以巴衝突火箭砲運用對殺整體 防空作戰之啓示

空軍中校 何昶逸

提 要

- 一、從火箭砲在近代戰爭的整體發展,探討戰時運用方式與限制。
- 二、透由近期以巴衝突中的重大戰役火箭砲實戰案例,探究中共於對臺作戰中 可能運用的類型及戰術戰法。
- 三、反思我國具備之能力及整體防衛作戰時應對作為,藉此尋求我國因應策略,確保我國臺海安全。

關鍵詞:火箭砲、以巴衝突

前言

近代戰爭中,不論是2022年俄烏戰爭(Russo-Ukrainian War)或是歷年來以巴衝突(Israeli-Palestinian conflict),火箭砲均扮演極具重要的關鍵角色,不論是攻擊敵主力裝備,或是針對局部地區實施壓制,都在近代戰爭中,展現出卓越的成績,其性能均不亞於空中支援,且在現代戰爭中,火砲擔負著支援戰車、步兵的角色,射程往往超過數十公里,而隨著科技進步,火砲部分朝向火箭彈發展,加上彈頭安裝精準導引系統可精確命中,也因為其具有射速快、射程遠、機動性高等優勢,在戰場中的角色越來越重要,「這也使世界各國開始專注於反制之道。

而中國在意識到火箭砲的重要性

後,在引進前蘇聯研製的BM-30「龍捲風」多管火箭後,投入大量人力及物力從事研發,從研製出的衛士型火箭砲的那一刻起,逐漸展露出其對於火箭砲的成效,而隨著時代的進步,科技的發展,不斷地改革及進步,在研發出PHL系列多管火箭後,更是在國際間獨占鰲頭,現已可占據世界前三名,²其技術發展的程度,也對我國國家安全造成巨大的影響。

從上述所見,不論是世界各國甚至 是中國,無不致力火箭砲的發展及運用, 而我國須設法解決,不論是硬殺摧毀,或 是軟殺干擾導控系統,甚至是使敵錯誤打 擊目標等等,都是值得探討與省思的。

本文以文獻蒐集與戰史研析,藉以 巴衝突中火箭砲採取之戰術模式及手段, 從而檢討中共可能對我國各階段作戰模

- 1 〈火箭彈在現代戰場上的應用〉,《新公民議會》,2022年1月12日,(檢索日期2024年3月22日)。
- 2 〈中國火箭砲有多猛?世界第一,配備北斗如虎添翼〉,《頭條匯》,2024年4月1日,https://min.news/military/2224625b152eb51cfbede824dfd0d93f.html>,(檢索日期2024年4月1日)。

式,進而分析火箭砲的特、弱點及其戰術 戰法,以提供國軍防衛作戰及建軍備戰參 考。

火箭砲發展概述及近代戰役之 運用

自古以來,不論是俄烏戰爭或以巴 衝突,凡具備遠距離火砲打擊能力國家, 往往可在戰役上取得作戰契機,進而取得 制空權優勢,成為主宰戰場關鍵因素,而 其中火箭砲更是近年各國研發重點,期藉 性能提升或是關鍵技術突破,成為各國的 領頭羊,故為獲取相關先機,各國無不致 力研發,也可見火箭砲的威脅與戰術運 用,將是國家安全威脅及防衛作戰重要的 一環,故本文從了解火箭砲發展概述、作 戰運用及限制及近代戰爭運用實施研討。

一、火箭砲發展概述

火箭砲其實在1621年明朝年間《武備志》就曾被記載過,當時軍隊以黑火藥 為能源,發射百虎齊奔箭和群鷹逐兔箭等 類似火箭彈的使用情況,可算是火箭砲軍事應用的最早記載。³而其概念就是一種以火箭推進炸彈進行爆破攻擊的遠射武器,一般無設置導引能力,必須依賴彈道飛行的火箭類飛彈,而單兵攜帶操作的輕型火箭砲稱為火箭彈,該裝置無須考慮身管式火砲須承擔巨大後座力等問題,裝置較為簡單,而以大口徑多發聯裝方式提高發射速度和火力的武器,則稱多管火箭砲,⁴其分類如表一。

而當中最具威脅的多管火箭砲研發,則由德國於1929年研製出多種實驗性質多管火箭砲為首例,1941年推出改進版多管火箭砲後,同年6月對前蘇聯聶伯河防線進攻時,就運用火箭砲對明斯克市區進行多次覆蓋性轟炸;而在庫斯克戰役期間中,德軍也集中使用火箭砲壓制前蘇聯砲兵部隊,後續更研製出280公厘及320公厘等多種口徑多管火箭砲,5可說德國為多管火箭砲先驅,也可是多管火箭砲的始祖。

· · · · · · · · · · · · · · · · · · ·				
分類	彈徑	射程	特性	裝備
單發砲兵火箭系統	400 公厘以上	1 /U -6 U // \ III		美國:Honest John 俄羅斯:Frog
多管砲兵火箭系統	60-300 公厘	6-35 公里		俄羅斯:BM-13、BM-21、BM-27 美國:MLRS

表一 砲兵火箭分類表

資料來源: <砲兵火箭的特性與發展近況>《國防雜誌》,第8卷第7期,1995年。

- 3 〈火箭砲〉,《維基百科》,2023年9月8日,<火箭砲—維基百科,自由的百科全書(wikipedia.org)>,(檢索日期2024年4月1日)
- 4 同註3。
- 5 〈多管火箭日新月異?戰術價值極高〉,《青年日報》,2023年5月13日,<https://www.ydn.com.tw/news/newsInsidePage?chapterID=1586235&type=forum>,(檢索日期2024年3月22日)。

而歷史上最著名的火箭砲,必定要 提及前蘇聯的BM-13多管火箭砲(喀秋莎 Katyusha),當時於第二次世界大戰期間 被前蘇聯大規模生產並使用,其相較於其 他常規火砲雖較為脆弱、準確度較低且裝 彈時間較長,但能迅速地將大量的炸藥往 目標區射擊,且機動性強、價格低廉並易 於生產,這些優勢也讓前蘇聯在戰場上獲 取優勢,並在遭到反擊前迅速離開,⁶所 以前蘇聯的BM-13多管火箭砲可以說是火 箭砲的代表。

二、火箭砲作戰運用及限制

火箭砲在近代戰爭出現後,開始廣 泛運用在各個戰場上,自此世界各國不斷 拿出來討論及研究,其中針對其運用方式 及限制,更為世人鑽研的重點,故就相關 內容說明如下。

(一)火箭砲作戰運用

1. 遠程火力打擊

火箭砲是一種重要地面火力裝備, 通常用於進行遠程打擊,壓制、殺傷敵方 目標,主要任務以打擊戰場上敵方戰役戰 術縱深重要固定目標為主,如美軍的增程 制導火箭彈,通過「海馬斯」火箭砲發 射,射程可達84公里;⁷另如配備導引系 統,將可獲得對時敏目標。打擊能力。

2.彈種混合打擊

可依射程選擇不同彈徑,藉助儲運發箱技術,將同一門火箭砲置不同射程的火箭彈於不同儲運發箱中進行發射,提供多種射程的火力打擊,目前火箭彈彈徑可從200毫米至960毫米變化,射程也可從數十公里至上千公里選擇,⁹增加武器使用靈活性。

3.快速執行任務

火箭砲可及時響應戰場火力需求, 為作戰部隊提供準確及猛烈的火力支援, 發揮遠程火箭砲「一裝多能、一砲多用」 特點,運用不同射程的特性,打擊處於不 同距離、不同狀態的敵目標,同時可快速 機動、快速佔領、快速發射、快速撤離陣 地,高效完成打擊任務,¹⁰以避免遭敵偵 知而被火力打擊。

4.取代導彈打擊

現行多款火箭砲具備導引系統,命中精度可達10公尺內,已改善遠程火箭砲偏差過大問題,甚至可取代戰術彈道飛彈作用,且其具備飛行改變預設彈道的能力,增強對敵防空系統突防及隨機選擇打擊所需目標的能力。¹¹

- 6 〈BM-13 多管火箭砲〉,《維基百科》,2023年6月21日,<BM-13 多管火箭砲-維基百科,自由的百科全書 (wikipedia.org)>,(檢索日期2024年4月1日)
- 7 〈 遠程火箭砲和飛彈, 誰才是地面戰「大殺器」〉, 《kknews》, 2022年7月13日, <https://kknews.cc/zh-tw/n/n45zvm5.html>, (檢索日期2024年4月11日)
- 8 指對己方構成重大威脅,需要立即作出反應的目標,或者是具備極高戰略價值、瞬息即逝的臨時 目標。
- 9 同註7。
- 10 同註7。

(二)火箭砲限制

1.射擊精準度

由於火箭砲射擊時,存在推力偏心 與射擊初期易受干擾等2種因素,致使精 準度欠佳,於近接支援時易誤擊友軍,雖 說其慣性導引有助於提升射擊精確,但仍 無法精準打擊,若倚重衛星定位,其系統 整合仍需驗證。

2.射程覆蓋節圍

火箭砲為整體裝藥,發射火藥均採 固定裝填,若需改變射程僅能藉助調整射 角,射擊角度太小,彈道會過於低伸,導 致火箭彈落地角度太低,爆炸彈片散布面 與地面垂直,嚴重影響殺傷效果。

3.火力持續性

火箭砲執行火力支援時,持續性極為重要,故實施時須提供持續、精確、即時火力支援,就現行中共PHL03型遠程多管火箭發射架為例,其採管束式設計模式,僅可提供2波次攻擊,難以滿足對敵持續壓制需求。

4.系統整合

火箭砲「硬體」設備現已具備一定 水準,然在「軟體」建置上,如目標偵察 及通信系統方面,尚且不足;另現存系統 資訊傳遞複雜、反應時間較長、後勤整備不易,射擊火光與爆震過大及無法直瞄射擊等缺點,¹²整體系統整合仍需有所精 淮。

三、重大戰役火箭砲之運用

近代戰爭中,由於「混合戰」¹³的顯著發展,使得幾場重大戰役中都將火箭砲納入戰術運用範疇,如俄烏戰爭及敘利亞戰爭,都是火箭砲的實戰體現,故針對上述戰爭實施說明,並判斷作戰模式作為借鏡,以運用於臺海作戰之間。

(一)俄鳥戰爭

2024年3月23日,俄羅斯發布別爾哥羅德州上空遭22枚「吸血鬼」多管火箭砲攻擊,並對俄羅斯境內目標實施襲擊,其防空反應後隨即成功擊落19枚「吸血鬼」火箭彈;另消息指出,烏軍近日連續對俄羅斯高價值軍事目標發起襲擊,海、陸、空三軍全部參與其中,對俄羅斯防空系統造成巨大壓力。14

2024年3月6日,報導指出,於頓涅茨克地區的尼卡諾里夫卡村附近,在 M142高機動砲兵火箭系統「海馬斯」 (HIMARS)抵達陣地後,遭俄軍「伊斯坎 德爾」OTRK擊中,隨即彈藥引爆,火箭

- 11 〈陸軍火力打擊新時代AR-3(PHL-16)型模塊化遠程火箭砲〉,《kknews》,2019年11月29日, https://kknews.cc/zh-tw/military/955amp5.html, (檢索日期2024年4月11日)
- 12 蔡和順,〈中共遠程多管火箭發展對我影響之研析〉,《陸軍學術雙月刊》,第52卷第546期, 2016年4月,頁20-21。
- 13 戰爭中傳統與非傳統手段的混合,最早由美國提出,是21世紀出現的一種新型戰爭形態。
- 14 〈俄本土接連巨響!烏22枚「吸血鬼」火箭彈突襲「海王星」也轟克里米亞〉,《Newtalk新聞網》,2024年3月27日,<俄本土接連巨響!烏22枚「吸血鬼」火箭彈突襲「海王星」也轟克里米亞(msn.com)>,(檢索日期2024年4月9日)。

燃燒並冒出火箭燃料特有的白煙,這是 2022年6月美國交付這些武器近兩年後, 首次戰損海馬斯紀錄。¹⁵

2024年2月20日,英國廣播公司 (BBC)俄羅斯頻道報導,頓內次克特魯 迪夫斯克地區(Trudivske)的俄羅斯軍事 訓練場,遭鳥軍以「海馬斯」多管火箭 系統發射M30A1「導向多管火箭彈」 (GMLRS),造成毀滅性打擊,遭攻擊 的是俄軍第39獨立摩步旅,事發當下正 在集結列隊,而鳥軍發射2枚M30A1火 箭彈,造成至少65人死亡,這次建功的 M30A1,與烏軍先前使用的M31系列 GMLRS,都具有70公里內的精準打擊能 力,前者採用子母彈彈頭,可製造大面積 壓制火力, 這類型火箭彈的彈頭內部裝 有18.2萬顆直徑僅數公厘的鎢鋼球預製破 片,可配合空炸引信,對成群步兵、車輛 和輕裝甲等目標造成較好的殺傷效果, 16 此次攻擊有對俄羅斯產生一定的殺傷程 度。

2023年10月8日,烏克蘭國家安全 局(SBU)發布,俄羅斯TOS-1A「日炙」 (Sontsepek)多管熱壓火箭彈發射車於烏南 札波羅熱(Zaporizhzhia)地區遭M142高機 動砲兵火箭系統「海馬斯」(HIMARS)擊 中,當時烏軍正於該方向進行反攻行動, 這輛俄羅斯TOS-1A多管火箭車正準備攻 擊烏克蘭陣地時,遭烏克蘭偵察無人機察 覺行蹤,隨即將其方位座標傳遞給砲兵, 再利用「海馬斯」系統發射精準導引火箭 彈加以摧毀,¹⁷也再次展現了火箭砲在戰 場上的價值。

(二)敘利亞戰爭

2019年9月18日,敘利亞叛軍展示了在17日的深夜,遭敘利亞政府軍襲擊過後的砲彈殘骸,其中從砲彈殘骸分析可以得知,其可能使用BM-30「龍捲風」300毫米口徑的遠程火箭砲,並且運用了俄羅斯提供的鑽地彈頭等殺傷性武器,18造成相關程度的損害。

2023年4月9日,情資顯示以色列戈蘭高地(Golan Heights)前日遭6枚火箭彈襲擊,火箭彈係由敘利亞境內發射,3枚火箭彈進入以色列領土,其中2枚落於空曠地區,第3枚則遭防空系統攔截,19對

- 15 〈海馬斯首次戰損! 自美提供烏軍後 首次「可確認」遭俄飛彈命中〉,《YAHOO新聞網》, 2024年3月6日,<海馬斯首次戰損! 自美提供烏軍後 首次「可確認」遭俄飛彈命中(yahoo.com)> ,(檢索日期2024年4月12日)。
- 16 〈俄軍將軍沒來鋼雨先到!「海馬斯」狂噴36萬顆鎢珠毀滅俄軍〉,《自由時報新聞網》,2024年2月22日,https://def.ltn.com.tw/article/breakingnews/4586323,(檢索日期2024年4月12日)。
- 17 〈TOS-1A多管火箭車炸成火球 海馬斯收拾俄王牌大殺器〉,《自由時報新聞網》,2023年10月9日,https://def.ltn.com.tw/article/breakingnews/4453225,(檢索日期2024年4月12日)。
- 18 〈 龍捲風火箭砲又在敘利亞投入使用, 改用鑽地彈頭、溫壓彈頭炸叛軍 〉, 《 kknews 》, 2019 年9月19日, < https://kknews.cc/zh-tw/world/lmy3qz9.html>, (檢索日期2024年4月12日)。
- 19 〈以色列砲轟敘利亞 回應戈蘭高地火箭彈襲擊〉,《自由時報新聞網》,2023年4月9日,<以色 列砲轟敘利亞 回應戈蘭高地火箭彈襲擊-國際-自由時報電子報(ltn.com.tw)>,(檢索日期2024年4月9日)。

作戰研究 |||||

此,以色列軍方襲擊敘利亞境內的軍事目標,以回應領土遭火箭彈襲擊事件,同年11月26日,伊朗媒體報導指出,真主黨使用48枚喀秋莎火箭彈攻擊以色列軍事基地,而真主黨也表示,此舉是為了表示對巴勒斯坦民眾的支援。²⁰

2023年11月13日,伊朗邁赫爾通訊 社報導指出,美軍位於敘利亞東部代爾祖 爾一處油田的軍事基地,遭受15枚火箭砲 和導彈襲擊,進而引發劇烈爆炸,造成四 名美軍士兵死亡;在以巴爆發新一輪衝突 後,美軍及其聯軍在伊拉克和敘利亞的軍 事基地已遭數十次襲擊,美國指責其為伊 朗相關組織所為,並於同日晚上,向敘利 亞東部發動新一輪空襲且警告若不停止襲 擊,將毫不猶豫盡一切所能保衛軍隊。²¹

2024年4月19日,據路透社報導,當地時間21日至少5枚火箭彈從伊拉克祖馬爾鎮(Zummar)射向敘利亞東北方一處美軍基地,這是美軍繼2月初以來再度遭伊拉克境內由伊朗扶植的武裝組織攻擊,也釀成1人死亡,至少8人受傷,²²從上述幾次攻擊可得知,火箭砲已立足於近代戰爭中,且廣泛被運用,也提醒世人需詳加了解其運用及反制之道。

以巴衝突火箭彈運用及其反制

在以巴衝突當中,不論是哈瑪斯「喀秋莎火箭」,或者是以色列「鐵穹防空系統」,在火力制壓打擊,甚至整體防空作戰運用上,都可說是近代戰爭中攻防一端的代表性武器,對此,針對衝突中雙方武器運用及反制成效加以說明,以為後續借鏡。

一、以巴衝突火箭彈運用

2023年以巴衝突爆發首日,以色列軍方表示,巴勒斯坦激進組織哈瑪斯,在短短20分鐘內,從加薩走廊境內朝以色列發射5,000多枚火箭彈,並派遣武裝份子進入以色列國境,與以色列軍隊爆發激烈槍戰,而在這場衝突中,至少有22人死亡,超過一百人受傷,就此以色列國防部長宣布進入戰備狀態,²³而在這波攻擊中,最為著名的就是「喀秋莎火箭」,其製作成本一枚僅約2萬新臺幣,相較以色列鐵穹飛彈,一枚造價超過120萬臺幣,成本相對低廉且方便製作,且目前已研發出第三代,整體性能已明顯優於設計初期,由於「成本低」優勢,再加上外國長年金援及利用下水道改造火箭的能力,哈

- 20 〈真主黨48枚火箭彈攻以! 以色列反襲敘首都大馬士革機場等地〉,《Newtalk新聞網》,2023年 11月27日,https://newtalk.tw/news/view/2023-11-27/898263>,(檢索日期2024年4月9日)。
- 21 〈美軍在敘利亞基地據報遭火箭砲襲擊釀四名士兵死亡〉,《Now新聞網》,2023年11月13日, https://news.now.com/home/international/player?newsId=539238>,(檢索日期2024年4月12日)。
- 22 盧思綸,〈敘利亞美軍基地遭5枚火箭彈襲擊 中東局勢暗潮洶湧〉,《聯合新聞網》,2024年4月24日,https://udn.com/news/story/123777/7914380>,(檢索日期2024年5月10日)。
- 23 〈以巴衝突再起 哈瑪斯發射5千枚火箭彈〉,《華視新聞網》,2023年10月7日,https://news.cts.com.tw/cts/international/202310/202310072237052.html>,(檢索日期2024年3月26日)。

瑪斯不用為了資金與材料煩惱,也累積足夠存量,這一次以巴衝突中,一次發射5千枚,就讓世人大開眼界;²⁴另根據富比士(Forbes)雜誌報導,哈瑪斯7日對以色列發動有史以來最大規模襲擊,其中主要武器就是「喀秋莎火箭」,其為一種廉價土製武器,材料為工業外管、商業用炸藥,以及糖與硝酸鉀肥料製成的燃料,成品體積小且可隨機著陸,比先進火箭更難被定位攔截。甚至當地電視公司也報導,由於低成本意味著飛彈並不具備電子元件和電路,且哈瑪斯武器庫中可能有3萬到5萬枚火箭彈,意味以色列若想全部攔截恐將花掉數千億美元。²⁵

另外俄羅斯《消息報》15日報導指出,哈瑪斯火箭彈性能已明顯提升,現投入「阿亞什-250」遠程火箭彈,最大射程可超過200公里,未來以色列若對加薩地區發動地面攻勢時,哈瑪斯火箭彈可採大規模向以色列發動攻擊,若以現行以色列「鐵穹」系統應付這些升級版火箭彈,甚至是否具備足夠彈藥應對消耗戰,²⁶都將

是未來值得關注的焦點。

二、以巴衝突火箭彈反制

2012年11月落幕的以巴衝突中, 最受世人關注的就是攔截「哈瑪斯」 (Hamas)火箭彈的「鐵穹」(Iron Dome)反 火箭攔截系統,在巴勒斯坦極端組織「哈 馬斯」7天戰事期間,向以色列境內發射 1,506枚火箭彈,其中479枚「有效攻擊」 火箭彈中,421枚遭「鐵穹」系統攔截, 攔截率高達88%,甚至比愛國者飛彈還 高,消息曝光後,以色列「鐵穹」系統頓 時成為全球焦點,引起多國對這套系統高 度興趣,27而在2021年衝突中,哈馬斯和 其他巴勒斯坦激進組織再次向以色列發 射了3,000多枚火箭彈,據以色列軍方表 示,射向以色列人口密集地區的大約90% 的火箭彈在半空中被「鐵穹導彈防禦系 統」攔截,28顯見其作戰成效。

2023年5月11日,報導指出,加薩伊斯蘭聖戰激進組織對以色列境內發射460 多枚火箭彈,對此以色列首度派出新武器 「大衛彈弓」,配合鐵穹防空系統,形成

- 24 〈哈瑪斯密技!水管改造火箭彈5千枚 突襲以色列〉,《東森新聞網》,2023年10月13日, https://news.ebc.net.tw/news/world/386682>,(檢索日期2024年3月27日)。
- 25 〈哈瑪斯300美元「自製」火箭彈 以色列用5萬美元鐵穹系統飛彈攔截〉,《ETtoday》,2023年10月13日,,(檢索日期2024年3月27日)。
- 26 李志良, 〈哈瑪斯不是吃素的! 用什麼對抗以軍? 除射程200里火箭彈 還有這些「先進裝備」〉, 《YAHOO新聞網》, 2023年10月16日, <哈瑪斯不是吃素的! 用什麼對抗以軍? 除射程200里火箭彈 還有這些「先進裝備」,,,,, (yahoo.com)>, (檢索日期2024年3月27日)。
- 27 王和, 〈以色列「鐵穹」是如何「鑄」成的〉, 《大紀元》, 2012年11月28日, http://www.epochtimes.com/b5/12/11/28/n3740026.htm, (檢索日期2024年3月27日)。
- 28 〈以色列巴勒斯坦衝突:鐵穹防禦系統的矛盾〉,《BBC NEWS中文》,2021年5月19日, https://www.bbc.com/zhongwen/trad/world-57170215,(檢索日期2024年3月26日)。

強大防禦網攔截,其中「大衛彈弓」是由 以色列拉斐爾和美國雷神合作研發,可攔 截40公里到300公里的中程飛彈,配合鐵 穹和箭式防空系統,將組成以色列強大的 飛彈防禦網,在此次狂轟的460多枚火箭 彈中,至少就153枚被以色列成功攔截, ²⁹足以顯見其攔截效益卓越。

2023年10月7日,巴勒斯坦激進組織哈瑪斯對以色列突襲,並宣稱朝以色列發射5千枚火箭彈,但多半被以色列「鐵穹」飛彈防禦系統攔截,路透社報導指出,鐵穹攔截成功率高達9成,哈瑪斯的火箭彈並未造成重大傷亡,30由此可凸顯出,以色列防空系統運用已可作為典範學習。

三、雙方作戰分析

此場戰爭爆發後,不論是以色列或 是哈瑪斯激進組織,無不集全國或組織之 軍力,對敵方發射各型武器,然其中又以 多管火箭的攻防,最為全球關注,其雙方 不論是國內資源運用或國外援助,都是近 代戰爭中的經典,故就雙方作戰實施分析 如下。

(一)大量射擊產生威脅

作戰初期哈瑪斯對以色列發射多達 五千餘枚的火箭彈對以色列各地及設施實 施密集性的攻擊,此舉讓以色列及國際間 均產生巨大的震撼力,雖然哈瑪斯所使用 的火箭彈並非導引式精準打擊彈頭,但龐 大的數量已足以讓以色列產生威懾效果, 此舉也讓國際間了解,不論武器先進程度 與否,當大量攻擊性武器投送到敵境內 時,勢必對該國產生嚴重的影響,此次以 巴衝突的初期,哈瑪斯的攻擊就有產生如 此的效果,也讓世界各國發展出新的作戰 思維,並非落後武器國家或組織無法造成 一定的威嚇,一定數量的武器也會造成一 定的殺傷效果,不可忽視其所帶來的影 響,在這場戰爭中大規模殺傷性武器攻 擊,以突現出其價值,也成為世界各國建 軍備戰的方向。

(二)防空系統效果顯著

在哈瑪斯發射多達五千餘枚火箭彈之後,最引人關注的不外乎就是以色列如何面對如此龐大的武器攻擊,然而從新聞媒體上可得知,其面對如此威脅,運用鐵穹防空系統成功攔截大多數威脅到國境內的火箭彈,並且將殺傷程度降至最低,此次成功的防空攔截,在國際上再次引發話題,畢竟大量的砲彈攻擊下,即便是現行最先進的愛國者系統,都無法確定可成功攔截目標,而以色列卻可以運用防空系統混合部署方式,完成此次艱鉅的防護任務,其後以色列也遭哈瑪斯火箭砲攻擊,也都成功攔截多數目標,可想而知其防空系統運用模式,足以納為世界各國參考借

- 29 〈加薩狂炸460枚火箭彈 以色列首派「大衛彈弓」攔截〉,《TVBS新聞網》,2023年5月11日, https://news.tvbs.com.tw/world/2120853>,(檢索日期2024年3月26日)。
- 30 〈【以巴衝突】以色列攔截1枚火箭彈要花160萬 罕見未公布「鐵穹」成績單〉,《YAHOO新聞網》,2023年10月12日,<【以巴衝突】以色列攔截1枚火箭彈要花160萬 罕見未公布「鐵穹」成績單(yahoo.com)>,(檢索日期2024年5月28日)。

鏡。

(三)後勤支援支撐作戰

每場戰役之中,後勤能量能否支持 作戰,至關戰爭的成敗與否,這場戰役初 期,哈瑪斯短時間內發射出多達五千枚的 火箭彈,其龐大的後勤能量,展現出該組 織的厚實戰力,然以色列也可在短時間之 內運用防空系統攔截火箭彈,並於後續多 波次中持續發揮其防護效益,其後勤能量 也不可忽視,這也表示了,以色列及哈瑪 斯在後勤能量的國儲及規劃運用,具有一 定的準備,才可在作戰初期達到如此成 效。對此我國也必須反思現行後勤能量是 否足以滿足戰爭的持續性,以避免遭敵打 擊與摧毀。

中共火箭彈運用及對臺作戰之 影響

中共於90年代引進前蘇聯BM-30「龍捲風」多管火箭後,透由國內逆向工程等相關技術能力,自主研發出衛士型及PHL03型等類型多管火箭砲,自此打開火箭彈的歷程,而在逐年研製及技術進步下,現已領先全球佔有一席之地,甚至傳出已研製電磁火箭砲,³¹對我國產生巨大

的威脅,故必須掌握類型與特性、現行能 力及應對臺海作戰影響,以肆應未來戰 場。

一、中共火箭砲類型

中共遠程多管火箭砲主要藉戰術彈 道飛彈技術轉移,進而研發出多種型式遠 程多管火箭系統,迄今已完成10種以上不 同彈徑遠程多管火箭型式研製,主要區 分為A型、衛士型及PHL型等3種型號系 統,³²現就主要裝備特點及功性能說明如 下:

(一)A型系列火箭砲

由中共運載火箭技術研究院研發, 運用多項導彈導引與精準打擊技術,提 升遠程多管火箭水準,構型計有A100、 A200與A300等型遠程多管火箭系統,³³ 現行中共以A300型為主要類型,說明如 表二。

(二)衛士型系列火箭砲

中共研製出83式、03式、衛士1(WS-1)型多管火箭系統後,由中國四川航天工業總公司於21世紀持續發展出衛士2型多管火箭等系列,³⁴現行中共以衛士3型為主要類型,說明如表三。

(三)PHL系列箱式遠程火箭砲

- 31〈中國又領先全球?首創電磁彈射火箭砲 號稱射程2000公里世界第一〉,《YAHOO新聞網》, 2023年10月4日,<中國又領先全球?首創電磁彈射火箭砲 號稱射程2,000公里世界第一 (yahoo. com)>,(檢索日期2024年6月30日)。
- 32 蔡和順,〈中共遠程多管火箭發發展對我影響之研析〉,《陸軍學術雙月刊》,第52卷第546期,2016年4月,頁9。
- 33 同註31, 頁9-10。
- 34 〈大陸衛士多管火箭 威脅更甚對台飛彈〉,《鉅亨網新聞中心》,2013年4月24日, < https://news.cnyes.com/news/id/1482032>,(檢索日期2024年3月22日)。

表二 A型系列火箭砲說明表

類型	諸元	類型	諸元
A100(PHL96)		A200	
	射程:70-130 公里 發射口徑:300 公厘 導引方式:慣性導引	0.00	射程:200 公里 發射口徑:310 公厘 導引方式:衛星導引 + 慣性導引
A300	射程:300 公里 發射口徑:300-750 公厘 導引方式:衛星導引+慣性導引		

資料來源:筆者網路自行綜整。

表三 衛士型系列火箭砲說明表

衣二 衛士至示列入則他凱切衣				
類型	諸元	類型	諸元	
衛士1型		衛士2型		
	射程:40-180 公里 發射口徑:122-302 公厘 導引方式:衛星導引		射程: 200-400 公里 發射口徑: 400 公厘 導引方式: 衛星導引	
衛士3型		衛士 64 型		
	射程:480 公里 發射口徑:400 公厘 導引方式:衛星導引		射程:280 公里 發射口徑:302 公厘 導引方式:衛星導引+慣性導引	

資料來源:筆者網路自行綜整。

由中共兵器工業集團公司研製, 初期仿研俄羅斯龍捲風火箭系統,後依 PHL03型為基礎,賡續研發衍生AR3型 及後續PHL系列,現行中共以PHL-16型 為主要類型,將逐漸取代源自俄製BM30 「龍捲風」技術的PHL-03,³⁵說明如表

叮。

二、中共火箭砲特性

中共在研製火箭砲的技術上,近年 有顯著的突破,不論是制導能力或射程都 逐漸成熟,甚至可結合北斗衛星加強精準 打擊能力,甚至以達外銷他國的質量,為

35 〈共軍新型多管火箭完成實彈測試 擬部署在中印邊界〉,《上報》,2022年7月21日,https://www.upmedia.mg/news_info.php?Type=3&SerialNo=149776,(檢索日期2024年6月30日)。

No. 1 May 10 less 11 and 15 less 11			
類型	諸元	類型	諸元
PHL-03		PHL-16	
A	射程:150 公里 發射口徑:300 公厘 導引方式:慣性導引	The same of the sa	射程:70-500 公里 發射口徑:300-750 公厘 導引方式:衛星導引 + 慣性導引

表四 PHL系列箱式遠程火箭砲說明表

資料來源:筆者網路自行綜整。

掌握其火箭砲發展,故就其特性說明如 下:

(一)靈活打擊效能

中共WM-80型遠程多管火箭射程僅可達80公里,其後引進俄羅斯龍捲風多管火箭實施仿製研改後,衍生多款遠程多管火箭,射程提升至290公里,而在PHL03型加入後,已成為團級至集團軍重要火力,彈徑涵蓋107~300公厘,更兼具近、中與遠程3種不同射程,火力支援範圍涵蓋8~130公里,加上機動性高,成為介於傳統火砲與戰術導彈之間的火力壓制武器,可有效執行中共縱深作戰「遠戰殲敵」之戰術思維,如在配合火箭軍導彈攻擊,將可實現攻防兼備陸戰型態。

(二)高隱密性、具備快速火力反應

中共火箭砲機動性高、攻擊火力 強、隱蔽性佳,其可偽裝成民用車輛,混 雜在車陣中,由於陣地幅員需求不大, 可在快速發起猝然集火射擊並迅速轉換陣 地;另以PHL03型為例,當進入射擊狀態 到完成發射僅需耗時8分35秒³⁶,明顯優 於俄羅斯龍捲風(30分鐘)與美國M270多 管火箭(15分鐘)作戰所需時間,可有效遂 行快速火力反應。

(三)多種導引攔截不易

中共新型遠程多管火箭除慣性導引外,更結合衛星與寬頻被動雷達尋標之複合式導引,利用中國自行研製的北斗衛星全球定位系統,進行彈道修正,大幅提升打擊精度,在遠程多管火箭射擊後,彈體上裝設有簡易飛行方向控制裝置系統,有利尋找攻擊目標,彈頭具衛星導航加慣性複合導引功能,對目標攻擊已有一定性精準度;且體積遠小於傳統空中威脅目標,具備更小雷達截面積或紅外線及可見光影像,現行防空系統若對其遂行偵測及追蹤,恐難發揮預期效果。

(四)複式作戰運用

中共已將火箭砲車發射架設計為「通用型多功能射擊平臺」,可裝填與射擊多款不同彈徑、射程及火箭彈箱,其火力涵蓋互補,有效延伸射程距離,參酌美軍M270多管火箭砲車彈箱發射架,可同

36 準備時間3分鐘,齊射時間1分鐘、撤收1分鐘,再裝填時間3分鐘,連級接獲任務反應時間15秒、 營級20秒,合計8分35秒。 時裝填與射擊火箭彈與飛彈彈箱各1具,並配備適當「箱儲」飛彈,結合戰術需求,增加戰術運用靈活性;另遠程多管火箭亦可裝置化學、生物、煙幕及干擾等彈頭,加裝導引裝置母彈頭直接攻擊目標;另具備輕裝甲貫穿能力及攻擊機場跑道及設施等彈頭,可涵蓋眾多作戰範圍。³⁷

(五)成本相對低廉

中共雖已有多達一千多枚戰術彈道 飛彈可用於對臺作戰,但相較於火箭砲, 其性價比較為高昂,然遠程火箭精度雖低 於戰術彈道飛彈,但價格相對低廉,且其 具備射程遠、反應與機動迅速等特點,可 運用慣性導引和北斗衛星定位聯合導引, 資源消耗較小,經濟效益較高,可發揮資 源最大效益。

三、中共作戰進程火箭砲運用

臺灣海峽北窄南寬,長約370公里, 北口寬約200公里,南口寬約410公里,平 均寬度180公里,最窄處在臺灣新竹市南 寮與中國大陸福建平潭島之間,約125公 里,³⁸以現行中共各型多管火箭砲能力, 均已可執行對臺實施火力打擊。

且相關學者已研判中共武力犯臺,

需出動約40萬兵力,以26個加強營級單位,結合3個空降旅、一個特種作戰旅,配合各型彈道導彈約2,000枚,各型巡航導彈約3,000枚,衛士2-D/PHL-03等長程多管火箭約100萬枚,對臺灣本島實施進犯,³⁹加上近年中共已將多管火箭砲運用在相關戰區演訓,其儼然已形成可恃戰力,故針對中共犯臺模式中的聯合封鎖、聯合火力打擊及聯合登島作戰等階段,可能運用火箭砲實施分析:

(一)聯合封鎖階段

作戰初期中共提升陸軍遠火打擊能力,實踐非接觸作戰、非線式作戰、非對稱作戰及目標中心精確作戰等概念,形成遠程精確打擊火力,對我國防衛作戰的戰力保存與防護產生重大威脅,⁴⁰且未來中共在陸軍遠火演習中,已不排除對臺灣本島朝向深且廣的區域變化等情勢,持續突破臺海中線,展現陸軍遠火機動部署,精確打擊的戰法,⁴¹而此等作戰模式也將於作戰初期對我軍兵力部署產生巨大影響。

故於此階段,中共可配合軍演於臺 海周邊劃設禁航區,靈活運用戰術彈道飛 彈配合多管火箭砲實施遠火打擊,達到對

- 37 同註31, 頁19-20。
- 38 〈離台灣島最近,京台高速和高鐵必經之地,這麼漂亮的島嶼你知道嗎〉,《每日頭條》,2019年5月3日,https://kknews.cc/zh-tw/news/ml3akpp.html>,(檢索日期2024年6月30日)。
- 39 〈兩個旅就拿下澎湖?共軍退將喊話犯了兵家大忌〉,《ETtoday新聞雲》,2019年12月26日, https://forum.ettoday.net/news/1611070#ixzz6bJWxNpPI,(檢索日期2024年2月4日)。
- 40 謝熀樺,〈中共遠程火箭之威脅-以2022年對臺軍演為例〉,《國防雜誌》,第38卷第3期,2023 年9月,頁54。
- 41 熱風,〈從03到191的變化-解放軍現代化遠程火箭砲的革新歷程〉,《坦克裝甲車輛》,第1期,2022年1月,頁15。

我主要海空航路實施封鎖效果,此舉將對 我國軍事及經濟上造成消磨,也將阻止他 國對我國實施軍事及經濟等外援,對未來 作戰進程發展恐產生巨大的轉變。

(二)聯合火力打擊

國防部民國111年公布的《中共軍力報告書》中,明述中共聯合火力打擊階段,將結合衛星、無人機、預警機值蒐、電子戰等能力,⁴²並運用各式彈道飛彈、巡弋飛彈及空射攻陸飛彈實施攻擊,當然其中也包括火箭彈等類型武器,射程將涵蓋臺灣全島,可對我空軍基(陣)地實施壓制;另可協同海、空軍可恃戰力,攻擊我政、經、軍等重要目標,減損我軍作戰持續力及支援後續作戰之遂行,⁴³且中共在執行反艦任務時,也可發射PHL-191反艦類型的飛彈,⁴⁴對我聯合火力打擊階段影響甚大。

故於此階段,中共可在取得海空權 及電磁權的優勢下,於中國大陸沿岸實施 發航登島準備,航渡期間可運用火箭砲對 預期接戰海面實施遠火打擊,並配合低空 突現之巡弋飛彈、反輻射飛彈及無人機 等,消耗我海軍有生戰力,亦可優先對我 國沿岸地區關鍵設施及部隊實施打擊,對 其後續登島作戰產生優勢,也將造成我國 軍戰力耗損。

(三)聯合登島作戰

在遂行國土防衛作戰時,中共空中 兵力、遠程火砲武器及武裝無人機都將是 國軍地面部隊最大的威脅,⁴⁵此時中共可 運用新型遠火部隊配合武裝直升機,於登 島作戰時對我關鍵目標,進行突擊及機降 打擊行動,確保延長戰時能量,⁴⁶甚至可 於登島作戰階段,持續運用多管火箭砲對 我空軍基(陣)地壓制,使我空軍剩餘戰力 無法發揮,以利其爾後之作戰。

故於此階段,中共可於多管火箭砲 等遠程武器掩護下,順利於樞紐位置完成 登島任務;另於城鎮作戰期間,亦可對我 軍後援部隊實施遠火打擊,使我軍戰力無 法延續,將嚴重影響我國軍後續作戰發 展。

我國整體防空作戰因應之道

以巴衝突的火箭砲攻防,確實給我 國及世界各國帶來不同的思維,不論是作 戰形態或是武器運用,都可納入後續臺海

- 42 蔡雨婷,〈最新「中共軍力報告書」出爐,國防部列解放軍「可能的8種對臺行動」〉,《netwalk》,2022年8月31日,https://tw.news.yahoo.com/%E6%9C%80%E6%96%B0>,(檢索日期2024年3月27日)。
- 43 國防部,《中華民國110年國防報告書》,(臺北:國防部,2021年10月),頁40。
- 44 同註41, 頁15。
- 45 陳信安、林相涵,〈共軍「要害殲控戰」對我建軍備戰之影響-以遠程火箭砲為例〉,《陸軍砲兵季刊》,第200期,2023年3月,頁82。
- 46 葉庭欣,〈共軍演練遠火及直升機突襲關鍵目標 國防部:已完成戰備補給調整〉,《中時新聞網》,2024年3月7日,<https://www.chinatimes.com/realtimenews/20240307002108-260417?chdtv>,(檢索日期2024年5月14日)。

作戰參考與借鏡,然在知道中共火箭砲的 能力之後,我國應針對現已具備能力、平 戰時應處作為加以分析,方可達到克敵制 勝之效果。

一、我國軍部隊現行應對能力

針對上述中共犯臺行動中可能運用 的火箭砲,我國應提出相對作為,藉各種 手段及武器反制,以有效對抗火箭砲對我 國家安全之威脅,故就現行所具備之能 力,區分為硬殺及軟殺等兩方面實施探 討。

(一)硬殺部分

目前我國應對中共火箭砲,可採取兩種模式實施攻擊,區分為飛彈攔截及敵後設施摧毀,針對飛彈攔截,目前我空軍愛國者三型飛彈、天弓三型飛彈及三五快砲AHEAD彈,可直接對空中目標實施攔截,防空效益分析如表五。

另就敵後設施可運用劍翔無人機、 雄二巡弋飛彈等反制武器,採類似俄烏戰 爭中烏軍深入俄羅斯境內攻擊關鍵設施手 段,對中共多管火箭砲陣地實施打擊及反 制,使其無法發揮戰力,而我軍硬殺打擊 能力如表六。

(二)軟殺部分:

中共現行先進多管火箭系統,均已結合國內北斗衛星實施衛星導引,以增加 飛彈打擊精準度,如我國可運用國軍的「磐石偵擾車」或「北斗干擾車」等裝備,對中共北斗衛星或合成孔徑頻率實施 偵蒐及干擾,使其火箭彈命中精度不佳, 將可降低我重要防護資產損害程度;再者 我國可運用部隊機動特性結合各式偽裝作 為,配合多梯次變換陣地部署位置,混淆 敵掌握我軍部隊位置,⁴⁷亦可達到軟殺成 效,確保我關鍵設施及基(陣)地安全。

表五 防空效益分析表

农工 以工从业外刊农				
系統	打擊能力	系統	打擊能力	
愛國者三型飛彈	作戰範圍:100 公里 打擊目標:戰術彈道飛彈、巡弋 飛彈、反輻射飛彈、火箭砲、無 人機	天弓三型飛彈	作戰範圍:200公里 打擊目標:戰術彈道飛彈、巡弋 飛彈、反輻射飛彈、火箭砲、無 人機	
三五快砲 AHEAD 彈	作戰範圍:11 公里 打擊目標:巡弋飛彈、火箭砲、 無人機			

資料來源:筆者網路自行綜整。

47〈不只飛彈車有看頭...神祕磐石車曝光 偵擾北斗衛星利器〉,《聯合報新聞網》,2021年10月1日,https://vip.udn.com/vip/story/122151/5784544>,(檢索日期2023年1月31日)。

系統 打擊能力 劍翔無人機 雄二巡弋飛彈 作戰範圍 1,000 公里以上 滯空時間 5 小時以上 作戰範圍 600 ~ 1,200 公里 速度 0.85 馬赫

表六 空軍硬殺打擊能力說明表

資料來源:筆者網路自行綜整。

二、我國平時防範整備

(一)掌握中共演訓,加強情報蒐集

中共於常態訓練期間,若要對臺發動戰爭,必然有所徵候及先期準備,不易對我國發起猝然攻擊,勢必採由演轉戰模式,循序漸進對我國實施壓迫,鑑此,我國可參考近年中共臺海周邊海空演訓動態及訓練,推演出其可能犯臺模式及規劃,進而擬定國軍戰時應對作為,進而降低戰時威脅。

此外中共近期常態訓練中,已將火 箭砲納入作戰規劃並納入實戰運用,我國 應將其列為優先情報蒐集要項,廣泛收集 兵力部署位置、裝備電子參數及戰術戰 法,進而研擬相關克制之道,以適應未來 戰場實需。

(二)關注共軍發展,吸收國外經驗

中共火箭砲技術現已位居全球領先 地位,甚至已可外銷到土耳其、伊朗、巴 基斯坦、委內瑞拉、亞塞拜然等多個國 家,我國應就第三方國家戰爭運用及態樣 加以研究,進而分析武器作戰模式及運用 原則,也將利於我國掌握中共火箭砲現行 已具備之技術及可能運用之戰術戰法。

此外我國應吸收以巴衝突及俄烏戰

爭作戰經驗,參照國外相關戰役火箭砲運 用方式及克制之道,如鐵穹系統攔截作 為、各型防空系統部署運用及火箭砲反制 原則等項,將國外克制火箭砲技術納為國 內借鏡,以精進國內科研能力,進而研製 足以反制技術。

(三)優先戰力保存,善用軍事資源

針對中共可能犯臺模式及行為,我 國應考量國防資源,利用預先設置基礎設 施戰力保存,待適切時機火力發揚,並適 切調整防空兵火力,如衛戍區及主戰機場 兵力部署位置,依「敏捷作戰部署」概念 分散部署,亦或配合中共犯臺作戰進程, 實施兵力部署規劃等,再結合平時戰演訓 時機加強訓練,以預應未來戰場突發狀 況。

另外我國平時應蒐整中共可資運用 之戰術戰法,並依軍種特性及各類型武器 性能,擬定因應作為並納入戰演訓計畫執 行,列為部隊常態訓練及考核重點項目, 以提高部隊熟練度,避免操作生疏,影響 處置時效。

三、我國戰時應處作為

(一)軟殺切斷傳輸,硬殺打擊目標 針對侵犯我國領土之中共火箭砲, 應運用部署於本(外)島之衛星干擾系統,開啟干擾模式電子干擾並影響通訊傳輸,導致其失控墜毀甚至作戰模式失效,甚至可針對進犯區域實施通信屏障等作為,使其飛航進入區域內時產生通信中斷及傳輸失聯等狀況,進而降低其對我國軍之威脅。

我國也可針對中國大陸境內火箭砲部署陣地,運用情監偵手段獲取確切位置後,運用劍翔無人機、雄昇飛彈、萬劍彈等等反制武器實施源頭打擊,對敵後主要關鍵設施加以摧毀,進而無法發揮作戰效益,達到阻制效果。

(二)適切變換陣地,降低陣地暴露

中共火箭砲若欲發揮其功能,必然 須掌握我方軍事設施及部隊部署位置,始 可發揮其作戰效益,我軍可運用多梯次變 換部署原則,使敵不易掌握我軍部署位 置,迫其不易輕啟發射,削弱其作戰動 機。

再者我軍亦可增加軟殺防護作為, 運用偽裝資材、假目標等被動手段,活用 光學變色材料、輻射源放大/縮小材料等 技術,以提高反偵察能力,⁴⁸如再以我國 「單兵操作簡易型定位導引防護器」為基 礎,⁴⁹配合國外商源購置中長程干擾裝置 或系統統籌運用,使中共衛星及通訊裝置 無法有效導引火箭砲,也將降低其作戰威 脅。

四、未來建軍備戰方向

(一)籌建先進武器,兼具擊殺摧毀能 力

我國現已向美採購29套「海馬斯多管火箭系統」,首批11套系統及彈藥將於今年抵臺,並規劃2027年前完成全數撥交,由於該系統具備快速部署和高機動性等特點,將可提升國軍作戰靈活性及加強遠程打擊能力,50對中共造成巨大威脅,後續若結合劍翔無人機及雄二巡弋飛彈等反制性武器,對敵源頭實施打擊,也將產生一定的效果。

此外我國持續引進挪威NASAMS低空防禦系統,該系統具備低空目標攔截能力,射程涵蓋範圍可達50公里,未來若部署於衛戍區及主戰機場周邊,也可執行目標擊殺,提高陣地防護效益及重要防護目標資產安全。(如表七)

(二)整合國內技術,深植國防自主 我國中科院已於2020年啟動雷護專 案,在2023年7月進行6項關鍵測評,第一

- 48 〈中共無人飛行載具發展對我防衛作戰威脅之研究〉,《陸軍學術雙月刊》,第55卷第568期, 2019年,頁96。
- 49〈能干擾中共北斗導航?中科院單兵反飛彈武器遭立委打臉〉,《ETtoday新聞雲》,2013年10月 17日,<https://www.ettoday.net/news/20131027/287406.htm>,(檢索日期2023年2月15日)。
- 50〈11套「海馬斯」統將抵台!一次可射6枚火箭彈 全部署在靠中國大陸一側〉,《YAHOO新聞網》,2023年12月12日,<11套「海馬斯」統將抵台!一次可射6枚火箭彈 全部署在靠中國大陸一側(yahoo.com)>,(檢索日期2024年3月22日)。

類型	諸元	類型	諸元
M142 高機動性 多管火箭系統		挪威先進地對空飛彈系統	
	射程:499 公里 發射口徑:227 公厘 導引方式:衛星導引或慣性導引		射程:50 公里 搜索範圍:120 公里

表七 新式籌建武器說明表

資料來源:筆者網路自行綜整。

階段小功率研測已達到目標,若如同專家學者所述,我國可將以色列當為範本,加速開發類似鐵束防禦系統等雷射指向能量,將可彌補防空系統接戰極限,⁵¹增加武器靈活部署運用,而此項技術的研發,仍須整合國內相關產業技術,若可達到軍工複合體,也將對我國防建設助益良多。

另我國中科院現已研製多項武器系統並量產部署,如空軍天弓系統相列雷達、車載劍一系統、陸軍蜂眼雷達、雷霆2000多管火箭等裝備,若可整合現行能量,由中科院集其技術加以研製,開發類似鐵穹防空系統等裝備,將可滿足防空作戰需求,厚植國防自主能力。

結 語

由於當前區域安全環境呈現錯綜複 雜戰略態勢,中共政經實力及軍力擴張, 及其意圖取得區域發展主導權,⁵²使得各 型武器系統發展成為關注焦點,而其中火 箭砲更成為區域情勢後續發展的關鍵要素,而從2020年10月中共央視報導得知, 中共現已展現其火箭砲發展的決心,運用 「多波次」、「複合式」打擊海上目標能 力及其反艦能力,結合衛星定位系統(如 北斗)導引,對固定設施或僅具有限機動 力的裝備產生巨大威脅,⁵³而我國必須針 對該類型武器加以掌握及研究,據以擬定 克制之道,才可肆應未來臺海戰場,確保 國家安全。

清潔作者簡介 深線

何昶逸中校,國防大學空軍學院教官。陸軍官校93年班,空軍指揮參謀學院105年班、戰爭學院112年班、政治大學外交系戰略與國際事務學院碩士。曾任防空飛彈部隊連、營長、飛彈預警中心管制長、防空旅作戰科長。

- 51〈雷射武器國造有望?雷護專案進入第二階段 助我研發「友好國家」是它〉,《TVBS新聞網》,2024年3月27日,〈雷射武器國造有望?雷護專案進入第二階段 助我研發「友好國家」是它 (msn.com)〉,(檢索日期2024年3月27日)。
- 52 同註36, 頁10。
- 53〈中共新世代軍事科技評估〉,《2021 國防科技趨勢評估報告》,2021年,頁8-9。