直升機戰術接戰模擬系統(TESS)介紹與運用之研析 筆者/黃綉文

提要

- 一、現今各國均企圖找尋安全且可靠的方式實施訓練,此系統能有效模擬戰場實況,除訓練飛行人員目獲及辯證之能力並可磨練機(組)長戰術思維,地面勤支人員更可利用此系統,模擬自衛戰鬥演練,有效利用此系統訓練所屬官兵,必能在實際戰場上減少不必要之傷亡。
- 二、戰術接戰模擬系統(TESS)規劃設計概念,係藉由系統特性,提供載具航電 參數計算、航跡顯示、武器模擬等數據,以安全雷射及聲光效果營造實彈 射擊場景,運用戰術場景分析單元訓練結果,供訓練歸詢分析比對作業, 減少訓練成本提升訓練效能進而增進飛行員於單機、組及戰鬥隊教練之戰 術運用及接戰能力。
- 三、戰術接戰模擬系統(TESS)建置多年,系統支援於各項訓練與演習任務,經 評估確實可有效提升飛行訓練效益,最後結論筆者提供未來訓練目標供讀 者參考及省思。

關鍵詞:TESS、直升機、模擬

壹、前言

研究緣起為美國陸軍自 1998 年開始使用戰術接戰模擬系統 Tactical Engagement Simulation System(簡稱 TESS),相關裝備結合戰術想定,模擬戰場情況,執行實機空對空、空對地及射擊訓練等戰術組合訓練,可有效降低訓練成本、縮減距離與彈藥需求,提昇射擊訓練安全。因此在精益求精時藉由戰術接戰模擬系統(TESS)模擬方式,研究如何於駐地訓練期間,搭配地面前進管制人員實施「地空整體作戰」飛彈發射之準度減少戰損,擴大戰場情資整合功能,加快目標獲得時效性並增進目標打擊能力,其使精進陸航作戰更具效益訓練之目標。

研究目的在如何運用戰術接戰模擬系統(TESS)模擬方式,訓練飛行人員目 獲及辯證之能力、磨練機(組)長戰術思維,如何與地面前進管制人員實施搭配, 加快目標獲得時效性並增進目標打擊能力作為。

研究方法使用以近年戰演訓任務及軍事準則、計畫為參考依據,綜合出陸 航部隊以戰術接戰模擬系統(TESS)執行訓練及任務。

探討本文名詞說明計 TESS 等 3 項如下(一)TESS(TACTICAL ENGAGEMENT SIMULATION SYSTEM): 戰術接戰模擬系統,由一個與訓場基礎設施、指揮和控制以及地面目標訓練系統整合飛機系統。1(二)MMCC(MODULAR MOBILE COMMAND AND CONTROL): 中控台,提供戰場訊息、空中與地面溝通、參與攻擊、致命性效應評估、實際戰果評估和任務後歸詢。2(三)AAR(AFTER ACTION REVIEW): 行動後檢討,對訓練結束後,著重於過程的標準,使參訓者自行發現發生了什麼、為何發生、及如何維持優點,並改進缺點。3

¹網路引用:Aviation Training Systems ICE,https:www.faac.com,頁 4。(檢索日期:2024 年 2 月 10 日)

²同註1。

^{3&}lt;sub>同註1。</sub>

貳、系統介紹與概述

戰術接戰模擬系統(TESS)是為 AH-64D 阿帕契直升機所設計,用於飛行員 戰術作戰訓練,藉由系統特性,以安全雷射及聲光效果營造實彈射擊場景,減 少訓練成本,提升飛行員於單機、組及戰鬥隊教練之戰術運用及接戰能力。提 昇實體機戰術訓練成效及強化地面勤支人員個人戰技,律定戰術接戰模擬系統 運用規劃、成效檢討、師資培訓等作法,以利爾後成軍及各項戰演訓任務遂行。

國軍於民國 104 年獲得戰術接戰模擬系統裝備,主要為 AH-64E 阿帕契攻擊直升機訓練使用,AH-64E 阿帕契攻擊直升機可以使用戰術接戰模擬系統 (TESS)提供使用者執行安全的戰術訓練。包括部隊協同作戰模式、迴避敵火程序以及飛機生存裝備的使用。參與者和事件的數據可以即時傳輸,以便在模組化移動指揮控制台(MMCC)上顯示和監控追蹤,以提供狀態顯示、參與者間通信、交戰裁決狀況、即時傷亡評估和行動後檢討(AAR)。4

將模擬訓練裝備技術有效運用於新世代之教育訓練上,發揮人員、武器及 戰術效能於極致,訓練高素質人員實施跨世代的軍事革新,以因應未來的各種 不確定性的挑戰,本章節將帶讀者瞭解系統及實體配置初步的性能諸元介紹。 一、戰術接戰模擬系統(TESS)系統介紹:

(一)飛機套件(B-kit):

- 1.可視安全雷射總成 ESLRF/D: 替代雷射傳送器供應 TESS 系統使用火箭、地獄火飛彈標定目標之雷射源。
- 2.飛機內部校準總成 AIBS:為安裝了可視安全雷射總成之日間感應總成校 準用之測裝。
- 3. 戰術接戰模擬系統機砲控制單元 TGCU:
 - (1)供應戰術接戰模擬系統(TESS)使用 30 機砲標定目標之雷射源。
 - (2)提供地面接戰人員 30 機砲武器使用燈號指示。
- 4. 戰術接戰模擬系統訓練飛彈 TTM: 提供地面人員火箭、地獄火飛彈 等武器使用燈號指示。
- 5.模組數據記錄總成 MS TRAY ASSEMBLY:整合、紀錄飛機資訊透過遙測天線傳送給中控台。
- 6. 遙測天線 TELEMETRY ANTENNA: 傳送與接收各項資訊信號。
- 7.全球定位系統天線 GPS ANTENNA:提供飛機定位信號至中控台。

⁴FAAC/ICE/Products/Aviation Training Systems ,https://www.faac.com/inter-coastal/products/aviation/。(檢索日期:2024年2月10日)。頁1。

圖 1、飛機套件(B-kit)配置圖

資料來源:《戰術接戰模擬系統操作手冊 SMM 01-6920-712-24&P》,頁 29。

(二)目標設備套件(OPFOR):

- 1.固定式目標:
 - (1)模擬單元(IPU)
 - (2)電源供應器(IPS)
 - (3)雷射訊號接收器(WLS)
 - (4)無線電天線(Antenna Kit)
- 2.移動式目標:
 - (1)模擬單元(IPU)
 - (2)電源供應器(IPS)
 - (3)雷射訊號接收器(WLS)
 - (4) 雷射標定器(WSBL)
 - (5)無線電天線(Antenna Kit)
- 3.戰車套件

圖 2、模擬單元(IPU)

圖 3、電源供應器(IPS)

學資料。民國 104 年 12 月 24 日。頁 8。

資料來源:陸軍航空第601旅戰術接戰模擬系統教 資料來源:陸軍航空第601旅戰術接戰模擬系統 教學資料。民國 104 年 12 月 24 日。頁 8。

圖 4、雷射訊號接收器

資料來源: 陸軍航空第601 旅戰術接戰模擬系統教 學資料。民國 104 年 12 月 24 日。頁 8。

圖 6、雷射標定器

圖 5、無線電天線

資料來源: 陸軍航空第601 旅戰術接戰模擬系統 教學資料。民國 104 年 12 月 24 日。頁 8。

資料來源:陸軍航空第601旅戰術接戰模擬系統教 資料來源:陸軍航空第601旅戰術接戰模擬系統 學資料。民國 104 年 12 月 24 日。頁 8。

教學資料。民國 104 年 12 月 24 日。頁 8。

(三)勤務支援套件:

- 1.網路中繼器(Repeater)
 - (1)模擬單元(Instrumentation Player Unit)
 - (2)電源供應器(Power Supply)
 - (3)無線電天線(Antenna Kit)
- 2.機動管制台(Modular Mobile Command And Control): 商規中央處理器 微軟視窗架構、以 2D 及 3D 顯示,可即時觀察與控制,具備任務歸詢重 播功能。
 - (1)主控端電腦(Host MMCC)
 - (2)客戶端電腦(Client MMCC)
 - (3)無線電天線(Antenna Kit)
 - (4)GPS 天線(GPS ANTENNA)

第5頁,共18頁

- (5)筆記型電腦(Laptop)
- (6)無線路由器(WirelessLink)
- 3.任務分析程式
- 4.校靶版
- 5.手持式設定元件
- 6.通用型設定元件5

圖 8、機動管制台

圖 9、手持式設定元件

資料來源:陸軍航空第601旅戰術接戰模擬系統教學資料。民國104年12月24日。頁9。

資料來源:陸軍航空第601旅戰術接戰模擬系統 教學資料。民國104年12月24日。頁9。

二、戰術接戰模擬系統(TESS)運作原理:

- (一)以無線傳輸方式即時傳輸接戰狀態。
- (二)以安全雷射代替實彈射擊。
- (三)以燈光及音效模擬射擊效果。
- 三、戰術接戰模擬系統(TESS)訓練運用:

(一)任務派遣:

- 1.派遣以戰術組合訓練或射擊訓練任務課目為主。
- 2.明確律定空、地勤務人員職責與風險評估。

(二)任務整備:

- 1.依維護保養規範完成定期保養作業、裝備借/出清點作業程序。
- 2.裝備完成安裝及檢測作業。
- 3.依任務完成戰術想定兵推,及飛行任務訓練考核課目律定。
- (三)任務訓練:主控台功能操作,輔助任務機飛行執行,提供飛行監控安全、 及測考與驗證紀錄等作業。

(四)任務歸詢:

1.任務完成依紀錄功能系統,實施任務歸詢。

⁵FAAC/ICE/Products/Aviation Training Systems ,https://www.faac.com/inter-coastal/products/aviation/。(檢索日期:2024年2月10日)。頁1。

- 2. 將相關參數分析統計後完成彙整,並按月呈報訓練運用成效。
- (五)裝備保養:依維護保養規範完成保養及清點作業。
- 四、戰術接戰模擬系統(TESS)訓練課目:
 - (一)駐地訓練及戰演訓前置訓練。
 - (二)戰術單機及組合協同訓練與評估。
 - (三)實施空對地(艦)、空對空等射擊訓練。
 - (四)支援作戰測試及戰術準則發展。
 - (五)提供可編修之敵軍威脅。
- 五、戰術接戰模擬系統(TESS)運用效益:
 - (一)指揮官與訓員可從多個工作站上監控實際操演情況。
 - (二)支援單機及組合協同訓練與評估。
 - (三)使機組員可於任何地點進行射擊訓練,且無須使用實彈。
 - (四)可幫助機組員實施空對艦實戰訓練。
 - (五)降低成本-縮減距離與彈藥需求,於駐地施訓。
 - (六)提昇實彈射擊時之安全性。
 - (七)飛機緊急落地時可支援快速回應。

參、戰術接戰模擬系統(TESS)協同訓練與驗證

未來作戰型態是無戰不聯,聯合作戰是必然之趨勢,陸航部隊及特戰部隊, 執行作戰演訓訓練,強化人員地面戰術協同觀念與運用,了解防衛作戰現行作 業程序,並藉各項測驗方式,持續加強實施驗證,反覆檢討、精進,完善地空 作戰各項作為,以提升戰鬥效能。

- 一、案由: 航空旅「地、空指管」作戰運用實距驗證。
- 二、驗證編組:計軍團機動指管中心等十組。
 - (一)軍團機動指管中心
 - (二)旅指揮所
 - (三)特遣隊指揮所
 - (四)攻擊機組
 - (五)假想敵組(戰術接戰模擬系統 TESS)
 - (六)蜂眼雷達組
 - (七)航管組
 - (八)地面工作站(MGS)
 - (九)航空任務規劃統(AMPS)
 - (十)機動數位微波
- 三、驗證目的:為驗證作戰區戰術空域指管運用,派遣○旅攻擊特遣隊,協同

○砲指部蜂眼雷達車組,採想定誘導結合計畫航路,假竹東及湖口地區,執行各指揮層級航機管制程序,並輔以假想敵組驗證戰術接戰模擬系統 (TESS)及光模車接戰程序,期獲得作戰區戰術空域指管參數,以利強化指管效能。

四、驗證方式:

- (一)驗證場地:竹東中油探勘處及竹南、湖口等地區。
- (二)驗證方式:依計畫航行管制、臨機航行管制、戰術接戰指管及野戰航行管 制等四階段。

五、驗證實況

- (一)計畫航行管制:測試作戰區迅安、機動指揮所指管各項通資設施戰術位置 鏈結效能。
 - 1.迅安通聯狀況:此次迅安系統編組人員於假竹東中油鑽探處開設,提供 海空情資訊號,通聯狀況良好。
 - 2.指揮所指管通聯:指揮所各項通資系統於假桃竹地區開設,計開設資訊作業組、有線電作業組、對上指揮官網、對下指揮官網、維星系統(動中通車載終端)、機動數位微波系統及MGS地面工作站,通聯狀況均良。
 - (1)資訊網路:運用陸區系統資訊網路介接,並以中華電信軍租電路及維星系統為備援,開設旅對上、下級單位視訊系統及提供國軍資訊網路及傳真服務。
 - (2)有線電:運用中華電信軍租電路介接KY-32MA野戰數位交換機,加入 國軍六碼軍線服務,提供指揮所各席位對內及對外有線電通聯,並以 維星及陸區系統為備援,可直接對上、下級等單位構成通聯。
 - (3)無線電:於指揮所開設AN/VRC-191C對上開設指揮官二網(VHF網), 於樂善堂開設中繼台,藉由老窩山軍團中繼台,與員指所構成通聯; 對下開設指揮官網,與特遣隊(竹東中油鑽探處)構成通聯。
 - (4)機動數位微波系統:鏈路配置由老窩山-樂善堂中繼-竹東中油鑽探處,將MGS訊號傳至指揮所,先期測試時全鏈路可正常通聯,惟開設時,樂善堂中繼-竹東中油鑽探處訊號遭干擾、蓋台,隨即更換備用頻率及調整開設位置仍無法通聯,最後向第三作戰區網管中心協調備用頻率後,恢復通聯。配合MGS地面工作站,於寶山水庫(搏盟科技公司)開設中繼台,回傳MGS中繼台訊號至指揮所。

- (5)維星系統(動中通車載終端): 竹東中油鑽探處開設, 藉由中新二號衛星 與司令部網管主台構成通聯,可提供指揮所語音、資訊、視訊及傳真 等服務。
- 3.驗證狀況:旅指揮所、特遣隊指揮所及中繼站兩處,所需開設人數合計 41員,現行通資連人力可有效支援各項通信裝備開設作業,資訊網路、 有線電開設成效良好;惟因應作戰區複雜地形,無線電中繼高地需先行 完成現地勘查,以利消除通信盲區。
- (二)臨機航行管制:測試作戰區指揮所與在空機數據傳輸功能,使用MGS地面工作站(VRC-92E)接收航機訊號,相關資料(油、彈存量)及飛機即時位置傳至AMPS電腦。
 - 1.開設架構:竹東中油鑽探處分別開設軍團級、旅級及特遣隊指揮所等3套,並藉由機動數位微波系統傳遞數據情資,以利掌握各項航機位置及海空情資。
 - 2.開設狀況:於老窩山開設中繼站,藉由機動數位微波系統延伸通信距離、克服地障,以利將在空機訊號情資回傳至指揮所。惟執行「臨機航行管制」測試時,航機行經寶山水庫一帶發現通信盲區,MGS無法接收航機訊號,隨即編組人員至寶山水庫一帶(286高地)實施現勘,選定搏盟科技公司開設中繼台,配合機動數位微波系統將訊號回傳至指揮所後,可正常接收航機訊號。
 - 3.驗證狀況:軍團機動指揮所因通信盲區影響,無法與竹南在空機構連,需透過中繼站(寶山水庫)機動數位微波系統延伸通信距離,始可接收航機訊號;機動數位微波頻率易受複雜電磁環境影響通聯品質,如遇頻率干擾須立即向網管中心協調、反應。
- (三)戰術接戰指管:情報中心判讀確認目標,攻擊機組運用TESS系統實施接 戰演練,本次驗證戰術接戰系統計開設竹東、橫山及湖口等三處於竹東 開設中控台監控接戰狀況,橫山開設中繼站延伸通信距離,湖口設置假 想敵組,運用雷射槍與在空機模擬接戰程序,各處測試狀況良好。

圖 10、TESS 接戰示意圖

資料來源:航空旅「地、空指管」作戰運用驗證報告資料

1.驗證狀況:戰術模擬接戰系統驗證狀況,可有效發揮裝備效能,訓練攻 擊組接戰程序,惟受複雜電磁環境導致接收訊號不穩定,如可以在無干 擾環境下,可接收到學理範圍,中繼站與中繼站之間直線距離30公里。 人員編組部分採任務編組方式,假使戰備演訓任務較多時,此人員編組 將無法負荷,故建議如果要使裝備完成最大用途,建議增加人員編制。 (如表1)

横山中繼站

2.建議事項與窒礙:

- (1)戰術接戰模擬系統(TESS)授課期間,曾發生過數次機動管制台運用程 式(SMOTAR 5)不明錯誤,導致運用程式需重新啟動。合約商(ICE公 司)授課教官表示此為程式漏洞目前尚無能力修復,且該公司未來將以 新版作業程式(SMOTAR 6)為主。建議辦理程式升級及系統更新,以 利裝備長續運用。
- (2)戰術接戰模擬系統(TESS)系統屬高價值、高技術裝備,需專人專職負 責管理、維護及測試(如表2),以確保裝備妥善及擬真戰場環境。建議可 **参考美方編裝,增編假想敵組以確保駐地訓練及戰演訓任務運用。**

表 1、戰術接戰模擬系統(TESS)人員需求比較表

戰術接戰模擬系統(TESS)人員需求比較表		
地點	任務編組人員	實際需求人員
竹東中控繼	中控台操作手:1員 中繼器操作手:1員 駕駛:1員	中控台操作手:3員(3部電腦) 中繼器操作手:1員 駕駛:1員
湖口假敵	移動式目標駕駛:1員 移動式目標射手:1員 固定式目標操作手:1員 (移動*2員、固定*1員)	每增加1個移動目標需增加2員 每增加1個固定目標需增加1員 (在湖口可架設4-6個目標,需增加 4-12員)
横山中繼	中繼器操作手:1員 駕駛:1員 (僅1個地區)	中繼器操作手:1員 駕駛:1員 (每增加1個中繼地區,需增加2員,有 5個中繼器,最多10員)
總計	8員	10-27員

1. 任務編組人員需求:

- (1) 竹東: MMCC中控台、1號中繼器: 3員
- (2) 橫山: 2號中繼器: 2員
- (3)湖口:3號中繼器、固定式目標、移動式目標:3員

總共需求:8員(武器組5員、駕駛3員)

- 2. 實際人員需求:
- (1)竹東:MMCC中控台、1號中繼器:5員
- (2) 橫山: 2號中繼器: 2員
- (3)湖口:3號中繼器、固定式目標、移動式目標:5員

總共需求:12員(武器組8員、駕駛4員)

資料來源:航空旅「地、空指管」作戰運用驗證報告資料

表 2、TESS 職務職掌表

次 - 1-00 (成初 (成子 代		
職務:士官長副組長:2員 職掌: 1.協助戰術軍官操作中控台 2.可代理戰術軍官於中控台下達指令 3.負責中控台架設及操作 4.平時管理TESS相關裝備 5.擔任假想敵區域指揮官 6.管制假想敵區域與中控台通聯		
職務:中士飛彈修護士:8員 職掌: 1.飛機組件安裝、校準、保養 2.假想敵目標之各目標之射手 3.於車輛機動時擔任車長		
職務:上兵汽車駕駛兵:8員 職掌: 1.假想敵目標、中繼器之駕駛 2.假想敵目標、中繼器裝備預防保養		
·(11套)22員,固定目標(8)8員,		

t -1 40 P

中繼器(5)10 員:合計 43 員

資料來源:航空旅「地、空指管」作戰運用驗證報告資料

- (四)野戰航機管制:在空機傳遞位置訊息至地面指揮所(MGS),接續由蜂眼雷達導引飛機落地,本次驗證計 AMPS 組及蜂眼雷達組。
 - 1.驗證狀況:距離雷達 1~2 公里範圍內為雷達盲區且無法結合地障資訊, 故無法顯示航跡效能及受地形影響。雷達無法對任務機保持全程識別狀況,易造成航管人員對雷達情資誤判。在空機於湖口地區無法顯示飛機 位置,至頭前溪方可搜索及顯示飛機位置。
 - 2.建議事項與窒礙:電腦如同一時段接收大量資訊,易肇生當機狀況,另 蜂眼雷達雖可實施航機野戰導航,惟提供之資訊無法有效滿足精確進場 (PAR)需求。

六、獲得參數

- (一)計畫航行管制:指揮所指管通連,電磁環境複雜,本次驗證出現機動數位 微波蓋台現象發生,研判為本週適逢第三作戰區通資指管驗證遭友軍通資 系統干擾。
- (二)臨機航行管制: MGS 地面工作站係使用 VHF 頻段,雖理想涵蓋範圍最大可達半徑 50 公里,然受地障及複雜電磁環境影響,作戰地區內易形成通信盲區(需架設多處中繼),導致無法持續接受航機訊號。
- (三)戰術接戰指管:戰術接戰模擬系統(TESS)裝備有區分三大種類,飛機安裝組件、中控台、假想敵裝備,在假想敵裝備本次架設固定式及移動式目標各一組,需要3員人力,每多架設一組移動式目標就須增加2員,而固定式為一員,才可以順利完成任務。

(四)野戰航機管制:

1. AMPS 組:

- (1) MGS 易受地障影響,有通訊盲區。
- (2) AMPS 電腦無法有效處理迅安情資,導致系統錯誤情況發生。

2.蜂眼雷達組:

- (1)距離雷達 1~2 公里範圍內為雷達盲區,故無法顯示航跡為正常現象。
- (2)本次驗證雷達開設於竹東地區,該地區為頭前溪沖積河谷,東側橫山鄉 毬子山(標高 2204 呎),南方為竹東鎮北五指山(標高 2175 呎),任務機 於接近頭前溪流域,雷達才搜索到測試機,研判雷達效能受地形影響。
- (3)綜合飛行人員及航管人員之測試過程,蜂眼雷達提供之地圖資訊,不包含地形障礙物(如丘陵、電塔及建物等),且經實地觀察蜂眼雷達對測試機之敵我識別無法持續保持「可識別」之狀態,易造成航管人員對雷達情資誤判,而提供錯誤之導航服務。

七、小結:

- (一)本次驗證出現機動數位微波蓋台現象發生,研判本週為第三作戰區通資裝備實距指管驗證,友軍通資系統相互干擾(30-88MHz 跳頻),建議爾後執行任務使用之頻率需與作戰區網管中心協調使用。
- (二)桃竹地區多丘陵地形,易形成通信盲區,建議需先期現勘中繼台開設地點,並加強中繼高地參數之收集。
- (三)戰術模擬接戰系統驗證狀況,可有效發揮裝備效能,訓練攻擊組接戰程序,惟受複雜電磁環境導致接收訊號不穩定,戰術接戰模擬系統(TESS)系統屬高價值、高技術裝備,需專人專職負責管理、維護及測試,以確保裝備妥善及擬真戰場環境。建議可參考美方編裝,增編假想敵組以確保駐地訓

肆、訓練預期效果

訓練效益而言提供精確之飛行安全監控及指揮管制,可供各飛行部隊運用 全訓練空域執行戰術、戰技及組合作戰訓練,運用規劃如班隊訓練:運用於飛 行班隊訓練管制,另於進階班隊(正駕班、教官班)戰術階段結合想定狀況, 以磨練飛行人員戰技與戰術組合訓練、戰備任務訓練。

遂行戰備任務訓練,可運用此系統實施組、分遣隊、戰鬥隊及特遣隊訓練評鑑,以評鑑單位是否達訓練目標、專精及基地訓練:於組、分遣隊、戰鬥隊及特遣隊等術科測考階段,運用此系統實施空、地對抗,以強化實戰訓練,作戰型態根本仍須以戰技支撐戰術。

戰術接戰模擬系統(TESS)是一個訓練系統,專為 AH-64 阿帕契長弓部隊設計,於進行空中砲擊操作的個人、機組人員和集體級別的訓練。它為即時位置定位和行動後檢討(AAR)提供空對地整合,TESS 由飛機系統、地面主機系統(移動指揮控制或 MMCC 站)和地面車輛系統組成,該系統可現場部署,並提供機組對機組的通訊、分散式交戰裁決、實時傷亡評估和紀錄訓練演習,以彙報機組人員和單位,是戰技與戰術相結合,火力發揚是攻擊直升機必要訓練的課程,地面部隊運用雷標儀引導攻擊機實施射擊,減低遭敵偵獲風險,縮短接戰時間,提升戰場存活率,將戰力發揮極大化並提升多機(型)指揮管制能力,作戰仍須多機型相互搭配組合及機動指揮所指管各項通資設施戰術位置鏈結效能,未來預期訓練目標計以下四點:

- 一、戰術接戰模擬系統(TESS)規劃設計概念,係藉由系統特性,提供載 具航電 參數計算、航跡顯示、武器模擬等數據,以安全雷射及聲光效果營造實彈 射擊場景,運用戰術場景分析單元訓練結果,供訓練歸詢分析比對作業, 減少訓練成本提升訓練效能進而增進飛行員於單機、組及戰鬥隊教練之戰 術運用及接戰能力。
- 二、降低演訓成本,過去歷年重大實兵實彈演訓經驗而言,所耗費國防預算達約1億多元,因此實彈射擊訓練所耗費的預算是非常昂貴,若部隊演訓頻率多,規模大,則在國家編列國防預算逐年下降的狀況下,將無法負荷此經費,將對預算整體規劃運用產生排擠效應。飛行員可在不使用實彈的情況下,實施戰術接戰訓練,俟熟悉相關戰術與操作程序後,再實施實彈射擊,可節約彈藥之成本。由此考量,若運用戰術接戰模擬系統(TESS)並檢討升級,將預見可降低實兵演訓成本。
- 三、解決訓練場地受限,可幫助機組員實施空對艦實戰訓練,模擬戰場真實景實況,磨練飛行官飛行戰技,提高戰場存活率。透過反覆運用,提昇實體機戰術訓練成效及強化地面勤支人員個人戰技,完善戰備整備,俾肆應戰

場情境。6

四、目獲系統性能提升,構改項目計火控雷達、影像感應器等8項,可擴大搜索範圍至16公里、強化夜視效能,並可於敵防空武器射程外對敵實施目標搜索、辨識。

五、小結:

目前本軍所使用在 M-TADS/PNVS 的現代化日間感測器組件(M-DSA)中內的 ESLRD 及 SMODIM 皆已經不再生產及使用,未來在 AH-64E 性能提升後可使用以下裝備,使在使用戰術接戰模擬系統(TESS)可以更加順暢及精準。除訓練飛行人員目獲及辯證之能力並可磨練機(組)長戰術思維,地面勤支人員更可利用此系統,模擬自衛戰鬥演練,有效利用此系統訓練所屬官兵,必能在實際戰場上減少不必要之傷亡。

陸、結論

期許創造真實的戰術接戰模擬環境,提升陸航戰力,先進常言道「平時多流汗戰時少流血」說明了軍隊平時唯有精實的訓練才能在渾沌不明之戰場環境中克敵制勝,運用戰術接戰模擬系統(TESS)能夠建立仿真戰場景況,搭配地面前管人員雷標儀訓練,磨練個人接戰技巧,透過反覆運用,使官兵精熟戰技、完善戰備整備、熟稔接戰流程,俾肆應戰場情境,最後共列計五點如下報告:

一、發揮裝備效能:

飛行人員運用模擬訓練,可增進人員飛行安全與技能平時利用駐地訓練期間實施裝備測試、訓練,戰術接戰模擬系統(TESS)提供精確之飛行安全監控及指揮管制,可供各飛行部隊運用全訓練空域執行戰術、戰技及組合作戰訓練,以發揮裝備達最大效能。

二、整合地空協訓,達到聯合作戰之目的:

113 年神鷹操演,地獄火飛彈射擊目標較以往尺寸小,與目標實際大小有落差,故在節省彈藥以及訓練效率上,如何將 TESS 目標設置於海上或者是岸際,使 AH-64E 藉以 TESS 機地獄火飛彈射擊訓練,除可自身之雷射標定並可結合特戰部隊雷標儀標定,藉由 TESS 中控台監控,使其提升訓練成效、熟稔各項操作,以達聯合作戰之目的。

三、增購雷標儀,提升接戰成效:

依灘岸戰鬥階段,攻擊作戰隊採兩個攻擊組對合成營第2-5波(約32 輛載具)實施打擊,每波間隔 4 分鐘,若每枚地獄火耗時 1 分鐘時間(含目標獲得),攻擊組攻擊第 2 波(4 輛),需耗時 4-5 分鐘,其後續載具已持續向

⁶陳奕庄,《陸航部隊搭配特戰火力導引模擬訓練-以直升機作戰訓練系統》(台南市:飛行訓練指揮部,民國113年1月),頁14。

前推進,逐漸縮短可接戰時間,若每架攻擊機可搭配一具雷標機,可縮短一半接戰時間,雷標儀對於 AH-64E 機隊而言,其優勢為攻擊機能在敵人雷達盲區下等待,透過特戰部隊早期目獲及選定高價值目標,待敵進入我攻擊機接戰範圍後,可立即針對該目標實施打擊,縮短接戰時程以提升戰場存活率。

四、地面部隊與陸航部隊之戰鬥程序磨合:

空地整體作戰時,通常各兵種按本身戰鬥程序實施;但對執行任務過程中,雙方部隊遂行聯合作戰之部份,則須密切協調,使之支撐空地創造真實的戰術接戰模擬環境,讓部隊訓練更具實戰的臨場感,有利官兵於戰時更快適應真實戰場環境。

五、地面部隊與陸航部隊之戰鬥程序磨合:

空地整體作戰時,通常各兵種按本身戰鬥程序實施;但對執行任務過程中,雙方部隊遂行協同作戰之部份,則須密切協調,使之支撐空地模擬訓練都可提供使用者置身戰鬥時靜的真實感受,不需耗費一槍一彈,不會有危安狀況發生,不必動員大量的人力、物力,就可達成訓練的期望,故應善用模擬訓練系統之特性,輔助提升訓練成效;面對新戰爭型態,我們不可墨守以往訓練方式,應講究訓練效率與成本,始能將武器效能發揮於極致,因此,模擬訓練系統未來勢必將更為廣泛運用於軍事訓練用途。7

 $^{^{7}}$ 陳奕庄,《陸航部隊搭配特戰火力導引模擬訓練-以直升機作戰訓練系統》(台南市:飛行訓練指揮部,民國 113 年 1 月) ,頁 14 。

參考文獻

中文書籍

 1. 張應中,《國軍模式模擬與電腦兵棋要綱》(台北市:國防部,民國 106 年 11 月 9 日)

期刊論文

- 2. 林右朗,〈運用虛擬戰場系統執行教育訓練預期成效之探究〉,《陸軍工兵 半年刊第158期》,民國110年5月14日。
- 3. 陳奕庄,《陸航部隊搭配特戰火力導引模擬訓練-以直升機作戰訓練系統》 (台南市:飛行訓練指揮部,民國 113 年 1 月)

網路引用

- 4. Aviation Training Systems ICE,https:www.faac.com。(檢索日期: 2024 年 2月10日)
- 5. FAAC/ICE/Products/Aviation Training
 Systems ,https://www.faac.com/inter-coastal/products/aviation/。(檢索日期:
 2024 年 2 月 10 日)

其他

- 6. INTER-COASTAL ELECTRONICS 戰術接戰模擬系統操作手冊 SMM 01-6920-712-24&P。出版日期: 2013 年 04 月 01 日
- 7. 航空旅「地、空指管」作戰運用驗證報告資料。民國 107 年 3 月 28 日。
- 8. 陸軍航空第601 旅戰術接戰模擬系統教學資料。民國104年12月24日。

筆者簡介

姓名: 黄绣文

級職:士官長教官

學歷:飛訓部航保儲備士官班98-3期、陸軍專科學校正規班51期。

經歷:飛機保養士、飛機修護檢驗督導士。現任職於陸軍飛訓部模擬機組教官。

電子信箱:軍網:s0622@webmail.mil.tw

民網: savon0622@gmail.com