DOI:10.53106/230674382025021141005

探討國軍拖式飛彈物、化性檢測最適策略

作者/鍾明正、呂宗翰 審者:李金樹、葉早發、龔驛濱

提要

- 一、在近期俄烏戰事上,烏軍運用拖式飛彈抵禦俄軍坦克進犯;拖式飛彈扮演不對稱戰力構建重要角色,亦為國軍重要打擊武器之一;因此,確保拖式飛彈使用安全及可靠度,為有效發揮戰力的關鍵;另在有限的國防預算下,制定有效品質檢測策略,維持飛彈可靠度及延長使用壽限,是值得深思及探討的問題。
- 二、本研究運用「層級分析法」,藉由文獻探討及專家訪談,建構出「人才培育」、「成本效益」及「後勤支援管理」等三個構面,同時延伸9個次要準則,透過專家問卷分析權值計算及排序,找出影響國軍拖式飛彈檢測效能關聯變數,以提供管理者相關政策指導或精進建議。
- 三、研究結果發現,現行國軍拖式飛彈物、化性檢測最適策略,多數專家建議採「軍商併維」方案,並透過「爭取能量釋放」、「強化人才培育」及「整合後勤支援」等管理作為,以提升人員素質與成本效益,確保維持飛彈可靠度及延長使用壽限。

壹、前言

2022年2月俄羅斯以武力入侵烏克 蘭以來,一直是國際社會關注的焦點之 一。俄羅斯在軍事技術和裝備上佔絕對 優勢,但烏克蘭在有效運用精準飛彈、無 人機等高端技術武器禦敵下,俄羅斯無 法將戰線持續推進,戰事爆發迄今,已成 膠著狀態,這也顯示精準飛彈在現代戰 爭中扮演重要的角色,這場戰役也是不 對稱戰爭之典範,值得我國在國防軍事 上研析學習。

國防部112年《國防報告書》指出, 縱深防衛係以不對稱作戰思維推動重層 嚇阻,在敵航渡脆弱階段,有效發揮海峽 天塹優勢,運用機動飛彈車及無人載具 等「機動、遠距、精準」制敵手段,再次重 層削弱敵戰力。¹在國軍聯合制海、攤岸 殲敵作戰戰略中,國軍反裝甲飛彈一直 扮演舉足輕重的角色,現役反裝甲彈藥 計有「拖式」及「標槍」等2類型飛彈,分 別部署於陸軍及海軍陸戰隊等部隊,其 中拖式飛彈可配載於悍馬車上,同時具 備機動運輸及精準打擊等能力,能有效 適應戰場情勢以發揮整體戰力。

國軍現役庫存拖式飛彈(2A型)分

別為1992至1999年期間出廠,使用迄今已逾25年以上,根據美方原廠壽期管理規劃,飛彈出廠滿10年後可辦理延壽,由美方(原廠)派遣技代來臺執行庫儲飛彈可靠度分析,針對「庫儲條件」、「飛彈外觀目視檢驗」、「全彈檢測數據分析」及「射擊數據分析」等要項綜合評估,通過合格標準後,方可延長飛彈使用年限;然美方於2017年後停止上述該型飛彈可靠度分析服務。

陸軍後勤指揮部(以下稱陸勤部) 為提高飛彈使用可靠度,於2017年透過 軍售管道接洽美方採購拖式飛彈相關測 檯,並由陸軍飛彈光電基地勤務廠(以下 稱飛勤廠)建立拖式飛彈檢測能量,檢 測範圍包括「尋標器作動」、「全彈電流 接點導通測試」及「控制翼機械作動」等 要項;然我國未建立該飛彈發射藥化性 檢測能量,僅以飛勤廠測檯實施物性檢 測恐未臻問全,故為確保飛彈延壽續用, 陸勤部遂於2018年委託國家中山科學研 究院(以下稱中科院)評估拖式飛彈物、 化性檢測可行性,該院並於當年底完成 「飛彈拆解」、「藥柱X光檢測」及「發射 藥檢驗」等能量建立。

我國向美方採購之拖式飛彈(2A

¹ 國防部,《112年國防報告書》,(臺北市:國防部,2023年),頁64,檢索日期:民國114年1月10日。

型)出廠迄今雖已逾25年,現仍為現役 反裝甲飛彈主力,現已籌獲同族群拖式 2B無線射頻導引飛彈(2B Aero RF型), 故可藉由現行拖式2A型能量建置基礎, 逐步深化拖式飛彈檢測能量,以發揮整 體後勤支援效益。

綜上,隨著飛彈使用可靠度逐年遞減,在有限的國防預算下,運用有效品質 檢測策略,維持飛彈可靠度及延長使用 壽限,是值得深思及探討的問題。

貳、拖式飛彈簡介

一、拖式飛彈沿革

拖式飛彈(TOW)最初由美國休斯公司於1963至1968年間所研發,1970年開始生產,²有效射程3,750公尺,最大飛行速度360公尺/秒,500至3,000公尺內的命中率幾乎達到100%,穿甲厚度約100公分。拖式飛彈可廣泛適用於人攜式發射架、車輛及直昇機做為武器載臺及射

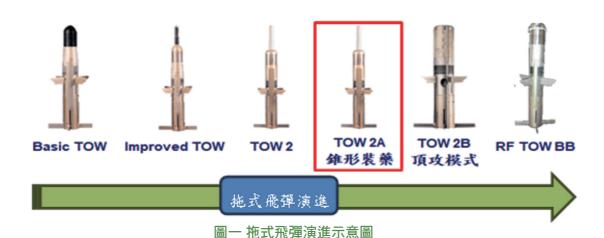
擊平臺,增大機動性與火力運用彈性。

曾經歷越戰、第四次中東戰爭,乃至 第一、二次波灣戰爭,均能有效發揮打擊 火力。如1973年10月14日,以色列有效運 用配備拖式飛彈的AH-1G武裝直昇機18 架,在米特拉山口附近成功擊毀近半的 埃及戰車。第一次波灣戰爭中,多國部隊 共發射600多枚此飛彈,擊毀伊拉克軍隊 450多個裝甲目標。美軍陸戰隊第1師更 曾一次發射近110多枚拖式2型飛彈,其 中有93枚命中標。³ 另俄烏戰爭爆發後, 戰力較弱的烏克蘭也運用美方軍援的數 百枚拖式飛彈,利用不對稱戰力防禦俄 羅斯坦克進犯。⁴

我國在國防建軍備戰的進程中,亦深感反裝甲戰力建構的重要性,遂於1978年起向美國籌獲基本型拖式飛彈發射系統及基本型飛彈,編配於全軍(陸軍及海軍陸戰隊)的反裝甲部隊,藉此大幅提昇我軍之反裝甲作戰能力;1998年再次向美軍購得第二型拖式飛彈發射系

² Defense Industry Europe, 〈BGM-71 #TOW〉, https://www.militaryhistory.info/bgm-71-tow/, 檢索日期:民國114年1月10日。

³ 夏天生,〈淺論反裝甲飛彈的過去、現在與未來〉《陸軍步兵季刊》(高雄),2006年第4期,2006年12月,頁33-34,檢索日期:民國114年1月10日。


⁴ 李奇叡,〈「坦克殺手」拖式飛彈 曾破豹2不敗神話〉,中時新聞網,https://www.chinatimes.com/newspapers/20230718000619-260309?chdtv,頁1,民國112年7月18日,檢索日期:民國114年1月10日。

統及2A型飛彈,再次提升我軍反裝甲能 力,使其更符合現代戰爭(如圖一)。5

二、拖式飛彈物、化性檢驗

為確保拖式飛彈射擊使用安全,於

實彈操演前由飛勤廠及中科院等專業單 位,實施飛彈測檯檢測、飛行馬達X光鑑 驗、硝化甘油滲移分析、加速老化實驗 及安定劑分析等檢測(如表一)。

表一拖式飛彈物、化性檢測一覽表

資料來源:本研究繪製

項次	執行 單位	檢測項目	內容概述	物性/化性
1	飛勤廠	測檯檢測	執行飛彈內部電路導通及阻值測試。	物性
2		飛行馬達 X光檢測	觀察及判讀飛行馬達藥柱內部是否有氣泡、裂痕。	物性
3	中科院	藥柱硝化甘 油滲移分析	藥柱主要成分為雙基藥,雙基發射藥含有硝化纖維及硝酸甘油, 雙基藥點火作用時最易產生之危害情形為硝化甘油滲移至阻燃層,故必須確認阻燃層與藥柱分層無滲移情事發生。	化性
4	ומאדיידי	藥柱加速老 化實驗	評估3年後藥柱內安定劑含量是否滿足規範。	化性
5		藥柱安定劑 分析	安定劑的目的是要將藥柱內部化學分解程度降至最低,並透過老化實驗,確認安定劑含量與初始值相比,衰減量需少於80%,殘量高於0.2%,以達到延長推進劑壽期的目的。	化性

⁵ 吳承叡,〈提升拖式飛彈實彈射擊精準度—論「天馬操演」飛彈未命中原因研析〉,《陸軍步兵 季刊》,2011第2期,西元2011年6月,頁2,檢索日期:民國114年1月10日。

綜上所述,國軍拖式飛彈(2A型)物、化性檢測能量建置現況,除飛彈測檯檢測之物性能量由飛勤廠建立,餘X光鑑驗判讀、飛行馬達藥柱化性分析等均委由廠商(中科院)執行;因此,現行國軍是項飛彈檢測作法係採「軍商併維」方式執行,然在撙節國防預算及應急戰備支援時效性的考量下,採「軍種自建能量」,抑或是「全面委商檢測」等方式亦可為之,故本研究將「軍商併維」、「軍種自建能量」及「全面委商檢測」等,併列為「國軍拖式飛彈(2A型)物、化性檢測能量建置」目標下的建議方案。

參、建置飛彈鑑驗能量主要 考量因素

國軍飛彈屬高單價、高科技且維保 技術含量高之武器裝備,為確保飛彈妥 善及維護射訓安全,國防部訂定飛彈妥 善評定標準,飛彈於壽限內,且經專業工 廠鑑測合格者;飛彈逾壽限,經原廠(美 方)專業工廠,中科院延壽作業評估或專 業工廠依技令標準鑑測合格,可靠度仍達 85%以上可擔任戰備者。另須能確保飛彈 各組段及全彈測試均符妥善標準,並出具 合格簽證,如屬原廠未提供且國軍未具 修能或修能不完整者則不可列計。

依國防部政策指導,在武器系統獲 得(研製)初期即將修能整合納入整體 後勤支援需求完整規劃,以滿足作戰需 求。並於用兵階段滾動式檢討修正修能 建置,結合民間產業能量(含中科院), 提供適時、適質支援服務,有效支援裝備 維持妥善。本研究之國軍拖式飛彈(2A 型),係透過軍售管道洽美方採購獲得, 美方後續僅技轉外觀檢查及測檯檢測等 基礎能量,核心物、化性鑑驗能量已委由 中科院完成建置;另飛彈鑑測作業屬高 專業、高標準且分工細微的工作,就維保 策略而言,採「軍種自建能量」及「全面委 商檢測」等面向實施分析,基此,本研究 藉由參考國軍武器裝備維修策略、修能 建置及合約委商等相關文獻,整理其影響 主要構面包含「人力、人員與訓練」、「補 給支援」、「支援與測試裝備」、「技術資 料」、「設施」、「電腦技術支援」、「維修 成本」、「維修人才培育」、「維修管制」、 「技術移轉」、「組織架構」、「合約管 理」及「戰備時效與機敏性」等13項(如 表二)。

一、主準則歸納分析

綜整分析前述影響因子,且結合飛彈物、化性檢測能量建置現況,將「人力、人員與訓練」、「技術資料」、「維修人才培育」及「技術移轉」等4項因子歸納

表二 武器系統維修(鑑驗)能量建置文獻相關因子統計表

學者	文獻名稱	文獻摘要	相關因子
范森 (1998)	後勤管理導論	國防武器系統之所以能有效的運作與 發揮其應有的效能,全賴有效的中介 機制-「後勤支援」的投入與發揮,方能 持續發揮其應有的效能與功用。	1.人力、人員與訓練。 2.補給支援。 3.支援與測試裝備。 4.技術資料。 5.設施。 6.包、搬、儲、運。 7.電腦技術支援。
康福山 (1998)	我國航空工業維修策略之研究	探討我國航空維修工業現行發展策略,並以SWOT分析法探討我國航空維修工業未來可能發展。	1.降低維修成本。 2.維修人才培育。 3.完備管理制度。
王俊傑	台灣航空器維修廠站維修績效評估之研究	探討航空器維修廠的維修績效管理, 以及對達到效率前緣的單位所應具備 的條件。	1.維修人員素質。 2.員工在職訓練。 3.營運成本。
柯永森 (2013)	台灣國防自主政策之政治經濟 分析一以軍用航空工業發展為 例	藉由國外自力研發經驗,透過共同開發、技術移轉等,重建現階段我國「軍用航空工業」自力發展能量。	1.企業管理理念。 2.積極技術移轉。
王國忠(2015)	軍商通用裝備系統效益後勤方 案之評選一以海軍艦艇為例	整合軍方與民間資源資訊,建構符合現代作業之後勤管理機制,評選最適海軍艦艇修護模式。	1.成本效益。 2.修護能力。 3.修護管理。
徐禮睿	軍工廠工時分配與排程規劃之 研究一以W修護所為例	基地廠庫保留後勤核心能量,軍工廠 如何有效利用有限的資源,建構正確 基地修製策略。	1.組織架構。
蔡明田 黄昭陽 (2019)	應用層級分析法建構鐵路號 誌設備維修策略之評選模式	探討鐵路號誌設備的最適維修策略, 並應用層級分析法,建立鐵路號誌設 備維修策略的評選模式。	1.維護成本。 2.維修管制。 3.人才培育與訓練管理。
林義盛(2020)	維持直升機妥善率之研究-以國軍某後勤單位為例	採用層級分析法 [,] 針對『維持直升機 妥善率』各評選指標的權重探討及評 估。	1.人員運用。 2.維修管制。 3.合約管理。 4.料件籌補。
張廷詩 李建鵬 (2022)	提升空軍戰術管制聯隊雷達修 護能量關鍵成功因素之研究	本研究以「人」、「裝」及「制度」等三個面向探討,達到提升雷達修護能量,維持部隊基本戰力。	1.人力資源管理運用。 2.新式後維制度導入。
李孟學 張佳菁 (2022)	國軍通用裝備委商保修績效之 研究	探討裝備在委商執行維修成效的差 異,且分析委商契約規範對於各項通 用裝備保修績效的影響。	1.維修成本效益。 2.合約管理。 3.戰備時效及機敏性。

後,因飛彈檢測作業包含電子導控段及 火工段鑑驗,需操作高專且精密之儀器、 測檯與機具來取得科學數據,再透過實 驗樣本對照、數據統計分析等方法,決定 飛彈使用可靠度;基此,飛彈檢測作業與 人力和技術有一定關聯性,故歸納出主 準則「人才培育」。

另將「補給支援」、「支援與測試裝 備」、「設施」、「電腦技術支援」及「維 修成本」等5項因子歸納後,就武器系統 維修、鑑測能量建置條件,需包含人力來 源、技術移轉、機具測檯、料件籌補及場 地設施等要項,均需投入龐大經費,因 此,飛彈檢測能量建置與維持成本和資 源分配有一定關聯性,故歸納出主準則 「成本效益」。

「維修管制」、「組織架構」、「合 約管理」及「戰備時效與機敏性」等4項 因子歸納後,因飛彈檢測技術能量涵蓋 「自建」及「委商」等層面,日牽涉高頻、 電子、機械與火工等細微分工作業,基 此,有關鑑驗排程管制、人力資源管理、 廠商合約管理及保密管控作為等,均有 賴導入整合性的企業管理觀念與模式, 故歸納出主準則「後勤支援管理」。

綜上,最後歸納出「人才培育」、「成 本效益」及「後勤支援管理」等3項主準 則(如表三)。

表三 主進則說明表

文獻因子	歸納說明	歸納後主準則
 1.人力、人員與訓練。 2.技術資料。 3.維修人才培育。 4.技術移轉。 	飛彈檢測作業屬專業精密且技術層次高的工作,技術範圍涵蓋高頻、電子、機械及火工等領域;因此,透由人員選用、考核,找出適用的「人才」,再經由教育訓練、技術移轉等「培育」手段,獲取作業所需技能,確保作業順遂安全無虞。故歸納文獻因子後,得到主準則為「人才培育」。	人才培育
1.補給支援。 2.支援與測試裝備。 3.設施。 4.電腦技術支援。 5.維修成本。	飛彈能量建置需包含人、機、料、法、環等要項,與後續維護成本,以上均需投入龐大預算,最後計算投入成本與產出效益之財務決策指標;因此,歸納文獻因子後,得到主準則為「成本效益」。	成本效益
 1.維修管制。 2.組織架構。 3.合約管理。 4.戰備時效與機敏性。 	飛彈檢測作業分工細微,需導入企業化管理模式,必須透過嚴密的組織作業架構,層層落實鑑驗排程管制、人力資源管理、廠商合約管理、應急支援時效與保密管控作為等面向;因此,歸納文獻因子後,得到主準則為「後勤支援管理」。	後勤支援管理

二、次準則歸納分析

(一)人才培育

「人才培育」與員工教育訓練息息 相關,「教育」係指個人一般知識、能力 之培養,包括專門知識、技能及生活環 境的適應力之培養;「訓練」係指組織為 提高成員在執行某一特定職務所必要之 知識、技能及態度,或培養其解決問題 之能力的一切活動。6基此,飛彈鑑測屬 專業精密目技術層次高的工作,工作接 觸範圍涵蓋高頻、電子、機械及火工等領 域;本研究認為「人才培育」是指透過人 力規劃、人員專長選用與技術移轉培訓 等作為,以強化員工個人技能,使其潛力 與能力能有所發揮,以確保鑑測作業安 全順遂。

承上,人力規劃一直是整體後勤支 援的重要一環,依學者范淼所述,為維持 武器裝備正常運作,相關準則為「選用各 式專長人力需求」、作適時適當的「專長 培訓」;7 另歸納其他學者觀點,依學者 王俊傑提出維修廠修能、效率提升之策 略,包含人員素質提升、汰除不適用員工 及員工在職訓練等,相關準則為「重視人 才培育」及「人員教育訓練」; 8 依張廷詩 等學者研究提升後勤修護能量之關鍵因 素為人力資源運用,相關準則為「人才選 用」、「人員培訓」與「汰除不適用人員」; ⁹ 綜上,筆者歸納各準則間共同及關聯 性,以「人才選用」、「教育訓練」及「績效 考核 | 等3項納入次準則(如表四)。

(二)成本效益

武器裝備在生產部署後,要確保能 在服役期間內,維持一定的可靠度及作 戰能力,必須仰賴完善的後勤支援,透過 國內「軍種自建」或「委商檢測」建立迅 速有效的裝備維修、飛彈鑑測能力;然 在國防預算有限的情況下,如何能投入 最低成本,獲致最適之飛彈檢測策略,實 乃從事後勤維保所要考量評估的要素。

所謂成本乃是為達成某種任務及實 施某項方案必須耗用之資源,如人力、 物力、財力、技術等代價之總和,而成本 管理的良窳對後勤作為的績效具有絕對

范淼,《後勤管理導論》,再版(黎明文化出版社,2021年9月13日),頁107,檢索日期:民國114年 6 1月10日。

同註6,頁100。

王俊傑,〈臺灣航空器維修廠站維修績效評估之研究〉,(長榮大學碩士論文,2009年),頁103-105,檢索日期:民國114年1月10日。

張廷詩、李建鵬、〈提升空軍戰術管制聯隊雷達修護能量關鍵成功因素之研究〉,《空軍軍官雙 月刊》(高雄),2022年第225期,2022年8月,頁35,檢索日期:民國114年1月10日。

表加	人フ	合封十	炉淮 目	記級	說明表
177	/\/		八 午!!	LiEHT /NY	1ππ. P/1 1.X

文獻因子	次準則歸納	定義說明
選用各式專長人力需求。	人才選用	飛彈檢測作業人員須高度專業技能,透過「人員資料審
选用骨以等段人力需求 [。]	八万迭用	查」、「考試」及「主管任用面談」招募到最適之人選。
1.專長培訓。		
2.重視人才培育。	教育訓練	, 飛彈檢測工作涉及領域多元,透過「人才培育」及「專:
3.人員教育訓練。		培訓」提高員工所必要之知識、技能及態度。
4.人員培訓。		
计 除 不	績效考核	對人員工作表現之評核,並做為後續「人員留用」、「職
汰除不適用人員。 	積氷/ち杉	位升遷」及「職務調動」的依據。

的影響;10 另文獻歸納其他學(筆)者觀 點,學者王國忠提出海軍艦艇的修護政 策,成本效益分析為其中關鍵因子,相關 準則為「人力規劃」及「預算管控」;11學 者王俊傑認為營業成本除節制應用外, 更要有效分配至適當的單位,提高資源 使用效率,方可持續穩健擴充維修廠的 能量,相關準則為「人力成本」及「維護、 材料成本」;12依學者范淼提出武器系統 在服役部署期間,需重視「壽命週期成 本」分析,以嚴密掌控相關運作及後勤維 持成本的惡劣膨脹,相關準則為「能量 建置成本」、「後勤支援成本」、「運作成 本」及「設備維護成本」。13

現行拖式飛彈(2A型)檢測核心工作 仍委中科院辦理,如未來希由軍種自建能 量,以更有效率支援部隊戰備演訓任務, 必須考量人力需求、技術移轉、廠房設 施、測檯採購與後續維護等所衍生之相關 成本;承前,筆者歸納各準則間共同及關 聯性,以「人力規劃」、「建設成本」及「維 護成本」等3項納入次準則(如表五)。

(三)後勤支援管理

飛彈檢測工作不論是軍種執行,亦 或委商辦理,均須導入企業管理精神,將 各個孤立、被分割、各自獨立缺乏相容的 各後勤支援要項,運用管理方法予以整 合而不發生衝突,達到最有效率而支援

¹⁰ 同註6,頁73。

¹¹ 王國忠,〈軍商裝備系統效益方案之評選一以海軍艦艇為例〉,(義守大學碩士論文,2015年), 頁36,檢索日期:民國114年1月7日。

¹² 同註8,頁104。

¹³ 同註6,頁80。

	大工 かん・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
文獻因子	次準則歸納	定義說明				
1.預算管控。	人力規劃	飛彈檢測作業分工細微,須對現在或未來人力成本予以評估、分析				
2.人力成本。	人力況劃	與預測,使人力資源獲得充分的利用。				
1.能量建置成本。	建設成本	建置飛彈檢測作業能量,須投入人、機、料、法、環等建置成本,及				
2.運作成本。	性 建	衍生的各種服務及勞動等「運作成本」。				
1.維護、材料成本。						
2.後勤支援成本。	維護成本	執行飛彈檢測工作所需的人員維持與培訓、機具測檯維護、場地設 施保養,及相關後勤支援成本。				
3.設備維護成本。		肥 木食 / 汉伯 柳 牧却又饭 火牛				

表五 成本效益次進則歸納說明表

壽期總成本最低的目標。學者范淼提出, 武器系統擬定維修概念後,進而形成維 修計劃,將可靠度、可維護度、補給支 援、包搬儲運、測試及支援裝備、設施、 人員與訓練、技術資料及電腦資源等各 後勤支援要項的衝突與以相容協調與整 合,相關準則為「維修計劃」、「維修品質 與時效」與「後勤支援整合」。14

另文獻歸納其他學(筆)者觀點,可 知國軍後勤藉由後勤委外方式,引進民 間以具備的優勢和特點,以提升維保效 益,避免資源配置錯誤困擾團隊,相關 準則為「資源整合管理」與「風險辨識與 管控」;另透過國軍策略性商維,以降低 軍方維持成本,其中影響軍機商維考量 因素包含合約商服務品質紀錄、技術能

力、信譽與緊急狀況應變能力,相關進則 為「維修管制」、「風險管理」與「戰備整 備時效」;15綜上,歸納各準則間共同及 關聯性,以「後勤整合管理」、「風險管 控 」 及 「應急支援時效」等3項納入次準 則(如表六)。

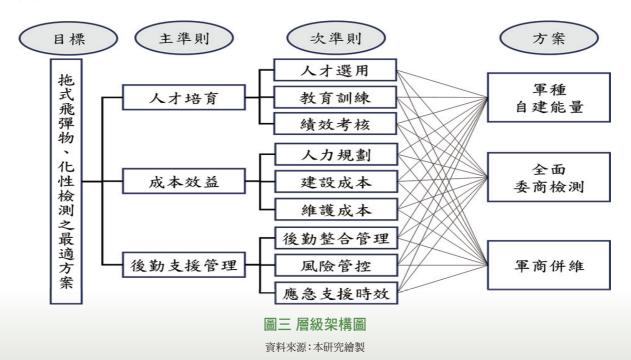
三、層級架構建立

國軍拖式飛彈(2A型)現行可靠度 建驗模式係由飛勤廠、中科院等單位,採 「軍商併維」方式執行,故本研究以「軍 種自建能量」、「委商合約管理」與「軍 商併維」等三種選擇適用方案,以確認是 類飛彈物、化性檢測之最適策略。另藉 由相關期刊、報告等文獻蒐集、分析與整 理,並結合個人工作實務經驗,歸納出層 級架構圖(如圖三)。

¹⁴ 同註6,頁256-257。

¹⁵ 徐志豪,〈探討影響空軍軍機商維推展績效之關鍵因素〉《國防管理學術暨實務研討會第十九 届》(桃園),2011年6月,頁5,檢索日期:民國114年1月10日。

本研究歸納出主準則計有「人才培 (如表七)。 育」、「成本效益」及「後勤支援管理」等 3項·次準則計有「人才選用」、「教育訓 練」及「績效考核」、「人力規劃」、「建設 成本」、「維護成本」、「後勤整合管理」、


肆、研究結果

一、一致性檢定分析

「風險管控」及「應急支援時效」等9項 本研究探討國軍拖式飛彈物、化

表六「後勤支援管理」次準則歸納說明表

文獻因子	次準則歸納	定義說明		
1.維修計劃。				
2.後勤支援整合。	ᄽᅓᆎᇝᄼᅉᅖ	飛彈檢測工作需要縝密的維修計劃與管制,落實資源整合管理,		
3.資源整合管理。	後勤整合管理	以發揮其後勤支援要項應有的效能與功用。		
4.維修管制。				
1.風險辨識與管控。	風險管控	飛彈檢測涵蓋高頻、機械、電子及火工等領域,設備操作人員須		
2.風險管理。)型()双(目)空	具備專業能力,強化風險辨識與管控。		
1.維修品質與時效。	應急支援時效	飛彈檢測作業遇戰備、演訓任務,亦或是戰時整備急需,單位或		
2.戰備整備時效。		廠商之相關整備與支援時效性。		

表七 定義說明表

項次	區分		定義說明
1	主要準則 人才培育		人才培育是一種過程,透過組織的發展暨個人的教育與訓練,培養員工具備職務上專業的知識與技術。
1-1		人才選用	透過遴選、任用及考核飛彈檢測所需的人才。
1-2	次要準則	教育訓練	係指經由培訓來增強員工能力、知識及態度等。
1-3		績效考核	員工作業輸出成果,對組織的貢獻或價值進行考核和評價。
2	主要準則	成本效益	係指以成本和效益來評估項目價值的一種方法。
2-1		人力規劃	根據組織的任務目標預劃未來的人力需求。
2-2	次要準則	建設成本	建置飛彈檢測能量過程中所耗費的有關投資支出。
2-3		維護成本	確保設備正常運作下,所投入的保養、維修支出。
3	主要準則	後勤支援管理	將後勤導入武器系統全壽期概念,使系統發展與後勤支援能緊密 的結合。
3-1		後勤整合管理	係指運用管理的方法整合後勤支援要項,而不發生衝突。
3-2	次要準則	風險管控	係指對風險的辨識、評估及應對風險的策略。
3-3		應急支援時效	係指任務或戰備急需,後勤單位支援時效性。
_	方案	軍種自建能量	依照能量建置評估五大要素-人、機、料、法、環,全面由軍種建立 飛彈檢測能量。
=		全面委商檢測	採合約管理模式,委由廠商建立檢測能量,執行檢測作業。
Ξ		軍商併維	採策略性外包方式,部分運用民間能量支援飛彈檢測作業。

性檢測最適策略,經整理分析7個受 訪專家,區分決策層級4員、管理層級 3員,以Expert Choice 11軟體進行權 重結果加總後分析,其層級架構之主 準則一致性指標(Consistency Index, C.I.) 值為0.00075, 次準則一致性指標 (Consistency Index, C.I.) 值分別為人 才培育0.00305、成本效益0.00303、後 勤支援管理0.00292;經檢定後均符合 C.I.≦0.1 之標準。

另將受訪者各個構面之權重值,求 算出其一致性指標(Consistency Index, C.I.) 後,因各層級的重要性不相同, 故運用一致性比率(Consistency Ratio C.R.) 檢驗層級結構的一致性;整體層 級的一致性比率則是將 C.I.除以「隨機 指標(Random Index, R.I., 依表 n=3, R.I=0.58)」, 結果均小於 0.1。經計算及 驗證後,上述各指標數值均≦0.1,顯示受 訪者於填寫問卷時,皆能符合邏輯且合 理的完成填答,因此已具備可接受之信度 (如表八)。

二、準則層級權重分析結果

本篇主要在探討國軍拖式飛彈檢測 在人員素質、成本效益及後勤支援管理 等3個主進則及9個次準則影響最適方案 之關聯因素,經由第一階段專家問卷調 查均同意所列主、次進則項目及定義,第 二階段訪談對象為陸勤部與飛勤廠相關 業務決策及管理階層人員(如表九)。經 問卷權重值分析結果,說明如下:

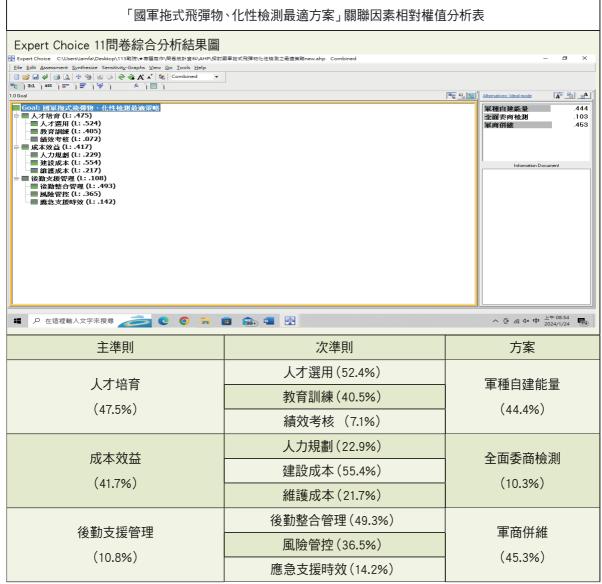
(一)方案

「軍商併維」(權重:45.3%)最高、 「軍種自建能量」(權重:44.4%)次之、 「全面委商檢測」(權重:10.3%)最低。

(二)主準則

「人才培育」(權重:47.5%)最高、 「成本效益」(權重:41.7%)次之、「後勤 支援管理」(權重:10.8%)最低。

(三)次準則


在「人才培育」所屬次準則權重比 序,以「人才選用」(權重52.4%)最高,其 次為「教育訓練」(權重:40.5%),「績 效考核」(權重:7.1%)最低;另「成本效 益」所屬次準則,以「建設成本」(權重: 55.4%) 最高,其次為「人力規劃」(權重: 22.9%),「維護成本」(權重:21.7%) 最低;「後勤支援管理」所屬次準則則 以「後勤整合管理」(權重49.3%)最高, 「風險管控」(權重36.5%)次之,最低為 「應急支援時效」(權重:14.2%)。

三、次準則整體層級權重分析結果

次準則整體層級權重分析結果顯 示,對國軍拖式飛彈物、化性檢測之最適 策略選擇影響程度較高的次準則,排序 分別為「建設成本」占整體權重18.5%最 高、其次「人才選用」占整體權重17.5%、 「後勤整合管理」占整體權重16.4%排序 第三;其餘依序為「教育訓練」、「績效考 核」、「人力規劃」、「維護成本」、「風險

表 ī	۱Δ۲	1P問	共一	孙性	H	率檢定表	=
1K /	\sim	11 101	773	TX IT	داط		~

全體受訪者AHP問卷一致性比率檢定表						
層級名稱			C.I.值	C.R.值	一致性檢定	
主準則		主準則	0.00075	0.00129	符合	
		人才培育	0.00305	0.00525	符合	
次準	則	成本效益	0.00303	0.00522	符合	
		後勤支援管理	0.00292	0.00503	符合	

表九 相對權值分析表

管控」及「應急支援時效」等次準則權重 均低於15% (如表十)。

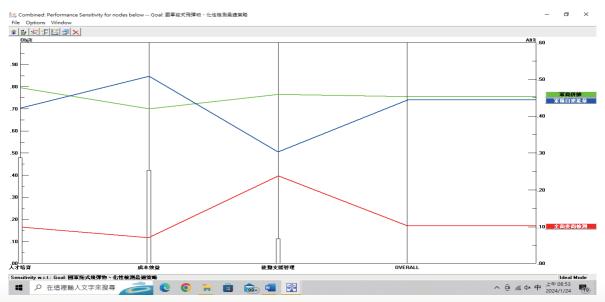
四、敏感度分析

(一)績效敏感

綜整本研究策略方案權值之績效敏

感度,透過分析圖可看出各主準則之評 量績效,以及各方案綜合績效排序;其中 最佳方案為「軍商併維」,並觀察與第二 順位方案「軍種自建能量」曲線變化比 較,顯示出在「成本效益」權重調整,將 影響最佳方案選擇,而「全面委商檢測」 均為較差方案選擇(如圖四)。

(二)動態敏感度


分析三個策略方案排序與主準則權

值增減的關聯變化,其中「成本效益」的 權重遞增,「軍商併維」方案的權重則 會相對遞減,而「軍種自建能量」權重 則呈現遞增。將「成本效益」權重調增至

表十 次準則整體層級分析結果排序

次準則整體層級分析結果排序表					
項目(%)	整體權重	排序			
人才選用(52.4%)	17.5	2			
教育訓練(40.5%)	13.5	4			
績效考核 (7.1%)	2.4	9			
人力規劃(22.9%)	7.6	6			
建設成本 (55.4%)	18.5	1			
維護成本(21.7%)	7.2	7			
後勤整合管理(49.3%)	16.4	3			
風險管控(36.5%)	12.2	5			
應急支援時效(14.2%)	4.7	8			

資料來源:本研究整理

圖四 主準則績效敏感度分析參考基準圖

47.8%時(原始權重41.7%),發現「軍商併維」與「軍種自建能量」的方案排序對調,「軍種自建能量」成為最佳方案, (如圖五)。

伍、結論與建議

一、結論

(一)「軍商併維」為飛彈檢測的最適策略

本研究透過權重分析結果,方案選擇以「軍商併維」(45.3%)最佳、「軍種自建能量」(44.4%)次之、「全面委商檢測」(10.3%)再次之;另依敏感度分析結果,發現主準則「成本效益」權重調增10%以內,「軍商併維」與「軍種自建能量」的方案排序將產生變化,顯示受訪專家普遍認為目前在「成本效益」的考量下,拖式飛彈的物、化性檢測仍應延續

現行「軍商併維」方案,國軍透過「軍商併維」可有效控管人力、設備、場地等相關成本,並藉由與民間科技技術交流機會,觀摩學習新的技術能量及導入創新管理思維,以平衡人才培育、能量建置及後勤支援等作業負荷,可提高基地廠作業能量運用彈性。

(二)「人才培育」為策略選擇的關鍵因素

主準則「人才培育」(權重:47.5%)排序第1,推論受訪專家普遍認為,飛彈檢測作業屬專業精密且技術層次高的工作,技術範圍涵蓋高頻、電子、機械及火工等領域,且組織分工細微,各領域作業的專才都需要經過嚴格的徵募、培訓及考核,通過合格後才可線上執行飛彈檢測作業。另次準則「人才選用」(權重:17.5%)占整體權重值排序第2,「教育訓練」(權重:13.5%)排序第4,說明執行飛彈檢測作業

圖五「成本效益」績效敏感度分析參考動態圖

人才培育不易,應透過嚴謹性的人才篩選 與系統化的教育訓練,方能培養出所需專 技人才,國軍應透過合約管理、技術轉移 等機制,逐步完成專業人才儲備。

(三)「成本效益」影響檢測方案選擇甚鉅

敏感度分析得出的結果,於「主準 則」中各權重值加、減10%,其中發現主準 則「成本效益」權重值提升至47.8%時,方 案排序改變為以「軍種自建能量」為最佳 方案。因此,推論受訪專家認為飛彈檢測 作業能量建置成本過於龐大,現階段由軍 方全面自行建置須消耗大011114量預算, 且廠商專業技術成熟、人力適度調節或設 施(備)齊全等因素,軍方重複投資將不 符效益。故在目前「軍商併維」的政策下, 應審視評估相關技術成熟度與重要性,將 影響作戰效益或支援時效的技術項目, 計畫性轉移軍方自主管控,避免廠商壟斷 核心技術,並透過經濟有效的方案推動, 發揮最大的後勤支援效能。

(四)飛彈檢測仍須落實「後勤整合管理」

透過完整的組織運作與系統化的科 學管理,快速整合各後勤支援要項,包 括「人力、人員與訓練」、「補給支援」、 「技術資料」、「支援裝備」、「設施整/ 新建」、「包搬儲運」與「電腦資訊支援」 等,以有效支援部隊後勤作業,確保武器 裝備戰力不墜。本研究發現雖主準則「後

勤支援管理」(權重:10.8%)最低,然其 所屬次準則「後勤整合管理」(16.4%)卻 占整體權重值排序第3,顯然受訪專家認 為,不論軍維、商維或軍商併維,都存在 組織內部「垂直管制」及與合約商間「平 行協調」等管理作為,後勤整合管理的 良窳,將決定飛彈檢測作業效能。

二、建議

(一)延續飛彈檢測政策,逐步爭取能量移轉

國軍拖式飛彈檢測包含「飛彈測檯 檢測」、「飛行馬達X光鑑驗」、「硝化甘 油滲移分析」、「加速老化實驗」及「安 定劑分析」等物、化性檢測項目,其中飛 勤廠僅建置「飛彈測檯檢測」能量,餘項 目能量均委由中科院建置;因現階段是 項飛彈檢測核心能量仍掌握在中科院手 上,故專家就人力需求、成本效益等因素 考量下,仍應延續「軍商併維」最適化策 略;因此,國軍應逐步向中科院爭取能量 移轉,中科院優先將成熟穩定之飛彈裝 備維保能量,檢討釋放國軍基地廠承接, 以提升飛彈裝備維保實力,並避免對廠 商過度依賴。

(二)運用合約管理機制,強化專業人才培育

飛彈檢測作業屬專業精密且技術層 次高的工作,首重「人才選用」,其次才是 「教育訓練」,軍方若要透過合約商技術 移轉逐步增加「軍種自建能量」比例,應 先擴大徵募具備高頻、電子、機械及火 工等領域知識背景人才,組成飛彈檢測 專案團隊,後續可藉由合約訂定時機,向 中科院提出「技資共享」、「維保見習」及 「能量釋放」等作為,逐步提升國軍維 修人員「技術水準」;另因應未來將籌 獲2B Aero RF型(2B無線射頻導引)飛 彈,均屬同族群飛彈體系,飛勤廠可藉 由現行拖式2A型能量建置基礎,逐步深 化發展檢測能量,以發揮專案團隊最大 效能。

(三)妥慎成本效益分析,完善預算投資規劃

運用有限的國防預算投入拖式飛彈 (2A型)檢測作業,應綜觀是項武器系統 生命週期,運用科學的方法詳實計算各維 保方案投入成本與產出效益,供決策者 參考最適化建議策略。未來飛彈檢測朝 向「軍種自建能量」方案,囿於須投入人 力資源、機具測檯、料件獲得、技術移轉 與廠房整備等「建設成本」過於龐大,可 暫時仰賴民間現有能量,現階段國軍應 審視評估相關技術成熟度與重要性,並 爭取國防預算採分年、分階段建立核心 技術,提高軍方自主檢測能量,以因應商 源消失、供應鏈中斷或應急作戰任務等突 發風險。

(四)建立資訊鏈結機制,落實後勤整合管理

國軍現階段仍採「軍商併維」的飛

彈檢測方案,在實務作業上,因中科院檢 測作業屬其內部單向管控,國軍透過委 製協議交付飛彈實體進廠後,僅能透過 合約督導定期稽核檢測進度,無其他管 道即時掌握實際檢測狀況;因此,為提升 「軍商併維」方案執行效率,落實諸項後 勤支援整合管理,除嚴謹訂定合約條款 及品質標準外,也可透過資訊化管理系 統建置,同步鏈結合約商履約進度,並建 立完整的飛彈履歷與檢測資料庫,達到 快速協調與問題反應處理的目標。

作者簡介

鍾明正中校,國防大學中正理工學 院94年班,中原大學工業工程與管 理研究院111年班。國防大學管理學 院國防管理戰略班113年班,曾任排 長、所長、飛彈管制官,現為陸勤部 彈藥處飛彈管制官。

作者簡介

呂宗翰上校,國防大學管理學院87 年班、國防大學管理學院指參103年 班、國防大學管理學院國防管理戰 略班105年班,曾任排長、分庫長、後 參官,現為國防大學管理學院國管 中心主任。