精進平均彈著點及高炸檢驗射擊作業之研究

作者:朱慶貴

提要

- 一、檢驗射擊為修正量求取之方法,其包含精密檢驗與平均彈著點及高炸檢驗,由於在作戰戰況、檢驗目標區地形與射擊技術上的限制因素,使得平均彈著點及高炸檢驗與精密檢驗,都有其限制因素存在,因此如何配合現有觀測裝備及射擊指揮作業器材,精進以往平均彈著點及高炸檢驗射擊法。
- 二、台澎防衛作戰在地狹人綢的地理環境下,砲兵火力支援射擊以對海射擊為 主,然獨立明顯檢驗點無法選定,海岸線綿長通視觀測所開設不易,審慎 考量檢驗射擊方法視為必要,而實施平均彈著點及高炸檢驗射擊,以防衛 作戰地理特性檢驗射擊求取修正量為較佳之方法。
- 三、平高點檢驗射擊係以同一射擊諸元發射一群射彈,最初火砲射擊所裝定之射擊諸元即為決定諸元,爾後由觀測官觀測每發射彈,將觀彈諸元回報予射擊指揮所計算平均彈著點,並量取圖上諸元,與所選定之預期彈著點相互比較,其差值即為修正量,可同時求取方向、距離及時間三種修正量。
- 四、防衛作戰中在有限檢驗射擊實施之狀況下,平時運用平高點檢驗射擊求得修 正量,方可達成砲兵火力支援任務,精準、快速、有效之火力支援任務。 關鍵詞:有效射彈、交會觀測、圖解法。

前言

戰場狀況瞬息萬變,戰機稍縱即逝,由以砲兵射擊為然,而砲兵為求能準確命中目標,對目標實施不經試射逕行效力射,除了需要精確的測地成果、良好射擊準備外,更要有精確的修正量,俾應用於爾後射擊,檢驗射擊為修正量求取之方法,其包含精密檢驗與平均彈著點及高炸檢驗,由於在作戰戰況、檢驗目標區地形與射擊技術上的限制因素,使得平均彈著點及高炸檢驗與精密檢驗,都有其限制因素存在,因此如何配合現有觀測裝備及射擊指揮作業器材,精進以往平均彈著點及高炸檢驗射擊法,為本文研究之目的,有利爾後砲兵檢驗射擊法再精進、射擊效果更佳。

平高點檢驗射擊重要性

台澎防衛作戰在地狹人綢的地理環境下,砲兵火力支援射擊以對海射擊為 主,然獨立明顯檢驗點無法選定,海岸線綿長通視觀測所開設不易,審慎考量檢 驗射擊方法視為必要。通常求取修正量之方法係對檢驗點行精密檢驗,即以正常

觀測射擊方法及射擊指揮所作業程序,導射彈使其平均彈著點通過檢驗點。但常受地形之限制,如在夜間、海面、海灘之地形時,難選擇一獨立明顯之檢驗點。 1故為克服上述之限制,即可實施平均彈著點及高炸檢驗射擊,以防衛作戰地理特性檢驗射擊求取修正量最佳之方法。

檢驗射擊問題之探討

平高點檢驗射擊係以同一射擊諸元發射一群射彈,最初火砲射擊所裝定之 射擊諸元即為決定諸元,爾後由觀測官觀測每發射彈,將觀彈諸元回報予射擊指 揮所計算平均彈著點,並量取圖上諸元,與所選定之預期彈著點相互比較,其差 值即為修正量,可同時求取方向、距離及時間三種修正量,后述針對現行平高點 檢驗射擊探討其問題:

一、有效射彈求取問題

平高點檢驗射擊係以同一射擊諸元,取得 6 發有效射彈平均彈著點位置, 得修正量之檢驗射擊,其精神在求得射彈散布的平均值²。因此,若出現任 1 發 無效彈,將影響修正量的可靠度,然判定方式卻從無具體標準可言。

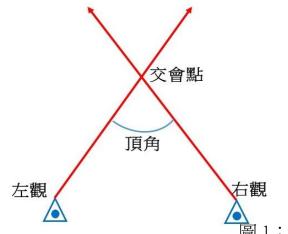
二、交會觀測問題

平高點檢驗射擊,是以兩觀測所行前方交會測報彈著點,以取得平均彈著點 運用三角函數原理算得圖上諸元,再與射擊決定諸元比較,求得修正量;由於適 當之觀測所位置選擇不易,連絡、協調困難及觀測交會角度避免誤觀測,故觀測 所開設須注意下列事項:

- (一)為使交會觀測之精度良好,各觀目線之交會角度不得小於 150 密位以內,最大不宜超過 3050 密位,適宜之頂角範圍 300~2900 密位,其交會頂角為 1067 密位精度尤佳³,參閱交會觀測頂角圖(如圖 1)。
 - (二)綿密協調:各觀測所均應正確辨認,並測定共同之目標或彈著點。
 - (三)迅速觀測:必須於射彈爆炸之瞬間,迅速觀測彈著,確實看讀分劃。
 - (四)器材校正:雷觀機磁針偏差必須校正,並注意消除器材之空迴。

三、海面及夜暗觀測問題

- (一)海面觀測問題:強化雷觀機雷射標定作業,由於雷射觀測機易受水氣影響,因此在雲霧濃度較高之環境下作業時,測報方位角易誤判與測距功能常未能發揮效用,故特應注意雷射之強度可大幅穿透水氣、煙幕為宜。
 - (二)夜暗觀測問題:平均彈著及高炸點檢驗,通常在精密檢驗無法實施狀況


¹ 陸軍野戰砲兵射擊指揮教範(第三版),民國 103 年 10 月 30 日頁 5-67。

² 朱瓊濤「野戰砲兵射擊法之探討-有無效彈判定」台南,陸軍砲兵訓練指揮部,民國 100 年 10 月 1 日頁 4。

³ 內文數據依據美軍 FM6-40 野戰砲兵射擊教範,華盛頓特區:美軍,西元 1974 年 6 月 1 日,頁 10-17。

下,求取檢驗射擊修正量之方法,然而在夜暗狀態下行交會觀測,亦造成兩觀測所無法精確看到共同彈著點及夜暗標定彈著點之誤差,使得檢驗計算修正量誤差相對變大。

交會觀測頂角運用範圍

不得小於角度:150密位

最大不宜超過角度:3050密位

適官頂角範圍300~2900密位

最佳頂角角度:1067密位

圖 1:交會觀測頂角圖

參考資料: 美軍 FM6-40 砲兵野戰射擊手則(第10-7節), 頁 10-17。

四、檢驗射擊計算作業問題

- (一)為使兩觀測所觀測射彈容易,高炸檢驗須增加高低角以提高炸點,估計標高易計算錯誤。
- (二)射擊時所使用之諸元即為決定諸元,圖上諸元須經三角函數原理,計算 頂點座標,定圖後量得圖上諸元,計算步驟繁複,無法精準求算高炸點檢驗決定 時間。
 - (三)對數表查閱不熟練時,易計算錯誤。
 - (四)求取平均彈著點座標 DX 橫座標、DY 縱座標正負值易判定錯誤。
 - (五)射表計算尺裝訂值之距離及決定方向未實施陣地中心修正。

五、單一觀測平高檢驗限制多

- (一)觀測官需配賦雷射觀測機,如操作中雷觀機損壞此法亦不能實施。
- (二)觀測人員觀彈方式以雷觀機標定彈著點,在夜間標定實際彈著點誤差大,因此不宜夜間觀測。
- (三)實施高炸檢驗時,雷觀機標定彈著點,受爆炸火光瞬間時間短暫,標定作業困難,不宜實施高炸點檢驗。
- 六、砲兵檢驗射擊修正量求取方法有三種,其方法各有其限制因素與適用範圍 分析如表 **1**:

表 1:

檢驗射擊修正量分析表									
區分		精密檢驗	平高檢驗	AFCS檢驗					
目標限制		須獨立明 顯檢驗點	無須獨立明 顯檢驗點	無須獨立 明顯檢驗 點					
時間限制		耗時/受夜 暗影響	省時/不受 夜暗影響	省時/受夜 暗影響					
彈藥消耗		無一定射 撃發數	7發	5發					
限	測地 成果	- 1		需有測地 成果					
制	觀測所 開設	單一觀測 所	單、雙觀測 所	單一觀測 所					
因素	雷觀機 使用	非必須使 用	不一定使用	必須使用					
遙	i用範圍	瞬發檢驗 空炸檢驗 不同批號 檢驗	瞬發檢驗 空炸檢驗 不同批號檢 驗	瞬發檢驗 不同批號 檢驗					
求	方向	有	有	有					
取修	距離	有	有	有					
正量	時間	有	有	無					

資料來源:李柚科「砲兵修正量運用之研析」砲兵學術季刊 191 期 12 月第 4 季,頁 26。

提升檢驗射擊之方法

一、提升有效彈可靠度判定

平高點檢驗其精神在求得射彈正常散佈下的平均值,藉以獲取修正量。因此,若出現任一發無效彈(超過方向、距離、炸高 8 倍公算偏差)4,將影響修正量的可靠度(如圖 2),堅持補完 6 發有效射彈亦耗費時間與彈藥,不符作戰實需。在合理、有效的射彈「樣本」數下,取得可靠之修正量,當檢驗射擊所使用的有效射彈少於建議值 6 發時,所求得修正量的正確度亦隨之降低5(如表 2 所示)。同一火砲、彈藥批號、射擊諸元,發射 6 發射彈的平均彈著點和發射無限多發(約 100 發)的平均彈著點相比較,兩點間的誤差不超過一個公算偏差的機率是 90%,不超過兩個公算偏差的機率則是 99%,隨著發射彈數的增加,所求得的平均彈著點也越接近真正的彈著點,因此檢驗射擊盡可能以 6 發有效射彈計算修正量。

二、善用 TS-102 式多功能雷觀機(如圖 3)

現行平高檢驗射擊,觀測人員觀彈方式,是以測報彈著爆炸點中心,但因射 彈觀測不精確及觀測器材問題,並未能精確測報實際炸點位置,因此測報彈 著諸元誤差大,影響修正量求取精準度,而 TS-102 式多功能雷觀機,具有熱顯

⁴ 同註釋 1,頁 5-70。

 $^{^{5}}$ 美軍 FM6-40 野戰砲兵射擊教範,華盛頓特區:美軍,西元 1974 年 6 月 1 日,頁 10-5。

像儀,可於日、夜間精確標示彈著點⁶,對於修正量求取精度必能精進。

平高點檢驗不正常散布示意圖

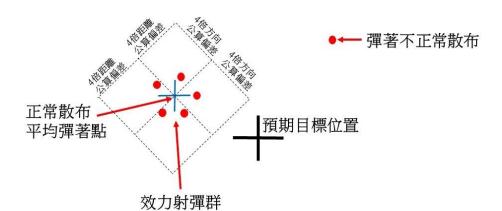


圖 2:平均彈著點檢驗出現不正常散布示意圖

資料來源:作者自繪

表 2:

射擊發數	1	2	3	4	5	6
一個公算偏差(PBE)的 機率%	50%	66%	76%	82%	87%	90%
二個公算偏差(PBE)的 機率%	82%	94%	98%	99%	99%	99%

參考資料:美軍 FM6-40 野戰砲兵射擊教範(第 10-7 節)頁 10-5

圖三: TS-102 式多功能雷觀機

資料來源: TS-102 式多功能雷觀機操作手冊(108 年版),第一部分,頁1。

⁶ 陸軍司令部「TS-102 式多功能雷觀機操作手冊」,民國 108 年 11 月 25 日,頁 1-1。

三、參考美軍平高點檢驗射擊法

(一)作業方式:

美軍 FM6-40 野戰砲兵射擊手則第 10 章第 3 節平高點檢驗射擊,是以左、右觀測員觀彈,取得有效射彈之平均方位角、高低角,於射擊圖上畫出交會點,量取交會點之座標(如圖 4),運用高低角計算標高,接續量取圖上諸元,再依射擊諸元為決定諸元減圖上諸元求得修正量。

方格紙 交會點量取座標及圖上諸元 平均觀彈 方位角 左觀 102

美軍平高點檢驗射擊圖解

圖 **4**:美軍平高點檢驗射擊圖解示意圖 資料來源:作者自繪

(二)表格計算:

範例:

105 榴砲營,以第二連第一排,使用V號裝藥、A批號,對檢驗點座標 28141-44824,標高 165 公尺地區,實施平均彈著點檢驗,以求取修正量,基 準砲位置於陣地中心。

射擊諸元: #2、H、A、V、瞬發信管、#2 一發待令放、方向修正量 0、方向 2600、 高低 324、仰度 347。

以平均方位角、高低角,於射擊圖上描繪出交會點,量得 CI 點座標 28360-44720標高 281,接續量得第二連一排至 CI 點圖上方向 2576,距離 5220,高低+38;計算修正量:以射擊諸元為決定諸元減圖上諸元。

決定仰度=射角-高低=(347+24)-38=333

向修正量=決定方向-圖上方向=2600-2576=+24

射表計算尺裝定值: V 裝藥 A 批號, 距離 5220 仰度 333

⁷ 同註釋 5, 頁 10-16

計算表格如表 3:

表 3: 平均彈著點及高炸點檢驗計算表

組長命令 第 2.1 連,榴彈,A批號,V裝藥,瞬發信管,待令放,檢驗點估 H165	20 1.4										
	,準半檢										
定向諸元 觀平檢:左觀方位角 2126 ϵ +26 測 ϵ ,右觀方位角 1434 ϵ +30 準備好報告											
射撃□											
觀 測 結 果基 礎 諸 元	元 求										
發數 左觀方位角 又觀方位角 ε											
1 2185 1445 +55 左											
2 2125 1481 +47 由 觀測所計算	由 觀測所計算座標 右 基線(右至左)										
3 2123 1463 +39 /											
5 2120 1466 +40 左 右 基線長	_m										
6 2106 1482 +46 求左邊用右											
7 2123 1485 +45 左觀方位角 求 觀方	求 觀方位角										
8 右觀方位角 求右邊用左											
9 — — 基線	方位角										
10 頂角 一)											
平均 2117 1476 +43 (天代) 1877() 2100) 對 角											
	□ 6400)										
x		,									
全 Ci CologSin 頂用+	流計 昇州1	子									
NO (小屋) III YG											
計 Log D Log D Log D											
見 Log Sin + Log Cos + LogTanε +											
E Log Dx Log Dy Log Dh Ho											
標 Dx Dy Dh											
X 28365 Y 44716 H	281										
量得第 2.1 連至 之圖上諸元:方向 2576 距離 5220 高低(算得) +38	1										
决定仰度=射角(射擊所用者)-圖上高低= (347+24)-38=333											
射表計算尺裝定值:V裝藥A批號,距離 5220 仰度 333 時間											
方向修正量=決定方向(射擊方向修正間隔)—圖上方向=2600-2576=+24											

資料來源: 作者自製

四、提升高炸點檢驗決定時間求取

往往高炸點檢驗射擊決定時間求取,是依射擊時間為決定時間,並未精確 求算決定時間,依據美軍 1989 年(野戰砲兵射擊指揮訓練通報 TC6-40),當標

隆起兵事刊 ARMY ARTILLERY QUARTERLY

高差大於 100 公尺時,因附加高低角較小,以至於對射角、信管時間影響較小,若忽略較大附加高低角之影響,可使信管時間發生少量之誤差⁸。

計算公式:

- (一)高低-高低角=附加高低角
- (二)附加高低角+決定仰度相應時間=相應時間
- (三)射擊時間-相應時間=時間修正量
- (四)決定仰度相應時間+時間修正量=決定時間。 範例:

105 榴砲營,以第二連第一排陣地標高 135 公尺,使用 V 號裝藥、B 批號,對座標 28100-44712,標高 240 公尺地區,實施高炸檢驗,以求取修正量。其射擊諸元:#2、H、B、V、空炸信管、#2 一發待令放、方向修正量 0、方向 2550、高低 336、時間 19.4、仰度 326。經高炸檢驗射擊,求得 HB 點座標,量得第二連一排至高炸點圖上方向 2561,距離 5000,高低+26。計算決定時間如下:

- 1.高低=+26(運用高低計算尺推得)
- 2.高低角=+21(運用高低計算尺推得)
- 3.附加高低角=+26-(21)=+5
- 4.决定仰度=362(决定射角 326+36)-26=336
- 5. 決定仰度+附加高低角=336+5=341
- 6.341 所相應時間=20.2
- 7.決定仰度 336 相應時間=19.9
- 8.時間總修正量=射擊時間 19.4-(341 仰度相應時間)20.2=-0.8
- 9.正確決定時間=19.9+(-0.8)=19.1

五、時間急迫狀況下,圖解法求取修正量

係以同一諸元射擊,取得 6 發有效射彈,以一群有效彈著點取平均幾何中心點定出座標,以此座標定於射擊圖上,量得圖上諸元,再以射擊諸元減圖上諸元,求得檢驗射擊修正量,其用意在求得射彈散佈的平均值。因此可運用大比例尺射擊圖,圖解平均彈著點,再以座標梯尺量得平均彈著點座標,並量得圖上諸元;如此即可省略正弦定律求算頂點座標過程,可縮短作業時間,但此法因圖解誤差大,僅適用急迫狀況下實施。

六、適切運用資訊化系統演算

平高點檢驗射擊在人工傳統作業,無論是運用三角函數方式、簡易圖解 法方式計算修正量,都無法比電腦運算來的快速,現行資訊化系統平高點檢驗

⁸ 同註釋 1,頁 5-68

射擊,可行單一觀測檢驗(如圖 5)及雙觀測檢驗(如圖 6),以操作員鍵入相關數據,可快速精確計算檢驗修正量。

圖 5:單一觀測平高點檢驗示意圖

圖 6: 雙觀測平高點檢驗示意圖

資料來源: 陸軍野戰砲兵射擊指揮系統操作手冊,第五章第二節,頁 5-378。

結語

砲兵火力運用,主在迅速應變,提供地面部隊快速、精確之火力支援,為 有效運用砲兵檢驗射擊方法,使砲兵射擊精度提升,達成有效之火力支援任 務。在爾後射擊技術上,以既有基礎上研究發展,經研究探討各種不同之檢驗 射擊方式,促使砲兵之射擊更為精準,進而獲致良好之射擊效果。防衛作戰中 在有限檢驗射擊實施之狀況下,可運用平高點檢驗射擊求得修正量,並加以運 用爾後射擊任務,方可達成砲兵火力支援任務,精準、快速、有效。

參考文獻:

- 一、陸軍野戰砲兵射擊指揮教範(第三版) (桃園:陸軍司令部,民國 103 年 10 月 30 日)。
- 二、TS-102 式多功能雷觀機操作手冊,(桃園:陸軍司令部,民國 108 年 11 月 25 日)。
- 三、陸軍野戰砲兵射擊指揮系統操作手冊,桃園,民國 110 年 10 月 13 日。

- 四、美軍 FM6-40 野戰砲兵射擊教範,華盛頓特區:美軍,西元 1974 年 6 月 1日。
- 五、朱慶貴「檢驗射擊精進法—單一觀測平高檢」砲兵季刊 132 期 95 年 1 季。
- 六、朱慶貴「精進砲兵檢驗射擊法研析」砲兵季刊 193 期 110 年 2 季。
- 七、朱慶貴「砲兵檢驗射擊教學之心得」砲兵季刊 197 期 111 年 3 季。
- 八、朱瓊濤「野戰砲兵射擊法之探討-有無效彈判定」台南,陸軍砲兵訓練指揮部,民國 100 年 10 月 1 日。
- 九、李柚科「砲兵修正量運用之研析」砲兵季刊 191 期 110 年第 4 季。

作者簡介

朱慶貴,陸軍官校正 54 期 (74 年班),現任職砲兵訓練指揮部射擊組雇員老師。