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ABSTRACT

This study focuses on the Surface Mount Technology (SMT) during the reflow soldering stage. It
utilizes the Taguchi Engineering optimization parameter design to enhance the soldering process and
employs artificial intelligence image recognition to detect and calculate the void diameter. The study
uses a Lig orthogonal array for the experiments and aims to identify the optimal combination of factor
levels that reduce the occurrence of void by improving the stencil, squeegee, and pad aperture. The
results of the study show that the proposed parameter levels can effectively minimize the occurrence of
void, enhance the yield process, and ensure product quality.
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I. INTRODUCTION

Over the years, electronic products have
become lighter, thinner, shorter, smaller, and
more powerful. To keep up with the market
demands and trends, electronic components have
had to be reduced in size, leading to the
development of Surface Mount Technology
(SMT), which can be directly adhered to the
Printed Circuit Board (PCB). Furthermore, PCBs
have evolved from single-layer to multi-layer
boards to reduce their size, leaving no extra space
for traditional components and through-holes.

The SMT technology was created to attach
SMD (Surface Mount Device) components onto
a PCB. However, due to advancements in SMT
technology, the requirements for the solder paste
printing process are increasing. Component pin
distances are getting smaller, component density
is increasing, and pin designs are becoming more

complex, making it difficult to control the process.

Therefore, controlling the solder paste process is
crucial in improving the yield of SMT.

This study is dedicated using the Taguchi
engineering optimization parameter design
method to explore the impact factors that cause
soldering defects in the reflow soldering stage of
SMT, proposes improvement methods to improve
them, and also researches and designs a set of
artificial intelligence image recognition process
to accelerate and replace the time-consuming and
inaccurate manual inspection.

II. LITERATURE REVIEW

Based on the market needs and trends
mentioned above, products have increased
functional density and reduced input/output
spacing. Electronics manufacturers will also face
the problem of cutting down solder defects and
improving solder paste inspection technology.
They are committed to developing robust SMT
processes to enhance the stability of a process and
even try to find the optimal combination of
parameters for SMT processes. Many studies
have pointed out that the critical process of SMT
is solder paste printing; about 50%-70% of solder
joint defects are related to this process [1-4].

Therefore, more and more researchers have
begun trying to improve the solder paste printing
process, using various technologies to improve
process capabilities to reduce product variation
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and improve product quality. They use the Six
Sigma-DMAIC (Define, Measure, Analyze,
Improve, Control) improvement processes to
optimize the process parameters that improve the
quality of SMT solder paste printing processes [5-
8].

Chang et al. investigated a defect
recognition model for the solder paste printing
process of SMT products based on multi-source
and multi-dimensional data reconstruction [9].
The model correlates features and defects, which
improves quality control processes through
feature interaction, selection, and conversion.
Acciani et al. developed an automatic inspection
system using neural networks to detect solder
joint defects on printed circuit boards [10]. The
system compares three classifiers with three types
of feature vectors and five types of solder joints
to evaluate the region of interest.

Taguchi method prioritizes the effective
implementation of engineering strategies over
advanced statistical techniques to achieve cost-
driven quality engineering. Chang utilized the
Taguchi method to explore the dependency
between deposited solder paste volume in the five
key process parameters to minimize product
variation in SMT solder paste processes [2]. Tu
used the DMAIC approach to identify the critical
factor and then applied the Taguchi method to
achieve the ultimate process parameters in SMT
solder paste printing [8]. Jou et al. utilized TRIZ
methodology to identify the four most influential
parameters on SMT solder paste thickness:
squeegee pressure, ejection speed, squeegee
speed, and squeegee angle. Then, the Taguchi
method determines the best combination of
parameter levels [11].

Lin and Kuo studied the feasibility of using
Taguchi accumulative analysis method to
improve SMT process parameters [12]. Fig. 1
shows the solder paste printing architecture. The
study mainly uses adjusting the parameter levels
of control factors such as the physical
specifications and operation behaviors of Stencil
and Squeegee as the research method and doesn’t
add innovative improvement methods. However,
the height of the pressing and pad aperture are the
critical improvement factors not investigated.
Thus, this study attempts to reduce the occurrence
rate of voids by adding control factors such as pad
aperture shown in Fig.2. and height of pressing to
avoid product failure.
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Fig.1. Solder paste printing architecture
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Fig. 2. Pad aperture diagram

1. METHODOLOGY
3.1 The SMT processes

SMT is a method that attaches electronic
components onto the surface of PCB. It solders
SMD onto the boards through reflow soldering.
The process of SMT manufacturing is shown in
Fig. 3. And the process steps are described as
follows:

1. Material preparation and examination
Prepare PCBs and SMDs and check for
defects. PCBs typically have flat, usually
tin-lead, silver-plated, or gold-plated, non-
porous copper pads.

2. Stencil preparation
Usually, we use the stencil to provide a fixed
position for solder paste printing; it depends
on the pad position designed on the PCB to
produce.

3. Solder paste printing
Solder paste is usually a mixture of flux and

oD e
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tin; we use solder paste to connect the SMDs
and pads onto the PCB. It is applied to PCB
with stencil on a angle range of 45°-60°
using a squeegee.

SMD placement

A conveyor belt transports the printed PCB
to a pick-and-place machine where
electronic components are mounted onto it.

N Y ()
Material solder
preparation Stencil

. paste
and. . » preparation ‘ printing
examination

—/ —_/ —__/

s % N )
Clean and Reflow SMD
inspection ‘ soldering « placement

N S— —__/

Fig.3. Flow chart of SMT manufacturing process

5. Reflow soldering
Once the SMDs have been placed on the
pads, the circuit board is moved onto a
reflow oven for solder paste resoldering,
where it undergoes pre-heating, soaking,
reflow, and cooling.

6. Clean and inspection
The PCB undergoes a cleaning process after
soldering and inspection for any defects.
Inspection  methods  include  visual
inspection using a magnifying glass,
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automatic optical inspection (AOI), flying
probe testing, X-ray machine testing, and
more.

3.2 Identification of quality characteristics,
control factors and their levels

This study investigates the ratio of the sum of
void diameter to the overall diameter as the key
quality characteristic. The eight control factors
are determined using engineering knowledge.
The quality characteristic, void diameter, is
affected by eight factors. Two of these factors
have two levels, whereas the other six factors
have three levels. The eight factors are as follows:
Factor A is the height of pressing, which is the

height of the squeegee pressing down to the
stencil. Factor B is the number of printings, which
is the time of solder paste printing onto the pad.
Factor C is the snap-off, which is the distance
from the PCB's top surface to the stencil's bottom
surface. Factor D is the stencil aperture, which is
the size of the stencil aperture. Factor E is the
squeegee speed, which is the velocity of the
squeegee traversing across the stencil. Factor F is
the Pad aperture, which opens an exhaust slot on
the pad. Factor G is the squeegee pressure, which
is the total force of the squeegee pushing onto the
pad. Factor H is the angle of attack, which is the
angle of the squeegee blade about the stencil.
Table 1 shows the eight control factors and their
levels.

Table 1. Control factors and their levels (the underline level is the existing level)

Factors Levels
1 2 3
A. Height of pressing 0.2mm 0.3mm
B. Number of printings 5 times 10 times 15 times
C. Stencil thickness 0.11mm 0.12mm 0.13mm
D. Stencil aperture 90% 100% 110%
E. Squeegee Speed 70-75mm/sec 65-70mm/sec 60-65mm/sec
F. Pad aperture none slotted
G. Squeegee Pressure Skg/em? 6 kg/cm? 7 kg/cm?
H. Squeegee Angle 45 50 55
Table 2. Summary of experimental data
Factors and their levels in Lig Experimental result
Factor
Commm A F B C D E G H Void Diameter (%)
No. 1 2 3 4 5 6 7 8 Observation Average n
1 1 1 1P 1 1 1 1 1 21 22 20 21 21 -26.45
2 1 1 2 2 2 2 2 2 25 26 27 25 25.75 -28.22
3 1 1 3 3 3 3 3 3 43 44 45 43 43.75 -32.82
4 1 2 1 1 2 2 3 3 15 14 14 16 14.75 -23.39
5 1 2 2 2 3 3 1 1 23 24 24 25 24 -27.61
6 1 2 3 3 1 1 2 2 20 21 22 20 20.75 -26.35
7 1 32 1t 2 1 3 2 3 16 17 16 15 16 -24.09
8 1 32 2 3 2 1 3 1 34 35 34 33 34 -30.63
9 1 32 3 1 3 2 1 2 19 20 19 18 19 -25.58
10 2 1 1 3 3 2 2 1 37 36 38 37 37 -31.37
11 2 1 2 1 1 3 3 2 20 21 20 21 20.5 -26.24
12 2 1 32 2 1 1 3 27 26 25 27 35 -28.39
13 2 2 1 2 3 1 3 2 25 24 23 24 24 -27.61
14 2 2 2 3 1 2 1 3 25 24 26 25 25 -27.96
15 2 2 3 1 2 3 2 1 16 17 16 16 16.25 -24.22
16 2 32 13 2 3 1 2 35 36 35 35 35.25 -30.94
17 2 32 2 1 3 1 2 3 18 18 16 17 17.25 -24.75
18 2 32 3 2 1 2 3 1 20 19 21 20 20 -26.03

%)
(@)



3.3 Orthogonal
assignment

array and factor

To conduct a matrix experiment with two
factors having two levels and six factors having
three levels, a minimum degree of freedom of 14
is required. It means that an appropriate
orthogonal array is L;s. Factor A has two levels;
we assign it to the first column. All Factors B, C,
D, E, G, and H have three levels; we allot them to
columns 3 through 8, respectively. Also, we
assign Factor F to the 2nd column with the
dummy-level technique. While the existing level
F1 is required to obtain more precise information
for F2, the number of experiments for F2 is
increased from 6 to 12. Table 2 lists Factor F and
its alternate levels.

3.4 Al Image recognition technology for
void detection

This paper proposes a methods to detect
circuit board defects using image processing and
Al-powered image recognition. The experimental
environment is described as follows: (1)
Hardware specifications: CPU: Intel Xeon Silver
4214 2.20 GHz, GPU: NVIDIA GeForce GTX
1080 Ti, RAM: 32GB. (2) Software version:
Windows version: windows 10, IDE version:
PyCharm Community Edition 2020.2.3, Python
version: 3.6, Numpy version: 1.19.2, OpenCV
version: 4.4.0.46, Tensorflow gpu estimator
version: 2.4.0. The proposed method is described
in the following steps. Fig. 4. illustrates the
system architecture and the resulting outputs.

1. Instant shooting
For obtaining high-quality X-ray images, it
is essential to have stable shooting
conditions; this includes sufficient light, the
right angle and direction, good contrast,
sufficient resolution, appropriate focal
length, and a stable shooting mechanism.

Additionally, image pre-processing is also

crucial.

2. Image pre-processing

Due to the complexity of PCBs and their
color changes, direct image recognition can
result in a high rate of identification errors.
Therefore, image  pre-processing is
necessary to reduce unnecessary features in
the image and strengthen the features that
need to be recognized. We implement the
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following three image processing processes

to fulfill the requirements of subsequent Al

image recognition.

(1) Color to Gray: It is a method of
converting color images into grayscale
images, which is actually a weighted
average of the pixel values of R, G, and
B channels, and Eq. 1 shows the
calculation expression.

G=0299%R+0.587+G+0.114xB (1)
(2) Median Filter: Its advantage lies in its
ability to effectively deal with different
types of noise, such as salt-and-pepper
noise in X-ray images. Noises are
removed and smoothed. Eq. 2 shows
the formula.

B(x,y) = median {I(x + i,y + i):

i=—a—-a+1,..,a

j=-b—b+1,..,b} 2)

B(x, y) is the pixel value filtered by the
median value {I(x + i,y +1i) is the
pixel value in the window, and i and j
are the horizontal and vertical offsets of
the window, respectively.

(3) Threshold: Convert a grayscale image
to an image with only two values,
usually 0 and 255, i.e., black and white.
The purpose of this process is to
emphasize  or retain  important
information in the image while
discarding unnecessary details, as

described in Eq. 3.

0, if I(x,y)<T

B(x,y) = 3
() {255. if Iy =T 3)
3. Defects detection with an Al image
recognition defects
Al 1image recognition wuses artificial

intelligence (AI) technology to train a
computer system to recognize and
understand images, which can easily enable
computers to find the type, size, and location
of objects in images. It usually includes the
following steps and techniques: (1)
Collection and annotation of training data. (2)
Preprocessing of training data. (3) Choose
the correct model architecture. (4) Model
training. (5) Validation and testing. (6)
Optimization. (7) Deployment.



Chung-Wen Tzeng et al.
Research on Parameter Optimization of SMT Based on Intelligent Image Recognition and Taguchi Engineering Technology

This research implements an Al image
recognition with the open-source YOLO
v7[13]. We perform the solder joint
positioning and solder defects detection in
two steps: (1) Find solder joints: We have an
Al image recognition on the circuit board
diagram with pre-processing image and find
the size and position of the solder joints in
the diagram. Then, we cut the solder joint
images and recorded sequentially. (2)
Soldering defect detection: Based on all
solder joint images found by Find Solder
joints, Al image recognition is performed on

L

Find Solder joints

>

Y Y N
(ORCRL
~yry ' N
OROR®
4
Median Filter Find Defects
|~ I O 3\
°J Y
ry r
C Q (4
I

Threshold

each solder joint image to find whether there
is a defect and output the location and size of
the defect.

Image post processing
Through the image  post-processing
technology, the solder joint defects

identified by the Al image are coated with
translucent red dots of the same size as the
defects at the same position in the original
image, visually highlighting the solder joint
defects and enabling quality inspectors to
find the defects quickly.

Fig.4. Al image recognition steps and the system architecture and results.

5. Output results

We calculate the d value of each solder joint
defect, and the closer the d value is to 1, the
worse the welding quality is, and the better
the soldering quality is not. Eq. 4 shows the
d-value calculation expression, and the
system will mark the d-value of defective
solder joints in real-time.

Defects
" Solder joints

“

According to IPC7095 7.4.1.6, the general
electronics industry requires a total pore
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diameter of < 30% for Class III. If the void
is too large, it will cause air soldering or
solder breakage. Fig. 5. shows the schematic.

IV.IMPLEMENTATION OF THE

EXPERIMENT AND DATA
ANALYSIS

This section introduces the implementation

steps of this study and the definitions of related
technologies as follows.

4.1 Data analysis



1. Computation of signal-to-noise ratio

In accordance with Taguchi [14] and Phadke
[15], the signal-to-noise ratio(n) for STB-
type quality characteristics can be computed
as shown in Eq. 5.

n = —10log,o(MSD) = —10logy (¥,v2)  (5)

Solder outline

Void outline

I
d 'l

Fig.5. Void size diameter schematic

where MSD is the mean square deviation, y;
is the quality characteristic and n is the
number of replications in each trial.

. Analyze of variance for the signal-to-noise

ratio

The average signal-to-noise ratio, 1], Table 3
shows for each factor level and ANOVA of
for void diameter. The degree of freedom for
error is 3. The smallest four signal-to-noise
ratios are the error terms. That is, the sum of
the squares due to Factor A, B, E, and H are
not significant. Therefore, the degree of
freedom after pooling the error terms is 7.15.

. Confidence interval for each factor

Ross defined the confidence interval for the
average signal-to-noise ratio, 7 [16], for
each factor level as shown in Eq. 6.

— 1
n + \/F(a;vl,vz) X Ve X (Z) (6)

where a represents the significance level
and v1 represents the degree of freedom for
the mean. The estimation for vl will always
be 1 for the confidence interval. v, is the
degree of freedom for the pooled error term,
I, is the pooled error variance equivalent to
Eq. 7. and n is the number of replications in
each trial.
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sum of squres due to error

(7)

e degrees of freedom for error

13- 0.72. Let
10

=5%, then 95% confidence interval of 7 for
each level is computed as follow:

For void diameter, V, =

1
i+ \/F(O,Os;m) X 0.72 X () = ~25.14 095

4.2 Combinations of the

parameter level

optimum

Based on the ANOVA analysis of void
diameter in Table 3, it determines that Factors C,
F, D, and G are significant among the eight
control factors, while the remaining factors
remain at their original levels. Among C,, Dy, Fa,
and G, the signal-to-noise ratio is higher. This
means that the optimal parameter level for the
void diameter is AB,CiDE>F2G:H.

4.3 Prediction of signal-to-noise ratio

The sum of the squares of the void diameters
caused by Factors A, B, E, and H is negligible.
Since these terms are considered errors, we do not
consider the corresponding improvement in the 7
prediction under optimal conditions. If we
include the contribution of all factors, the
predicted improvement in n exceeds the actual
achieved improvement. That said, forecasts will
be on the high side. Ignoring factors that
contribute less to the sum of mean squares, the
error will be reduced.

The existing parameter level combination is
A1B2CoD2E2F1GiHy, and  the  corresponding
signal-to-noise ratio, for the void diameter is
computed as follows:

Nota = NA1 + 1By +1C, + 1D, +WE, +
iFy + G, +7H; — 57 = —28.47 (bB)

The optimum parameter level for the void
diameter is A;B.CiDE,F.G>H;. The predicted
signal-to-noise ratio, 74, for the void diameter
is computed as follows:

Nopt = NA1 + 1B, +1Cy + 1Dy + NE; +

The improvement for the void diameter is



Chung-Wen Tzeng et al.

Research on Parameter Optimization of SMT Based on Intelligent Image Recognition and Taguchi Engineering Technology

AN = Nopt — Nota = —22.28 — (—28.47) =
6.19(dB) . Thus, the void diameter in the
optimum parameter level combination is 0.62
times that of the existing parameter level
combination, as shown in the following:

2 —A
(y_"pt) = 101_017
Yold

Yopt = 0.62 X Yo1q

-6.19
=10 10 =0.38

A confidence interval for the optimum
parameter level combination, 14y, is shown in
Eq. 8:

1
nopt + \/F(a;vl,vz) X Ve X ( ) (8)

Neff

where n.rr is the effective sample size

equivalent to Eq. 9.

Total number of experiment
total degrees of freedom associated
with items used in 1oy estimate ]

©)

Nefr =

The value of n.ss for void diameter is 18
147

Therefore, 95% confidence interval of is
computed as follows:

8
Topt £ \/F(O_os;l,lo) X 0.72 X (E) —2228+1.26

4.4 Confirmation experiment

Table 4 shows the confirmation experiment
under the combination of the optimum parameter
level with four replicates for verification. The
confidence interval for the signal-to-noise
ratio, Nconfirm, for the verification experiment is
shown in Eq. 10.

Table 3. ANOVA of 7 for void diameter

Factor Average 1 for factor level (dB) Degree of  Sum of Mean F Contribution
1 2 3 freedom  squares square value  percentage(P%)
A. Height of pressing -27.24 -27.50 - 1 0.31 - - -
B. Number of printings -27.31 -27.57 -27.23 2 0.37 - - -
C. Stencil thickness -25.10 -26.99 -25.72 2 73.56 36.78 51.42 58.69
D. Stencil aperture -26.19 -27.63 -28.29 2 13.89 6.94 9.71 10.14
E. Squeegee Speed -27.36 -27.09 -27.65 2 0.95 - - -
F. Pad aperture -28.13 -26.60 - 1 21.48 21.48 30.03 16.89
G. Squeegee Pressure -27.82 -26.50 -27.79 2 6.82 3.41 4.77 4.39
H. Squeegee Angle -27.72 -27.49 -26.90 2 2.14 - - -
Error 3 3.38 - - -
(The pooled error) 10 7.15 0.72 9.89
Total 17 122.90 7.23 100
Table 4. Verification experiment data
Experiment condition Experimental result
(matrix experiment) Void Diameter (%)
A F B C D E G H Observation Average n
1 2 2 1 1 2 2 1 14 15 13 15 14.25 -23.09
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1 1
Tope £ [Figwyn X Ve X Gt ) (10)

where r is the number of replicates of the
verification experiment. Therefore, the 95%
confidence interval, N¢onfirm, for the void
diameter is computed as follows:

8 1
—22.28% [F X 0.72 X
—\] (0.05;1,10) (18 4)

= -22.28+1.57

V. CONCLUSIONS

SMT is a new technology in PCB manufacturing,
and the reflow soldering step is one of the critical
processes of SMT. In this study, we can improve
the occurrence of soldering defects(voids)
effectively through the process improvement of
pad aperture shown in Fig. 6., and we can
enhance the detection accuracy through artificial
intelligence image recognition technology. The
results show that: (1) The quality characteristic,
void defect, was determined by engineering
knowledge. The control factor tried in this study,
pad aperture, effectively improved solder joint
defects. (2) The optimal combination of
parameter levels was determined using the
Taguchi method with a L3 matrix experiment. (3)
Artificial  intelligence image  recognition
technology improves the speed and accuracy of
manual interpretation of defects in the process.

Improved
c*g

Fig. 6. Soldering defects(void) improvement

Original
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