距離須達 13.5 英吋(約 34.2 公分),此程序耗時約需8至10分鐘。	制退距離需達 13.5 英吋

6	砲身總成 滲漏檢查	目視檢視砲身制退機 5 分鐘, ¹² 檢視砲身制退機周圍有無滲漏 油,如有異常滲漏,立即停止保 養勤務,實施檢修。	目視檢查砲身有無洩漏
7	關壓壓慢過減煙回復	保持制退狀態約5分鐘,若無滲漏,將洩壓閥操作桿置於開啟位置,使液壓油回流至泵浦總成內部,此時砲身制退機開始緩緩復進。	開啟位置
8	連續砲身運動	重複程序「5-7」,至少3次(含,以, 13完成砲身運動後,取下液壓油管	
9	復原整備	取下補充器加注口螺帽。	1 順 元 器 · · · · · · · · · · · · · · · · · ·
10	加注補充器液壓油	使用盎司槍對補充器加注液壓油,至液壓油流出後,將液壓油管螺帽回鎖緊定於砲身制退復進機端接頭。	以盘司槍對補充器加油
11	持續加注補充器液	持續以盎司槍對補充器實施加注 液壓油,直至油尺顯示上平下齒,	

 $^{^{12}}$ TM9-2350-48H-34-2 · 《M48H · 105 公厘火砲全履帶戰車砲塔直接支援及一般支援保修技術手冊》 · (台北南港:陸軍後勤司令部頒印·中華民國 82 年 10 月 31 日) · 頁 250 。

¹³ 同註 15。

12	排除制退器內空氣	旋鬆砲身制退機後端螺絲,以盎司槍加注液壓油,直至 砲身制退機後端螺絲完全將氣泡排出,流出液壓油,卸 除盎司槍,立即旋緊螺栓。
13	完成砲身運動	取下盎司槍加注軟管,並將補充器加注口螺帽旋緊,並再次由油齒檢查端由左至右,由上至下,巡檢各部件緊定、滲漏及油量狀況,經檢驗士複驗確認簽章,記載於裝備保養紀錄表及火砲履歷書。

資料來源:筆者整理製作

三、小結:

現行以 M3 泵浦實施砲身運動保養勤務,存在泵浦老舊(1960 年代產品)程序繁瑣,耗時冗長,砲塔室內空間狹小,機工具操作不便及體力負荷較大等問題,另因操作者要經常須反覆拆、裝油管填充液壓油,過程中容易使FRH 液壓油外漏,若不甚吸入呼吸道或噴濺進入眼睛將傷害保養人員,須立即送醫;然未獲新式砲身運動保養工具與工法之前,就避免反覆拆卸油管部分,可使用管線夾及同尺寸密封螺帽-附墊圈,(如圖 5),拆卸補充器與制退復進連結液壓油管,先行封閉油管,完成保養可省去補充器再加油工項。

圖 5-管線夾及密封螺帽

資料來源:筆者拍攝整理製作

次世代戰車砲制退復進方式,由傳統液壓同心彈簧式轉為氣液壓長復進式,可縮短制退復進距離,再加裝砲口制退器,降低50-65%後坐力,膛壓不減可發射高速穿甲動能彈,如以國造 XT-112,105 公厘旋膛戰車砲,射擊 DM-63 尾翼穩定脫殼穿甲彈(APFSDS),與 M68A1 兩者相較初速近乎相等,而前者射擊時穩定性較高,精度相對提高,義大利半人馬2型及美軍M1E3 均採用類 XT-112 戰車砲制退復進機構,惟口徑提升至120 公厘滑膛戰車砲,因應未來戰車砲構型改變,提前研發適用之砲身運動機具與工法,為未雨綢繆之計。

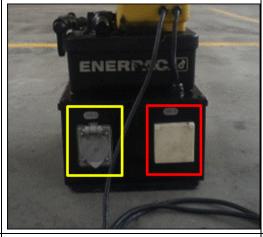
肆、電動泵浦連桿系統

鑒於現行 M3 泵浦施作方式,已不符部隊保養實需,在協力廠商支援下研發新式機具,暫稱「電動泵浦連桿系統」,將原砲身運動採戰車砲塔內替置式液壓系統,轉換為車外以液壓、夾具及鋼條(環)等部件組成砲身運動工具,保養施作直接向內推擠戰車砲砲管,產生制退與復進作動,不需反覆拆裝補充器與制退復進機油管,亦毋須再補充液壓油與排除油管空氣,工項相對簡化,可保持原系統正常運作,亦可避免拆裝過程中髒污、粉塵及水氣侵入油管及儲存缸,造成 FRH液壓油品質劣化,此一系統處於研製階段,經多次模擬與圖說研討,使用現貨市場可獲零組件,完成先導構型,初步先於 M60A3 及 CM-11 兩型戰車試用,後續於輪型戰車(使用 XT-112 戰車砲)整體後勤文件,將其納為驗測項目,如獲成功將可作為通用型砲身運動保養工具,本系統已列入小型軍品研發項目,汲取先導型試用經驗,以精進系統構件,納入二級成套工具,隨裝撥發至戰車(聯兵)及編配戰車之機步營與守備大隊二級廠使用,以下謹就系統組成、工作原理及施作程序,分述如後。

一、系統整合組件:

砲身運動泵浦系統組件區分為電動液壓泵浦、液壓伸縮缸、砲管夾箍及連動鋼條、牽引調整鋼條、D型環及液壓油管等 6 項組件,其組成及功用,(如表 6)。

表 6-電動泵浦連桿系統組件及功能


名 稱	圖	組成及功能
系統組件		區分為電動液壓泵浦、液壓伸縮缸、砲管夾箍及連動鋼條、 牽引調整鋼條、D型扣環及液 壓油管等6項。
電動液壓泵浦		1.組成: 計有電源開關、控制握把、 洩壓閥操作桿、油管快拆接 頭、液壓油加注孔與電源插 座等 6 項。 2.功用: 為輸出液壓油。

	電源開關	電動液壓泵浦電源電源開關。
	控制握把	電動液壓泵液壓油開關。
電動液壓泵浦	洩壓閥操作桿	液壓油加、洩壓閥開關,加壓 液壓油注入伸縮作動缸及葉 放液壓油回流至電動液壓泵 浦內部儲存。
壓泵浦	油管快拆接頭	快速拆卸接頭,連接液壓油軟管。
	液壓油加注孔	液壓油加注口,使用前取下封口螺絲,以漏斗盛接液壓油便於注入電動液壓泵浦。

電動液壓泵浦

電源插座

可選用市電家用 110 (左,黃) 或工業用 220(右,紅)伏特兩種 電源。

液壓伸縮缸

驅動砲身運動制退與復進主 要組件。

砲管夾箍及連動鋼條

將液壓伸縮缸固定於砲膛排 煙室上方,並以連動鋼條結 合,漸具固定與伸縮關節雙重 功能。

牽引調整鋼條

調整張力至適當緊度,透過 D 型環連接砲盾探照燈三角架 與液壓伸縮缸,同步牽砲身動 制退機作動。

D 型環

同上,搭配牽引調整鋼條,連 結砲盾探照燈三角架及液壓 伸縮缸。 液壓軟管

連接電動液壓泵浦與液壓伸縮缸。

資料來源:筆者拍攝整理製作

二、工作原理:

砲身運動在使久未實施實彈射擊,處於長期封閉狀態,砲身制退復進機產生復進簧壓縮及釋放,並帶動液壓油緩衝作用,日常保養勤務,雖可藉由補充器及砲身機構件執行目視或儀具量測檢查,但內部則難窺全豹,而前述「頂砲法及千斤頂式」潛存維保操作危安性,均明令禁止使用,M3泵浦工序繁瑣,且費時、費力已不符實需,亟待獲得新式保養工具。

研製砲身運動電動泵浦連桿系統,其初步構想為「不拆卸砲身機構組件,可於砲塔室外施作及使用動力替代人力」等 3 個主要研設方向,參考頂砲法與千斤頂式擠拉與液壓活塞壓縮制退作動方式,以安全可靠、電力驅動及液壓推進與現貨市場可獲組件,組成砲身運動新式保養工具-電動泵浦連桿系統,其工作原理,(如圖 5)。

圖 5-砲身運動泵浦系統工作原理

資料來源:筆者拍攝整理製作

三、施作程序:

砲身運動泵浦系統由電動液壓泵浦(置於地面或工作平台),以液壓伸縮 缸連結探照燈架及砲管夾箍,兩段可調式鋼條連桿,啟動液壓泵浦將液壓由 注入位於砲膛排煙室上方液壓伸縮缸,產生推送力量讓制退復進簧壓縮,其 施作程序為組件連結、注油制退、回油復進、重複程序及完工復原等 4 項程 序。

(一)組件連結:(如圖 6)

- 1.將砲管夾箍固定於前均溫襯套末端拆卸環凸沿,並與液壓伸縮缸完成連接桿結合-①。
- 2. 將 D 型環及牽引調整鋼條與作動缸總成結合-②。
- 3.將牽引調整鋼條及 D 型環與探照燈架結合-(③)。
- 4.電動液壓泵浦整備
 - (1)洩壓閥操作桿置於開啟,並取下電動幫浦總成封口螺絲,完成液壓油加注 後,將封口螺絲緊定。
 - (2)將液壓油管接頭一端,連接至電動液壓泵浦快拆接座。
 - (3)電源接座接上市電 110 或 220 伏特(視保養場地可獲電源)。
 - (4)開啟電動液壓幫浦電源,使用握把控制液壓油流量,先排除管內空氣,按 壓握把至液壓油從油管末端流出(注意盛接,避免噴濺於地面,液壓油使 用礦物油或 DOT 系列,不得使用 FRH),放鬆握把開關。
 - (5)將另一端液壓油管接頭,連接至液壓伸縮缸快拆接座-④。

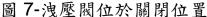
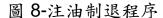


圖 6-電動液壓泵浦連桿系統組件連結

資料來源:筆者拍攝整理製作

5. 關閉洩壓閥:

控制液壓油加注(開啟-扳至9點鐘位置)及釋放回流(關閉-扳至2點鐘位置),加注前扳至關閉位置,(如圖7)。



資料來源:筆者拍攝整理製作

(二)注油制退:(如圖 8)

- 1.以握把控制電動液壓泵浦輸送液壓油,液壓伸縮缸向後緩緩移動,帶動砲身制退-①。
- 2.當 D 型環穿銷移動對正「▲-STOP」標記處-②,即停止加注液壓油,砲塔室內乘員觀察制退距離狀況達 34.2 公分,並以無線電回報停止加注液壓油。
- 3.砲塔室內乘員目視檢視砲身制退機 5 分鐘,查看制退復進機有無滲、漏油及 異常現象,如發現前述狀況,立即停止保養,實施故障檢修。

資料來源:筆者拍攝整理製作

(三)回油復進:

將洩壓閥扳桿轉至開啟位置,(如圖 9),並關閉電源,液壓油當推力停止, 則逆向回流至電動液壓泵浦儲存槽,此時液壓伸縮缸與砲身將慢慢復進,砲 塔內乘員觀察砲身復進狀況,如發現異常,通知車外人員停止操作。

圖 9-洩壓閥位於開啟位置

資料來源:筆者拍攝整理製作

(四)重複程序:

比照 M3 泵浦保養施作方式,重複注油制退與回油復進程序 3 次(含,以上),電動泵浦連桿系統重複(二)至(三)程序 3 次(含,以上),完成砲身運動保養,複式檢查砲管及砲架總成,「注意事項:因此工法採外力操作,恐造成聯合砲架位移,完工後須做檢查比對,確保砲架處於正常狀態。」,並以象限儀量測水平及高低偏移量,如超出技令規定範圍,則由保修連進行砲架調校。

(五)完工復原:

- 1.從電動液壓幫浦取下液壓油管接頭。
- 2. 將探照燈座連結之 D 型環與牽引調整鋼條分解取下。
- 3.同上方式,取下伸縮液壓缸連結之牽引調整鋼條與 D 型環。
- 4.旋鬆砲管夾箱固定螺桿,取下伸縮液壓缸。
- 5.解脫砲管夾箱。
- 6. 洩除電動泵浦內液壓油。

四、小結:

電動泵浦連桿式砲身運動保養工具,經先導研製及測試,為適用、安全及節約工時與減輕負荷之新式系統,保養毋須於砲塔室內狹窄空間,反覆拆裝砲身與補充器液壓油管,注油方式由手搖活塞,轉為電力驅動,作業地點轉移置到塔室外,空間寬裕且通風性佳,惟架設於砲管之組件,必須以安全梯作業,工安務依勞動安全規定穿著安全帶、安全鞋、絕緣手套、護目鏡與安全盔,確維作業人員安全;執行砲身運動前,必續確認砲身機件與液壓油狀況處於正常狀況,若未行保養前檢查確認,如液壓油不足,嚴重將導致制退復簧斷裂,採用本砲身運動保養方式,其特色為制退復進力量,來自於砲塔室外砲盾及砲管架設之液壓與連桿系統,保養前檢查務必落實執行並完成複式檢驗簽證,如同實彈射擊前若檢查不確實,將導致制退復進簧斷裂,成複式檢驗簽證,如同實彈射擊前若檢查不確實,將導致制退復進簧斷裂,

造成人員及裝備損傷,電動泵浦連桿系統施作之砲身運動保養,全程由電動液壓泵浦注油至伸縮液壓缸,帶動連桿牽引砲身制退,保養操作人員僅需電控操作與目視檢查,降低保養人員體力負荷, 1次保養工時僅需2至3分鐘,並可避免FRH液壓油外漏風險,維護人裝安全。

伍、效能分析

隨著石化資源日益枯竭,機械動力油內燃機逐漸轉為電力或油電混合驅動, 現已成功運用於汽(機)車,過去戰車保養工具(隨車或各級成套)多以人工手動為 主,主要考量於戰鬥狀況下,無法隨手可得電(動)力,驅動氣動式工具,但手動 式工具如同戰車之管狀鏡與人力方向及高低握把,在無電力或數位化射控系統 失效狀況下,仍可以維持作戰能力,經前述現行方式與新式研發兩種砲身運動保 養工具,從其施作方式可以看出傳統手動與改良電動的差別,改良電動泵浦連桿 式為未來砲身運動保養工具主流,而傳統手動仍可作為備援工具,不可偏廢,因 此無從比較其優劣,以下謹就系統整合、動力來源、作業空間、作業人力、工作 時間、體力負荷及人員安全等面向進行使用效能分析,(如表 6)。

表 6-砲身運動現行與研發方式效能分析

	衣 0-砲身連動現行與研	放力
名稱 項目	M3 泵浦	電動泵浦連桿系統
系統整合	單體整合構件,構造簡單。	區分為電動液壓泵浦、液壓伸縮 缸、砲管夾箍及連動鋼條、牽引 調整鋼條、D型環及液壓油管等 6項,混合系統,構造複雜。
動力來源	(1)液壓油驅動-人力手搖。 (2)砲身制退復進-直接液壓式。	(1)液壓油驅動-電動泵浦抽取。(2)砲身制退復進-間接液壓與連桿複合驅動式。(3)戰時電力供應取得較困難。
作業空間	M3 泵浦置於砲塔頂部,餘工項 餘砲塔室內施作,空間狹窄且 就手不便。	(1)全系統於砲塔室外,利用探照 燈架及砲管架設液壓與機械 連桿。(2)開放空間就手便利,惟伸縮液 壓缸與砲管夾箍架設作業,需 登高設備支援。
作業人力	兩員,砲塔室內(外)各1員。	3 員,砲塔室內(外)1、(2)員。

工作時間	時約8至10分鐘,3次循環約	由電動泵浦操作,施作1次需時約2至3分鐘,3次循環約6至9分鐘。
體力負荷	油,隨注入油量增加,操作者必	液壓油由電動幫浦抽取,加注量 僅需注意抵達停止標誌或制退距 離已達 34.2 公分,關閉注油開 關,無體力負荷之虞。
人身安全	施作程序需反覆拆、裝砲身制 退復進機與補充器液壓油具微腐蝕性 且 FRH 液壓油具微腐蝕性 对此大 實麗進入耳、鼻、眼及暴露 時 實際進入耳、鼻、眼及暴露 場 接 上 對 眼 大 其 對 眼 球 傷 害 長 大 其 数 以 是 人 是 人 是 人 是 人 是 人 是 人 是 人 是 人 是 人 是	穿者護具,且增派1位防護貝。 (2)連桿組件雖為鋼條式,若超出 拉撐應力會斷裂彈出,基此, 在完成組件安裝,砲盾至砲膛 排煙室半徑2公尺內雲保持人
綜合分析	配賦工具,輕便便於攜行,可於野戰場環境下,以人力及液壓施作,具備全時與便利性,在新式工具獲得後,不得以老舊及不適用軍品汰除,需保留作為砲身運動備援工具。	(1)未經小型軍品研發測試,初步 研發成果,僅能做為後續發展 研改參據。 (2)鋼製緊定興條為定更件,必須 律定使用次數後更換,因類此 工具斷裂剪力大,不慎將 近人員及裝備傷亡毀損。 (3)採用間接式液壓連桿,於砲塔 室外執行砲身運動,納入前述測 及砲架結構影響,納入前述測

資料來源:作者自行繪製

本軍裝甲部隊各型現役戰車,因訓(靶)場流路容量及駐地位置,駐地期間 除部分單位可結合戰備操演,實施不定期實彈射擊,餘均須於基地輪訓才能排 定戰車砲實彈射擊課目,在基地訓練間隔必須實施砲身運動,讓超過 180 天未進行實彈射擊戰車砲,以制式工具 M3 泵浦灌注液壓油,以壓縮制退復進簧,以液壓油潤滑保養封閉砲身總成各部活動機件。

2022年「俄烏戰爭」爆發迄今,陸續新式戰具與戰法,都獲致局部成功,也牽動各國軍備設計方向,其中以無人機作戰效能最受推崇,但經 3 年半作戰各國也修訂第 4 代主力戰車設計方向,將以往偏重於保護水平方向攻擊的主動防護系統(Active Protection System,簡稱: APS),增加垂直頂攻防護系統,美軍 M1E3 大幅度革命性構改,除增設水平及垂直 APS,並將使用近 40 年 M256-120 公厘/L44 滑膛戰車砲,更改為 XM360-120 公厘/L52 滑膛戰車砲,搭配制退復進系統為長復進氣液壓複合式,取代傳統液壓同心彈簧,本軍輪型戰車亦採用相似系統,如何實施砲身運動保養,以目前研發中之電動泵浦連桿式較為適用,這部份俟通過小型軍品研發測試後,併輪型戰車整體後勤初期作戰測評加以驗證。

陸、結論

戰車保養勤務為確保裝備妥善之基石,不論定期預防或日常與使用前、中、後保養,落實按圖索驥式逐項細心保養,本軍戰鬥車輛特色「車齡高、里程短」而過去市售汽車業者以使用 15 年(375,000 公里,25,000 公里/年)作為設計標準,但先決條件為「不超限操作、定期作保養、按期換定更及聞聽看異常」,但電動車食用普及商業化及裝設可觀的數位及光電主要與輔助系統,相較於機械內燃機驅動汽車,其壽期取決於「光電、數位、電池及馬達」的壽命與電子主(被)動元件的功能衰退老化速度。同樣軍事裝備的全壽期管理,與民間汽車要求保養重點是相同,但不同的是全壽期本軍不定期更換駕駛人員或進行組織調整,車輛併同移交至另一單位,戰鬥車輛為車輛加上武器及指管(Command & Control,簡稱: C2)系統,新式戰車「光電、數位及模組化」,因應加保養增檢測電腦,如未搭配人工智慧(Artificial Intelligence,簡稱: AI)機器人(手臂),只能告訴您哪裡出了問題,而無法直接將之解決,次世代戰車砲塔維保工作,建構在事半功倍及減少對日益短缺人力資源依賴之上,藉由電動泵浦連桿雖僅解決一半問題,未來在自動化與 AI 加持下,縮短工時,簡化施作程序並避免工安問題,人力只需擔任維保控制與管理者。

本軍除 M1A2T 戰車為新式裝備,餘現役戰車均以超逾使用壽限,而外軍為避免此一狀況,採用適用裝備構型管理計畫,以 M1 艾布蘭戰車為例,從 1982 年 M1A1-120 滑膛砲至 2022 年 M1E3,40 年啟動 7 次主要構型改變(不含局部改裝與非量產型),M1E3 之前構改保留底盤與砲塔外殼(早期型會更換複合裝甲板)及發動機整新,但 M1E3 則僅保留底盤外殼,其他重新設計,動力採用油電混合,以符合未來作戰實需,進入數位光電化時代,軟、硬體進步更新速度飛快如同您行動電話,每隔 3-5 年會因電池衰退、主被動元件老化與微型化積體電路

等問題,當您送修時通常通信商家,會善意告知您換新的比較划算,戰車會壞的不是機械件而是光電及數位化射控與觀瞄系統,不要再作浪費資源且無效益翻修,檢討構型管理計畫針對適用裝備作長遠性構改整備,以保持「量適質精」高戰力戰車部隊。

参考文獻

- 1.陸軍司令部,《陸軍 CM11/12 戰車操作手冊 (第二版)》,(桃園龍潭:陸軍司令部,中華民國 103 年 07 月 31 日)。
- 2.陸軍司令部,《陸軍 M60A3 TTS 戰車操作手冊 (第二版)》,(桃園龍潭:陸軍司令部,中華民國 103 年 07 月 31 日)。
- 3.陸軍司令部,《陸軍戰車射擊教範》,(桃園龍潭:陸軍司令部,中華民國 107 年 07 月 26 日)。
- 4.TM9-2350-48H-10,《M48H、105公厘火砲全履帶戰車操作手冊》,(桃園龍潭:陸軍司令部計畫署,中華民國81年06月30日)。
- 5.TM9-2350-48H-20-2,《M48H、105公厘火砲全履帶戰車砲塔單位保養手冊》, (台北南港:陸軍後勤司令部保修署譯印,中華民國83年06月15日)。
- 6.TM9-2350-253-10,《105 公厘火砲全履帶戰車及戰車熱源成像儀瞄準具操作手冊》,(台北南港:陸軍後勤司令部保修署譯印,中華民國 85 年 12 月 30 日)。
- 7.TM9-2350-253-20-2-1,《105公厘火砲全履帶戰車砲塔單位保養手冊(上)》, (台北南港:陸軍後勤司令部保修署譯印,中華民國84年06月15日)。
- 8.TM9-2350-253-20-2-2,《105 公厘火砲全履帶戰車砲塔單位保養手冊(下)》, (台北南港:陸軍後勤司令部保修署譯印,中華民國 85 年 02 月 10 日)。
- 9.陸軍司令部、《連主官裝備檢查暨妥善鑑定檢查手冊》,陸軍總司令部頒布、(桃園龍潭:陸軍司令部,中華民國92年09月01日)。

筆者簡介

姓名:江志勝

級職:士官長教官

學歷: 裝校領導士官班 91(24)期、裝校士官高級班 95(2)期、陸軍專科學校士

官長正規班34期。

經歷:班長、助教、現任裝甲兵訓練指揮部兵器組士官長教官。

電子信箱:

軍網:army099014612@army.mil.tw

民網:solution@ms63.hinet.net