

MOS changes to modernize the chemical corps: A CBRN people strategy proposal

化學兵團現代化的軍職專長變更:一項 CBRN 人員規劃策略

From: Army Chemical Review, 2022

出處:美國陸軍化學兵年刊,2022

By Major Chester T. Garner1

作者: Chester T. Garner 少校

譯者簡介

譯者謝秉均中土,畢業於陸軍專科學校化工科 106 年班、士官英 文儲訓班 108 年班,目前就讀於元智大學化學材料碩士班,曾任 陸軍化生放核防護研究中心戰劑偵檢士,現職為化生放核訓練中 心教勤連煙幕士。

本文

The U.S.Army Chemical Corps is modernizing. Precision decontamination, integrated autonomous systems, sensor suite upgrades, and a host of related programs represent the future of chemical, biological, radiological, and nuclear (CBRN) defense. Ongoing modernization efforts seek to improve the Chemical Corps ability to "enable movement and maneuver to conduct large-scale ground combat operations in a CBRN environment."1 How-ever, along with these changes, we must ask: What does modernization mean for our Soldiers? How will the technical load of CBRN Soldiers transform as we How can we ensure that our Soldiers are not merely able to adapt, evolve? but actually thrive and excel as CBRN defense experts to meet the needs of the Army? Is anything hindering our efforts to develop expertise and meet those needs?

美國陸軍化學兵團正在現代化,精確的消除作業、整合自主系統、感測器

^{1.} Major Garner is the chief of personnel development at USACBRNS. He holds a bachelor's degree in biophysics from Brigham Young University, Provo, Utah, and a master's in business administration degree from Emory University, Atlanta, Georgia. 作 者 Chester T. Garner 少校是美國陸軍化生放核學校(USACBRNS)的人事發展主管。他 擁有猶他州普若佛市楊百翰大學生物物理學學士學位,以及喬治亞州亞特蘭大市艾默瑞大 學工商管理碩士學位 (MBA)。

套件升級,以及一系列相關計畫,代表了化生放核防護的未來。正在進行的現代化努力旨在提升化學兵團在「在化生放核環境中支援行動與機動,以遂行大規模地面作戰」的能力。然而,隨著這些變革,我們必須提出以下問題:現代化對我們的士兵意味著什麼?隨著我們的發展,化生放核士兵的技術要求將如何轉變?我們如何確保士兵不僅能夠適應,還能作為化生放核防護專家,蓬勃發展並卓越表現,以滿足陸軍的需求?是否有任何因素正在阻礙了我們培養專業能力,並達成這些需求的努力?

The U.S. Army Chemical, Biological, Radiological, and Nuclear School (USACBRNS), Fort Leonard Wood, Missouri, is in the process of answering these questions, and discussions have turned to an examination of our personnel structure. The proposed structure changes that have been identified by USACBRNS thus far constitute a series of conceptual updates to the Chemical Corps that are collectively referred to as the CBRN People Strategy, which is currently under consideration at USACBRNS and across the CBRN community. In recent months, conversations surrounding the CBRN People Strategy have taken place from junior to senior levels.

位於密蘇里州李奧納多伍德堡的美國陸軍化生放核學校(USACBRNS)正積極尋求上述問題的解答,並將討論焦點轉向對現行人事編制的檢視,目前美國陸軍化生放核學校所提出的編制改革方案,實質上是一系列針對化學兵團的概念性更新,統稱為「化生放核人員規劃策略」。這些提案目前正在化生放核學校和整個化生放核相關人員內進行考量。

There is significant support for these proposals, including the proposal that would have the widest impact—expansion of the enlisted Military Occupational Specialty (MOS) 74D–CBRN Specialist into a series of three distinct MOSs. This article examines the MOS expansion proposal in the context of the above questions.

近幾個月來,有關「化生放核人員規劃策略」的討論從基層到高層都在進行。這些提案得到了廣泛支持,其中包括一項影響最廣的提案——將現有的士官軍職專長:74D(化生放核專家)擴展為三個不同的軍職專長。本文將在上述問題的背景下,探討關於軍職專長擴展的提案。

Lessons From the 54-series 54 系列專長代碼的經驗

Upon hearing about a possible enlisted MOS expansion, the first thought for many in the CBRN community is that we have been there before. The CBRN enlisted MOS structure evolved from the convoluted and outdated 54-series to a single MOS 54B around 1983. Later, 54B became 74D as a designation only change in 2003. Why go back to something that has already been tried? What is different now? These are completely valid questions and part of a very broad discussion. However, it might be more appropriate to ask what conditions led to the 54-series in the first place? What was it about that model that worked, and what was it that did not? At least part of the answer lies with what the Army required of the Chemical Corps during previous eras. When functions like the employment of flame, offensive chemical weapons, and later smoke (all part of various 54-series descriptions) no longer applied, the multi-MOS series made less sense. Furthermore, the career progression model of the 54-series was unbalanced and no clear common core of CBRN defense proficiencies existed. Restructuring to a single MOS was the correct move at that time. To paraphrase the old ad-age, though, the only constant in life—and in the Army—is change.

對於士官軍職專長擴展的反思:回顧 54 系列的經驗,當化生放核社群聽說 可能會擴展士官軍職專長時,許多人首先想到的是:我們不是已經試過這種模 式了嗎?化生放核的士官軍職專長結構從一個複雜目過時的 54 系列發展而來, 於 1983 年被簡化為單一的 54B 軍職專長·之後·54B 在 2003 年更名為 74D· 這僅僅是代號上的改變。因此,為什麼要回到我們已經嘗試過的模式?如今的 情況有什麼不同?這些問題完全合理,並且構成了一場非常廣泛的討論。然而, 也許更適合的問題是:最初是什麼條件促成了 54 系列的出現?該模式中有哪些 部分是有效的,哪些部分是無效的?答案的一部分在於陸軍在過去不同時期對 化學兵團的需求。例如,當火焰武器的使用、攻擊性化學武器的部署,以及隨 後的煙幕操作(這些功能都曾包含於54系列的不同描述中)不再適用時,多軍 職專長系列的結構就失去了意義。此外,54 系列的職業進程模型存在不平衡問 題,且缺乏清晰的化生放核防護通用核心能力。因此,當時將多重軍職專長重 組為單一軍職專長是正確的選擇。然而,正如那句古老的諺語所說:「唯一不變 的就是變化。」在生活中是如此,在陸軍中亦然。

Technical Load 技能需求

The combination of know-how and skill required of CBRN Soldiers is referred to as their "technical load." Since the move to a CBRN defense MOS, programs, task complexity, and equipment have gradually been added. The mental burden and physical skill requirements of CBRN Soldiers have increased in the decades since 1983. This increase in technical load can quickly result in technical expertise being spread thin. Many modernization programs solve specific issues, but simultaneously add to the technical load. For example, information on current preventive maintenance checks and services for the Nuclear, Biological, Chemical Reconnaissance Vehicle is contained on 10,206 pages across 15 technical manuals. And dismounted reconnaissance sets, kits, and outfits are comprised of 59 major components and require thousands of pages of manuals to operate and maintain. Can one Soldier master all of these systems? Autonomous decontamination systems are another example of technology that will extend the CBRN defense capacity and efficiency of our formations, but will also increase technical load. Advances in material result in some great improvements; however, they also result in risk if we do not also consider alternatives that fall within the other doctrine, organization, training, materiel, leadership and education, personnel, and facilities domains. Our personnel structure must also account for technical load changes.

化生放核士兵所需的知識與技能組合被稱為其「技能需求」。自化生放核防護軍職專長確立以來,任務複雜性、裝備以及相關計畫逐漸增加。自 1983 年以來,化生放核士兵所承受的心理壓力和實際技能需求顯著提升。這種技能需求的增加很容易導致專業技術的分散化。許多現代化計畫解決了特定問題,但同時也進一步增加了技術負荷。例如,有關核生化偵察車的現有預防性維護檢查和服務的資訊,分布在 15 本技術手冊中的 10,206 頁。再如,卸載式偵察裝備的套件和裝備包含 59 個主要組件,其操作和維護須要參考數千頁的手冊。一名士兵是否能夠全面掌握所有這些系統?自主去污染系統則是另一個例子,該技術能提升化生放核防護編制的能力和效率,但也會進一步增加作業技能需求。

物質裝備的進步帶來了重大改進;然而,如果我們不考慮屬於其他領域(如準 則、組織、訓練、裝備、領導與教育、人員與設施)的替代方案,這些進步也 可能帶來風險。我們的人員結構必須考慮到作業需求的變化,才能適應這些挑 戰並持續提升作戰效能。

Personnel Management 人員管理現狀與挑戰

Consider some of the realities of the current Army personnel structure. The Army manages people by MOS above the division and installation levels.2 The result is often a skill mismatch across formations and installations. For example, the number of individuals with the Mounted CBRN Recon-naissance (L6) Additional Skill Identifier (ASI) may be at 110 percent strength across an installation, but CBRN recon-naissance platoons on that installation may be only partially manned with L6-qualified individuals. This is common (and nearly unavoidable) for Regular Army formations. Personnel managers at the installation level juggle multiple competing priorities, and ASIs become mildly interesting side notes. The resultant mismatch impacts the time required for CBRN units to achieve and maintain mission readiness.

考慮當前陸軍人員結構的一些現實情況。陸軍在師級以上和駐地層級以軍 職專長來管理人員。然而,這種管理方式往往導致部隊和駐地之間的技能不匹 配。例如,某駐地可能擁有的具備「載具化化生放核偵察」(L6)附加技能識別 碼(ASI)的個人數量達到 110% 的編制強度,但該駐地的化生放核偵察排卻 可能只有部分人員具備 L6 資格。這種情況在現役部隊中很常見(甚至幾乎無 法避免)。駐地層級的人員管理者須要在多項相互競爭的優先事項之間權衡,而 附加技能識別碼(ASI)往往僅被視為次要的參考。這種技能不匹配的結果會影 響化生放核部隊達成和維持任務準備的時間與效率。

Reliance on ASIs presents additional risks. ASI programs may be discontinued without much notice. (The CBRN Technical Escort [L3] course narrowly avoided discontinuation in 2021). In addition, ASI management often leads to sub-optimal scenarios. For example, USACBRNS instructors have been called upon to teach ASI courses from which they themselves just graduated. Many times, these ASI course instructors, through no fault of their own, have not spent time in one of the corresponding formations.

current system of training, slotting, and managing CBRN personnel presents a set of challenges that is risky and avoidable.

對附加技能識別碼(ASI)的依賴帶來了額外的風險。ASI 計畫可能會在短時間內被取消。例如,化生放核技術護送(L3)課程在 2021 年險些被中止。此外,ASI 的管理常常導致次佳甚至低效的情況。例如,USACBRNS 的教官曾被要求教授他們自己剛剛完成的 ASI 課程。許多時候,這些 ASI 課程的教官並未有機會在相關編制單位中服務過,這並非他們的過失,而是系統問題。當前的化生放核人員訓練、職位安排和管理體系呈現出一系列挑戰,這些挑戰既存在風險,又是可以避免的。

Career Progression 職涯發展:現行職位分配系統對職涯發展的影響

Another impact of the current slotting system is the interruption of technical career progression. Organizational learning, where the bulk of expertise is arguably developed, becomes random. Our Corps can do better than that. Many Regular Army enlisted personnel currently have only a handful of opportunities to serve in CBRN units. Repeat assignments in a single formation type are even rarer. This means that there are few opportunities for enlisted CBRN Soldiers to master tasks and equipment from the sub-team to the platoon level. Team members rarely become team leaders and, later, platoon sergeants in the same formation type. If they did, they would benefit from additional layers of applicable knowledge as they progressed through their careers. Instead, they most likely face a disjointed sampling of formation types. We have long affirmed that this is somehow essential to produce well-rounded CBRN Soldiers, but is that true? Feedback from the hundreds of Soldiers and leaders who have been introduced to the CBRN People Strategy does not support this assumption. Rather, the result is technical dilution, which actually stunts expert development. Competent leaders at multiple levels may still be novices in their technical craft. This leads to a reduced degree of shared understanding and less-effective mission command.

目前人員配置制度的另一項影響,是中斷了士兵在技術層面的職涯發展。組織學習,是專業知識累積的主要來源,在現行體制下變得支離破碎,缺乏系統性。我們的兵團應該能做得更好。目前,現役陸軍的士官人員在化生放核單

位服務的機會非常有限,而在同一類型編制中獲得多次任職的機會則更為稀少。 這意味著,士官很少有機會在從小組到排級的層級中掌握任務和裝備的運用。 小組成員很少能成為同類編制中的小組領袖,甚至排級士官。如果他們能在同 一類型的編制中不斷進階,就能隨著職業進程的推進,積累多層次的適用知識。 但現況是,多數士兵面對的是片段且缺乏連貫性的不同部隊編制,過去我們一 直宣稱,這樣的「多樣編制輪調」有至於培養多才多藝的化生放核士兵,但這 真的成立嗎?對數百名接受「化生放核人員規劃測略」簡報的士兵和領導者的 反饋顯示,這一假設並不成立。相反,這種做法導致了技術能力的稀釋,阻礙 了專才的培養。在多個層級且具備領導能力的人員中,技術專業往往仍處於初 階水平,這進一步削弱了部隊共識的基礎,並削弱了任務指揮的效能。

Can we reasonably expect Soldiers to become experts in their craft during one tour of duty? Many do become proficient; but in the Active Component, they soon rotate out of those positions. When they return to a CBRN formation, that formation is often a different type, with a new mission and a new equipment set. This affects the unit ability to execute mission-essential tasks to the right degree of success. The enlisted Soldiers and noncommissioned officers (NCOs) who reach high levels of proficiency during the course of a single duty tour are examples of achieving success in spite of, rather than because of, the personnel structure. Can such high "switching costs" on Soldier technical development be justified?

我們是否能合理地期望士兵在一次服役期間就成為其專業領域的行家?確 實有不少士兵的確能在這段期間內達到熟練水準;但在常備部隊中,他們很快 會從這些職位中輪調至其他單位。當他們再次回到化生放核編制時,通常會面 對到所屬的編制類型、任務性質、乃至所使用的裝備都已完全不同。這直接影 響了單位執行關鍵任務時的能力與效率。那些在單次服役期間內達到高熟練水 平的士官和士兵,是克服了現行人員制度限制後,所取得的成果,而非制度本 身的優勢體現。如此高的「轉換成本」,對士兵的技術發展而言是否合理?這是 一個值得深入探討的問題,因為它影響的不僅是士兵的專業能力,還包括整個 單位的戰備效能。

None of these factors should be perceived as diminishing the incredible

achievements of our enlisted Soldiers and NCOs over the years. The professionalism, commitment, motivation, and talent of our personnel have never been in question. Rather, these issues highlight the abilities of our Soldiers and NCOs. But what if we could build a structure that does not artificially limit the development of experts? Recent Army-wide self-examinations reveal the importance of maximizing the effectiveness of our Soldiers. In addition, potential future force reductions point to the need to refine our structure in order to unleash the potential of our talented Soldiers and leaders.

以上提到的種種問題絕不應被解讀為對我們士官兵長多年來非凡成就的否定。我們人員的專業精神、奉獻精神、主動積極和卓越才華從未受到質疑。相反,這些問題反映了我們士官兵的能力有多麼卓越。那麼,如果我們能設計一個不再因為人為限制,而真正培養人才的結構,是否能實現更大的突破?近期,陸軍內部的全面檢討指出,最大限度提升士兵效能的最大潛力。此外,面對未來可能的兵力裁減,進一步突顯出我們更須要優化組織結構,以充分釋放才華橫溢的士兵和領導者的潛能。

Proposed Solution 建議與解決方案

A degree of broad-spectrum CBRN defense knowledge will always be necessary; however, the current personnel structure lends itself to the development of generalists more so than experts. Can we optimize the structure to meet our requirements? This is where the CBRN People Strategy and the expansion of the enlisted MOS series come in. At a mini-mum, any change to our personnel structure must help—

在化生放核領域中,具備廣泛的防護知識始終不可或缺,然而,當前的人 員結構更傾向於培養通才,而非專才。我們能否優化結構以滿足需求?因此, 化生放核人才規劃與士官軍職專長系列的擴編就顯得尤為重要。至少,任何對 人員結構的變更必須能夠達成以下目標:

- Develop experts across CBRN defense core functions and associated tasks. 培養具備化生放核防護核心能力和相關任務專長的人才。
- Facilitate the appropriate placement of CBRN defense experts across the current and future force structure. 促進這些專才能在現行與未來部隊編制

中適得其所的配置

- Meet the expressed mission of the Chemical Corps with the correct level of success. 確保化學兵團以合理的程度達成其既定使命
- Complement modernization efforts within the constraints of current growth policies. 在當前的成長政策約束下,與現代化相輔相成。
- Present a viable career path for enlisted CBRN personnel. 為化生放核士官 提供一條可行的職業進程路徑。

The model proposed for enlisted personnel through the CBRN People Strategy meets these criteria.

透過「化生放核人才規劃」提出的士官人員模型符合這些標準,並為未來 提供了可持續發展的基礎。

Expansion of the enlisted CBRN MOS into a specialized series is at the heart of the proposed structural changes. Revamped Professional Military Education that is broad in some areas and focused in others would replace ASI courses. For the purpose of this article, the expanded MOSs are referred to as 74C-CBRN Assessment Specialist, 74D-CBRN Support Specialist, and 74E-Mounted CBRN Reconnaissance Specialist. The series would be founded on a common backbone of CBRN warrior knowledge and skill, with each MOS also representing a discreet area of expertise. Each MOS would be aligned with specific positions and formation types, with a subset of flexible positions filled by any of the three (through "dual coding"). The positions and opportunities for each of the MOSs would be carefully balanced to avoid many of the problems that plagued the previous MOS 54-series as well as MOS series of other multi-MOS branches (military police). If we were to carefully and deliberately emplace this structure, the Chemical Corps would be able to focus technical expertise, improve personnel management, and ensure career progression while continuing to meet mission requirements.

將現役化生放核軍職專長擴編為一個專業化系列,是建議結構變更的核心。 經過改造的專業軍事教育 (Professional Military Education, PME) 將在某些 領域廣泛涵蓋·而在其他領域更具專業性·以取代現有的附加技能識別碼(ASI) 課程。在本文中,擴展後的軍職專長被命名為:**74C - 化生放核評估專業士官、** 74D - 化生放核支援專業士官、74E - 載具化化生放核偵察專業士官,這一系 列的基礎將建立在共同的化生放核戰鬥知識與技能上,同時每個軍職專長也代表一個獨立的專業領域。每個軍職專長將對應特定的職位和編制類型,而其中部分職位將採用「雙重編碼」制度,開放三類軍職專長任一類填補,以保彈性。這些軍職專長的職位與機會將被謹慎平衡,以避免舊有 54 系列軍職專長及其他多軍職專長兵種(如憲兵兵種)中出現的問題。如果我們能夠審慎而有計劃地實施這一結構,化學兵團將能聚焦技術專業知識,改進人員管理,確保職業進程,同時繼續滿足任務需求。

Implementation 實施方案

Building layers of deep, expert knowledge is really only possible with specialization. The proposed model would in-corporate a balanced degree of specialization into existing institutional training. Rather than being presented with a sampling of the full breadth of CBRN equipment and tasks during Advanced Individual Training, Soldiers would receive common foundation training followed by MOS-specific entry level specialty training. They would then bring an un-diluted level of proficiency to their first CBRN unit assignment. Specialization would make the most sense with MOSs split roughly along the following lines:

構建層次分明且深入的專業知識,只有透過專業化才真正可行。本提案所規劃的模式,將在既有部隊教育訓練體系中,納入適度比例的專業分流設計。不再僅僅在進階個人訓練(AIT)中讓士兵接觸化生放核裝備和任務的廣泛樣本,而是先接受共同基礎訓練,隨後進入與軍職專長相關的入門級專業訓練。他們會帶著完整且專業的技術能力進入其第一個化生放核單位任職。專業化訓練的劃分將大致按照以下方向進行:

- MOS 74C. Specializes in dismounted assessment tasks and skills similar to those taught in the L3 course. 軍職專長 74C-專注於徒步偵檢與評估任務 技能,內容與 L3 課程相似。
- MOS 74D. Receives in-depth training in the Joint Effects Module/Joint Warning and Reporting Analog and Digital System, maneuver support planning, and decontamination operations. 軍職專長 74D-接受聯合效應模組 (Joint Effects Module)、聯合預警和通告系統 (JWARS,模擬和數位

系統)、機動支援規劃以及消除作業的深入訓練。

 MOS 74E. Encompasses mounted reconnaissance, surveillance, and equipment currently covered in mounted CBRN Reconnaissance (L6) and Biological Integration Detection System Training (L4) Courses. 軍職專長 74E-涵蓋載具化偵察、監控以及目前由載具化偵察(L6)和生物整合偵測系 統(L4)課程涵蓋的設備操作和技能。

Upon arrival at their units, organizational learning could begin at a deeper, more impactful level. Advanced Leader Course and Senior Leader Course students would also receive additional weeks of common and MOS-specific training at the required levels.

待士兵到達單位後,即可從更高層次、更具深度的組織性學習起步。士官 高級班和士官長正規班的學員還將接受額外數周的通識課程和軍職專長相關的 專業訓練,確保達到所需的技能水平。

At a senior level, the 74-series would transition to MOS 74Z-Senior CBRN Specialist. The transition point is debatable, but the strongest case may be for transitioning at the master sergeant level. This would allow sergeants first class to culminate their technical career progression as leaders (platoon sergeants) in familiar unit types. The master sergeant transition point also makes sense because lieutenant platoon leaders in those formations would no longer attend an ASI course. The platoon would be more reliant on a technically expert sergeant first class to serve as the senior subject matter expert in the formation, allowing the officer to focus on leading the formation. The practical reality would be that every Soldier in that formation would be better trained for his or her job.

在士官長階層·74 系列軍職專長將過渡為 74Z-高級化生放核專家。至於轉 換的適當階段仍有待討論,但最合理的選擇可能是在士官長階層進行過渡。這 樣的安排能讓三等士官長在熟悉的編制類型中,以排士官長的身份完成其技術 職業進程。選擇士官長作為轉型階段也具有合理性,因為該編制中的排級軍官 領導者(如排長)不再需要參加附加技能識別碼(ASI)訓練課程。換言之,整 個排將更依賴於一位技術精湛的士官長,該士官長將成為編制中的高級專業顧 問,從而讓軍官能專心投入部隊的領導工作。這樣的安排將在實務上帶來明顯 效益,該編制中的每位士兵都將接受更高水準的訓練,更好地勝任其工作職責。

這種轉型不僅提升了整體技術專業能力,還優化了士兵與領導者的角色分工, 為任務成功奠定了更堅實的基礎。

Authorizations would be aligned to ensure a balance of staff and tactical CBRN formation time. Leadership opportunities across each MOS and component would be proportionally similar to what they are now. Changes to Department of the Army (DA) Pamphlet (Pam) 600-25, U.S. Army Noncommissioned Officer Professional Development Guide, would recognize both staff and troop leadership roles as key developmental positions.

職位配置將重新調整配置,以確保幕僚職與基層戰術部隊服役時間達平衡。每個軍職專長和各組成部隊中的領導機會,將與目前的比例相似,確保平等發展機會。對美國陸軍《士官專業發展指南》(DA Pamphlet 600-25)的變更將把幕僚職和部隊領導角色都認定為關鍵的發展性職位,進一步強調兩者在職業進程中的重要性。這樣的調整能夠確保專業技能的延續性,同時為士官提供多樣化的領導經驗,有助於培養全方位的軍事領袖。

In discussions about the CBRN People Strategy, stake-holders often ask, "What problem are we trying to solve?" A more useful question would be, "How does this make us better?" This personnel structure would set up the Chemical Corps for current and future success, resulting in better-trained Soldiers across the force. Institutional and organizational training would build upon each other. We would be postured to make further structural adjustments in the future.

在討論化生放核人才規劃時,參與者經常問:「我們試圖要解決什麼問題?」然而,一個更有意義的問題是:「這項改革如何讓我們變得更好?」建議的人員結構將為化學兵團的當前和未來成功奠定基礎,並在全軍培育出更精良的士兵。機構化訓練與組織訓練將形成互補體系,彼此強化,形成更強的知識與技能基礎。我們也將為未來的結構調整做好準備,具備更高的靈活性來適應不斷變化的需求。這樣的改進不僅提升了整體部隊的效能,也進一步強化了陸軍在化生放核領域的專業優勢。

Certain things would facilitate the implementation process. Because the proposed MOS changes would affect only a portion of the CBRN population,

MOS 74D would likely remain the default for current enlisted CBRN Soldiers. Soldiers would then be able to opt in or out of consideration for the other two MOSs. A board would be established to identify which Soldiers would be part of the expansion MOSs based on relevant experience, legacy ASIs, and It would be necessary to define MOS transfer policies and procedures. Newly enlisted Soldiers would sign directly into one of the three MOSs before embarking on the training program.

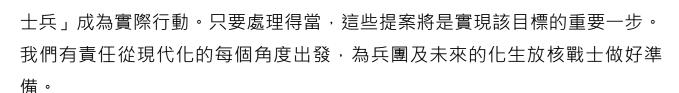
為促進本次改革方案的順利實施,部分配套措施將具關鍵作用。由於建議 的軍職專長變更僅影響部分化生放核人員,軍職專長 74D 可能仍然是目前現役 化生放核士兵的預設選項。士兵將能夠選擇是否參與其他兩個軍職專長的考量。 為此,將成立一個評估委員會,根據相關經驗、現有的附加技能識別碼(ASI) 以及個人意願,判定哪些士兵適合納入擴編的軍職專長系列。並且,須要明確 軍職專長轉換的政策與程序,以確保過渡過程的順利執行。新入伍的十兵則將 直接選擇三個軍職專長中的一個,並在此基礎上進行訓練計畫的學習和進階。 這樣的流程設計能夠平衡現役士兵與新兵的需求,確保專業化過渡的穩定性與 持續性。

Further Analysis 進一步分析

From the beginning, the intent of any changes has been to find the true optimal solution for the Army, the Chemical Corps, and our Soldiers. The proposed model is certainly a work in progress, but changes like these take years. Careful analysis must drive the decision-making process, and input from the field is important. Staff efforts to build a complete picture of impacts and side effects are currently underway. USACBRNS staff is now conducting research in the following areas:

自改革構想啟動以來,其核心目標即是為陸軍、化學兵團以及我們的士兵 尋找真正的最優解決方案。建議的模型目前仍在完善中,但這類變革須要數年 時間才能完成。決策過程必須以謹慎的分析為基礎,並吸取來自部隊基層的意 見。目前,美國陸軍化生放核學校已著手針對此改革可能帶來的效益與副作用 進行全盤性評估,具體研究領域包括:

● Defining future demands of the Chemical Corps. 明確化學兵團未來的需 求。


企化生放核防護半年刊第 119 期

- Balancing career opportunities across each MOS. 平衡在各軍職專長中職業發展機會。
- Balancing career opportunities across each component. 平衡在各組成部隊中職業發展機會。
- Learning from sister branches with similar MOS series. 吸取其他類似多軍職專長系列兵種的經驗教訓。
- Managing the future of maneuver demands on the Chemical Corps. 管理化 學兵團未來在機動需求上的挑戰。
- Improving effectiveness of the proposed strategy on expertise. 檢視此策略 對專業培育的提升效果
- Improving personnel management. 優化人員管理。
- Achieving the desired end state.達成預期的最終目標狀態。

Conclusion 結論

The U.S. Army Chemical Corps needs a more manage-able structure in order to better position our Soldiers where they can develop and have the most impact. Implementation of the CBRN People Strategy proposals outlined in this article would allow the Chemical Corps to build and maintain CBRN defense experts for the future Army. Although the solution may not be perfect and may come with a different set of challenges, the described purpose, intent, and desired end state are undoubtedly worth discussion. With the right balance of depth and breadth, we can be better at what we do. The Corps seeks to make the mantra of "mission first, people always" a reality. If handled correctly, these proposals would help do that. We owe it to our Corps and to coming generations of CBRN warriors to consider all domains of modernization.

美國陸軍化學兵團需要一個更易於管理的結構,以更有效地將士兵安排在能夠發展並發揮最大影響力的位置上。本文中概述的「化生放核人才規劃」提案的實施·將確保化學兵團能夠在未來持續培育和維持化生放核防護專業人才。儘管該解決方案可能並不完美,也勢必帶來新的挑戰,但其目的、意圖以及預期的理想結果無疑值得深入探討。在深度與廣度之間找到適當的平衡後,我們將能夠在本職中持續精進、追求卓越。化學兵團的目標是讓「任務至上,關愛

Endnotes 參考文獻

- 1. Field Manual (FM) 3-11, Chemical, Biological, Radiological, and Nuclear Operations, 23 May 2019. 《野戰手冊》(Field Manual, FM) 3-11、《化學、生物、放射和核(CBRN)作戰》、2019年5月23日出版。
- 2. Army Regulation (AR) 614-200, Enlisted Assignments and Utilization Management, January 2019, p. 11. 《陸軍條令》(Army Regulation, AR) 614-200·《士官任務與運用管理》·2019 年 1 月·第 11 頁。
- 3. DA Pam 600-25, U.S. Army Noncommissioned Officer Professional Development Guide, 11 December 2018.《陸軍部手冊》(DA Pam)600-25 · 《美國陸軍非軍官士官專業發展指南》·2018 年 12 月 11 日出版。