U.S Army CBRN Capability Development Update

美陸軍化生放核戰力提升發展(譯)

From: Army Chemical Review, 2024

出處:美國陸軍化學兵年刊,2024 By Colonel Scott D. Kimmell (retired)

著者:備役上校 Scott D. Kimmell

譯者簡介

譯者游晉權少校,畢業於陸軍軍官學校 103 年班、陸軍化訓中心正規班 106-1 期、美國化生放核學校化學軍官高級班 2019 年班,歷任組長、副連長、後勤官、教官、連長、化參官,現就讀國防大學陸軍指參學院。

前言

在當今複雜且不斷變化的全球安全環境中,化學、生物、放射與核子 (CBRN)威脅正變得日益突出。為了應對這些挑戰,美國陸軍化學兵部隊不斷推動化生放核能力的現代化,致力於提升評估、防護與緩解這三大核心職能的效能。本篇譯文介紹了美國陸軍在化生放核戰力提升發展方面的最新進展,並根據筆者查閱相關資料進行補充說明,進一步闡述各項技術的創新與應用。

本文

To fight, survive, and win in operations against 21st century adversaries, we must leverage ingenuity and technology to develop comprehensive solutions. These solutions should provide situational understanding of potential chemical, biological, radiological, and nuclear (CBRN) hazards; ensure protection with efficient protective equipment; and mitigate the consequences of contamination with limited time and resources. Developing capabilities to achieve these ends requires a comprehensive approach that encompasses all war-fighting functions, including protection, and these capabilities must be integrated across doctrine, organization, training, materiel, leadership and education, personnel, facilities, and policy (DOTMLPF-P). In coordination with the entire CBRN enterprise, the U.S. Army Chemical Regiment continues to make progress toward delivering the

化生放核防護半年刊第 118 期

required capabilities to the warfighter. This article presents an update on five of the programs designed to do that within and across our three core functions of assess, protect, and mitigate and provides a glimpse into future CBRN defense capabilities.

為了在 21 世紀的作戰中與敵對勢力抗衡、存活並取得最終的勝利,我們必須發揮足智多謀與技術優勢,創建全方位的解決策略。而這些策略應能夠對化學、生物、放射與核子 (CBRN) 威脅有準確的狀況評估,確保藉由有效的裝備達到安全防護,並在有限的時間和資源情況下有效緩解污染的影響。發展實現這些目標的能力須要一種全面的方法,包括防護在內的所有作戰職能,並且這些能力必須整合在準則、組織、培訓、物資、領導和教育、人員、設施和政策(DOTMLPF-P)中。配合所有 CBRN 計畫,美國陸軍化學兵團繼續向作戰人員提供所需能力方面取得進展。本文介紹了其中五個計畫的最新情況,這些計畫旨在我們的評估、防護和緩解這三個核心職能內部和之間有計畫的執行,並簡要介紹未來的 CBRN 防護能力。

Assess 評估

The Compact Vapor Chemical Agent Detector (CVCAD) is a networked, wearable capability designed to detect and presumptively identify vapor hazards; it could potentially replace the Joint Chemical Agent Detector. Initial prototyping of the CVCAD was recently completed, with the results used to provide input for the joint requirement. The CVCAD will be demonstrated at a Soldier touch point at Fort Carson, Colorado, and the feedback will be used to narrow potential solutions that are most likely to meet the capability needs of the joint force. While the Army strategy for biological defense continues to evolve, development of the Joint Biological Tactical Detection System—a networked biological detection capability designed to provide warning—is nearing completion. The plan is for production systems to be included in a multi-Service operational test event next year and then to go on to full-rate production and fielding beginning in 2026.

小型氣體化學戰劑偵檢器(CVCAD)是一種新式的穿戴式裝備,網路連接、用於偵測和初步辨識氣態威脅;該設備有望取代現行的聯合化學戰劑檢測器(JCAD)。近期完成 CVCAD 的原型測試,測試結果將作為聯合需求的重要參

考。此外,CVCAD 將在科羅拉多州的卡森堡(Fort Carson)舉行裝備測評展示,藉由士兵實際回饋資訊來篩選最符合聯合部隊需求的解決方案。隨著陸軍生物防護策略的不斷更新,一個重要項目-聯合生物戰術偵測系統(Joint Biological Tactical Detection System)的開發也即將完成。這是一種網路化的生物偵測系統,旨在及時發出警報。計畫中,這些系統將在明年的跨軍種作戰測試中被投入使用,並計劃於 2026 年開始大規模生產與部署。

Protect 防護

Shielding the individual Soldier from CBRN hazards has always been a top priority for the Army and the Chemical Regiment. Current percutaneous protection is effective, but cumbersome and physiologically burdensome. The Uniform Integrated Protection Ensemble (UIPE) is being developed to decrease the degradation of an individual Soldier's combat power. The UIPE is a two-piece, lightweight, chemically protective combat uniform that is made of air-permeable material and has an aerosol liner treated with liquid repellent. It is slated to replace the Joint Service Lightweight Integrated Suit Technology. The UIPE is in the final stages of development. Production-representative suits continue to be tested to determine where further improvements on the design and durability can be made. Limited production of this capability is expected in 2025. Once the suit meets the requirements necessary to support its intended use by the warfighter, full-rate production will begin.

保護士兵免受化學、生物、放射性和核子(CBRN)威脅始終是陸軍及化學部隊的重中之重。現行對皮膚的防護仍有效,但操作繁瑣且對士兵的體能負擔較大。為此,我們正在開發統一整合防護套裝(UIPE),以減少單兵戰鬥力的衰退。UIPE 是一種兩件式、輕便、具有化學防護作用的戰鬥服,由透氣材料製成,並配有經過防水處理的氣溶膠內襯。UIPE 將替代現有的聯合輕型整合防護服(JLIST)。UIPE 正處於開發的最後階段。繼續對具有生產代表性的防護服進行測試,以確定在設計和耐用性方面可以進一步提升。預計到 2025 年將有能力限量生產。一旦防護服滿足支持作戰人員預期用途的必要要求,將開始全速生產。

Mitigate 緩解

In December 2023, the U.S. Army Chemical, Biological, Radiological,

School (USACBRNS) Commandant commissioned Nuclear decontamination working group consisting of representatives across all major commands to assess current decontamination capabilities across DOTLMPF-P and determine how to best immediately improve readiness. While still in the early stages of science and technology development, the Automated Decontamination System (ADS) program is exploring potential robotic integration and capability to reduce time and manpower requirements for CBRN hazard contamination mitigation. These efforts, coupled with a complete assessment across DOTMLPF-P, are focused on how decontamination should be executed in 2040. Permission to move the ADS program into continued analysis and to research and gather information on potential solutions and estimated costs for achieving ADS capability has been granted. The next major milestone will be the receipt of permission for the materiel developers to begin prototyping and testing solutions that have been identified to fulfill the ADS requirement.

2023 年 12 月,美國陸軍化生放核學校(USACBRNS)校長成立了一個除污工作小組,該小組由來自各主要指揮部的代表組成。其目的是評估在各方面(包括準則、組織、訓練、物資、領導和教育、人員、設施及政策)當前的除污能力,並確定如何迅速提高戰備狀態。自動除污系統(Automated Decontamination System, ADS)項目正研究如何整合機器人技術,旨在減少應對 CBRN 危害污染時所需的時間與人力成本。這些努力,連同對整個 DOTMLPF-P 的全面評估,旨在探討屆時在 2040 年的除污應如何執行。「自動除污系統」計畫已獲批准進行持續分析,並將研究和蒐集有關實現自動去污系統能力的可能方案及其成本估算的資訊。下一步將是獲得許可,允許物料開發者開始原型製作和測試確認的解決方案。

Enable Capability Across Core Functions 強化核心職能的相關能力

Chemical, Biological, Radiological, and Nuclear Support to Command and Control (CSC2) is a joint effort that is underway to integrate CBRN awareness and understanding across the common operating picture. This networked capability will be designed to synchronize and integrate CBRN data and information into the commander's common operating picture at all levels from battalion to joint task force, allowing commanders to make

proactive risk-based decisions in CBRN environments. CSC2 is expected to undergo an operational assessment before the end of 2024, with expected delivery to the Army in 2026. After its initial release, subsequent software updates will occur every 3 months in order to improve the capability.

化學、生物、放射與核子支援指揮與管制 (CSC2) 項目是一項聯合行動,目標是在共同作戰圖像上融合化生放核的覺知和理解。這個網路化系統將設計用在自營級到聯合特遣部隊的各個層級,將化生放核的資料和資訊同步整合到指揮官的共同作戰畫面圖像中,這使得指揮官在化生放核環境當中,做出基於風險的主動決策。CSC2 計畫在 2024 年底進行操作性評估,並預計於 2026 年交給陸軍。原始版本發布後,系統將每三個月進行一次軟體更新,以不斷增強其功能。

Way Ahead 展望未來

The successful modernization of the CBRN defense capability is dependent on a better understanding of CBRN hazards and the consequences of contamination and exposure in operational environments. Neither dated Cold War era field studies nor present-day laboratory experiments correlate well with future operating concepts or environments. Science-based studies are imperative in ensuring appropriate input for future solutions. As with other battlespace hazards faced by Soldiers, there are no absolutes with CBRN—only varying degrees of probability and consequences (expressed by risk). But, while CBRN is one of the eight forms of enemy contact, CBRN hazards are frequently misunderstood and generally neglected, but widely feared. Why do CBRN considerations differ from those of other enemy contact forms? Simply put, they carry the stigma of being in the "too hard to do" box and/or are assumed to be unlikely threats. Neither is true, and perceptions must change. Commanders must be enabled to make proactive, risk-based decisions in CBRN environments based on a better understanding of the impacts of those decisions in time and space. Capability modernization is contingent on integration of the three core functions, providing leaders with the ability to reduce—not eliminate—risks. The development of capabilities across the core functions of assess, protect, and mitigate, woven together by DOTMLPF-P integration, provides the foundation for successful operations in future CBRN environments.

化生放核防護半年刊第 118 期

化生放核防護能力能夠成功的現代化,歸因於我們深入了解化生放核威脅及在實戰中遭受染毒的後果。冷戰時代的實際考察與當前的實驗室數據,都不足以與未來的作戰理念或環境相匹配。因此,進行基於科學的研究,對於提供適當的數據支持未來的解決策略非常關鍵。正如士兵面對的其他戰場風險一樣,化生放核威脅也無法絕對預測,只能通過風險來表達其可能性和潛在後果的不同程度。然而,儘管化生放核是與敵接觸的八種形式之一,但仍然經常被誤解且忽略,但卻是普遍存在的恐懼。為何化生放核的考量會與其他與敵接觸形式有所不同?原因在於化生放核常被看作是'難以處理"的問題,或被認為是不太可能出現的威脅。這些觀念都不正確,需要改變。指揮官應具備在化生放核環境中,依據風險評估做出主動決策的能力,並且要對這些決策在時間及空間上可能帶來的影響有更清晰的理解。能力的現代化依賴於三大核心職能一評估、防護與緩解一的整合,這賦予領導者降低風險的能力,而非完全消除風險。這些核心職能的發展,通過 DOTMLPF-P 的綜整,奠定了未來化生放核環境中成功行動的基礎。

Conclusion 結論

Dismissing the CBRN myths of the past and replacing them with an understanding of CBRN environments and potential hazards is crucial to modernization. (Because the elimination of CBRN risk is unachievable, attempts at completely removing the risk are a waste of resources and time.) If we can provide a better understanding of the threat, train and equip our force to operate in its proximity, and mitigate the CBRN hazard risk to acceptable levels, then CBRN modernization will be achievable in the not-so-distant future. As with all forms of enemy contact, CBRN risk is inherent but manageable. We must enable our leaders and their formations to manage that inherent risk in future CBRN environments.

擺脫過去對化生放核的錯誤認知,並以對化生放核環境和潛在危害的深入 理解來取代,是實現現代化的關鍵。因為完全消除化生放核風險是不可能的, 企圖徹底去除風險會浪費龐大資源與時間。如果我們能夠更準確地認識到這一 威脅,訓練和裝備我們的軍隊在這些威脅附近操作,並將化生放核的風險降低 到可接受的水平,那麼化生放核的現代化在不久的將來是完全可能的。正如與 其他形式的與敵接觸方式一樣, 化生放核風險雖然不可避免但仍可控。我們必須賦予我們的領導者及其部隊在未來的化生放核環境中有效管理這些既有風險的能力。

補充說明1

在 TMB 數位雜誌專訪中¹提到,美軍因近期的敘利亞化學武器攻擊事件²以及俄羅斯軍隊在烏克蘭使用的 K-51 手榴彈事件³突顯美軍對化學偵測能力的迫切需求,而傳統偵檢(測)設備並非配發至單兵,這對現代單兵作戰以及主戰部隊的需求並不相符。而開發中的 CVCAD 計畫將提供單兵配戴,或是各式無人載具上,並藉由網路傳輸,將化生放核資訊共享,形成共同作戰圖像。

CVCAD 由 Teledyne FLIR 公司研發、生產與製作,為一款特殊的雙感應裝置,不僅能偵測化學戰劑和工業毒性化學物質,還能偵測可燃氣體與可能導致爆炸環境的異常氧氣濃度。這款探測器能夠即時警告士兵潛在危險,判斷空氣是否適合呼吸,並確認在封閉空間內使用武器是否安全,特別是在有爆炸風險的情況下。此外,該感測器還可以裝置於無人機上,進行遠距離偵察任務。

項目	JCAD (Joint Chemical Agent Detector)	CVCAD (Compact Vapor Chemical Agent Detector)
製造商	Smiths Detection, Bruker	Teledyne FLIR
製造日期	12008 生起投入使用	廠商於 2021 年獲得合約,預計於 2026 批量生產製造。
美陸軍使用對 象及階級階層	陸軍-各班級	單兵
尺寸	約 23 x 10 x 5 cm	未知

^{1.}TMB , https://modernbattlespace.com/2023/04/03/new-cvcad-program-seeks-to-protect-warfighters-from-the-enemy-they-cant-see/

^{2.} 敘利亞化學武器攻擊事件, https://zh.wikipedia.org/wiki/ 2013%E5%B9%B4%E5%8F% 99%E5%88%A9%E4%BA%9A%E5%8C%96%E5%AD%A6%E6%AD%A6%E5%99%A 8%E8%A2%AD%E5%87%BB%E4%BA%8B%E4%BB%B6)

³俄羅斯軍隊在烏克蘭使用的 K-51 手榴彈事件, https://def.ltn.com.tw/article/breakingnews/4530677 第 186 頁

<u>化生放核防護半年</u>刊第 118 期

資料來源:註4

補充說明 2

根據筆者查閱美國化生放核防護聯合計畫執行辦公室 2023 年的目錄指南(JPEO-CBRND CAPABILITIES CATALOG FY2023) 中,可發現目前美軍 UIPE 將發展 Uniform Integrated Protection Ensemble Family of Systems Air (UIPE FoS Air)專門提供給空勤及飛行人員的防護服及 Uniform Integrated Protection Ensemble Family of Systems General Purpose (UIPE FoS GP) 通用款防護服

,以下就2款防護服的描述及優點做補充及比較:

Name 名稱	UIPE FoS Air	UIPE FoS GP
Description 描述	及雙層內衣(2PUG)。這些裝備比現行空勤人員防護服更輕便、減少生理負擔,為所有從事航空平台空勤工作的	將研發方案,提供給各類使用者 均適用的個人皮膚防護裝備,使 其在污染環境中使用時,性能幾 乎或完全不受影響。

⁴ https://www.flir.com/news center/military/teledyneflir wins pentagon contract to-develop-first-individual-chemical-detector-for-warfighters/)

Name 名稱	UIPE FoS Air	UIPE FoS GP
Warfighter 對單兵益處	提供空勤及飛行人員的防護裝備較現 行裝備更輕便,減少體能負擔,並可 結合現有或正在開發的飛行及個人防 護裝備。	護,有效減輕在各種戰鬥環境中
計畫狀態	CBRL 在 2022 財政年度已全面作戰 能力、2PUG 預計在 2024 財政年度 達成初始作戰能力、2029 財政年度達 成全面作戰能力。	2028 財政年度達成初始作戰能
圖示		

資料來源:註5

統一整合防護裝備-通用防護服(UIPE FoS GP),此項目屬於 I 級採購類別,將替代原有的須穿在戰鬥服之外的聯合輕型整合防護服技術(JSLIST)。
UIPE FOS GP 防護服將化生放核防護要素加入日常戰鬥服中,避免了穿兩套獨立服裝的必要,大幅減輕裝備的重量和熱負擔。該裝備首席分析師 Bobby
Brooks 向軍方強調,「這套服裝不僅是日常戰鬥服裝,更是你可以有效操作的救生裝備」。6

⁵ https://www.jpeocbrnd.osd.mil/Portals/90/30_JPEOCBRND Capabilities%20Catalog_12%20Sept%202023_web.pdf)

⁶ https://www.army.mil/article/272306/sharpening the tip of the spear ussocom_experiment_yields_valuable_user_feedback_for_cbrn_defense_developers 第 188 頁