探討美軍戰術數據鏈路運用之研究 ——以Link22為例

空軍少校 林克正 陸軍中校 李建鵬

提要

- 一、現代戰爭首重確保資訊優勢,俾為強化聯戰指揮機制及精進聯合戰力之重要先決條件,而「戰術數據鏈路」即是連結數位化戰場指揮中心、參戰部隊及武器平臺之即時訊息處理、交換、分配的數據傳輸系統,為資訊作戰之關鍵要素。
- 二、美國歷經多年之數據鏈路技術發展,研製了多種數據鏈路系統,而分析其發展歷程,可知美軍在相容現有裝備的前提下,持續改進網路結構、增加系統容量、提高資訊共享及訊息傳輸能力,維持美軍在全球戰場之戰力優勢。
- 三、透過戰術數據鏈路可有效整合三軍指管通情能力,故其與聯合作戰實具有 密不可分之關係。唯有強化數據鏈路佈建並持續構築更完善、可適應資訊 化戰爭的數據鏈體系,方能肆應未來大規模聯合作戰所需之訊息綜合運用 能力,以發揮剋敵制勝之效果。

關鍵詞:資訊作戰、聯合作戰、數據資訊、戰術數據鏈路

前 言

1999年科索沃戰爭係首次大規模 將C4ISR概念納入實戰運用,經過改 良的戰機加裝「多功能資訊分配系統 (Multifunctional Information Distribution System, MIDS)」,使飛機與指管中心及 地面部隊可迅速傳遞語音訊息與戰場數據 來共享作戰情報,藉以傳達上級的作戰意 圖,掌握作戰行動的推展,並持續協調 作戰行動」。現代戰爭模式逐漸由「彈藥及火力」的多寡,轉為「頻寬與網速」的大小,而完善的C5ISR或更高級別的系統,可達成即時遠程偵察、預警和快速更新情報,將指揮即時化、網路化,協同作戰及打擊評估功能於一體。C5ISR是指揮(Command)、管制(Control)、通訊(Communications)、電腦(Computers)、網路(Cyber)、情報(Intelligence)、監視(Surveillance)、偵察(Reconnaissance)的合

1 "Multifunctional Information Distribution System (MIDS)", Naval Air Systems Command, < https://www.navair.navy.mil/product/Multifunctional-Information-Distribution-System-MIDS> (檢索日期:2024年1月9日)。

稱²,由C4ISR演變而來,透過「戰術數據鏈路(Link)系統」有效整合三軍指管通情監偵等裝備,現今已成為各先進國家建構軍事指揮鏈的參考基準。

我國於2004年透過專案從美國引進 Link-16系統,日前國防部在立法院答 詢時,證實美國已同意協助我國將Link-16升級為與美國和北約相同之Link-22系 統。對國軍而言,除了在技術上提升更高 的資料傳輸效率與更強的抗干擾能力,更 重要的是意謂國軍將真正具備與美軍即時 分享戰場情報的條件³。爰此,本研究以 美軍數據鏈路作戰運用及作戰經驗為研究 標的,歸納美軍在聯合作戰之應用實例, 期可有助於分析我國軍數據鏈路所應具備 之能力及作戰需求,並進一步提出國軍聯 戰指管系統未來發展暨精進策略,俾肆應 未來戰爭型態。

戰術數據鏈路探討

一、戰術數據鏈路定義

「戰術數據鏈路(Tactical Data Link)」是結合通信技術與通信協定的一種無線網路系統,我國對其定義為「利用數位信號傳輸、交換即時性之數據資料」
4。以資訊處理為核心,通信網路為鏈結

管道,將數據通信技術應用於軍事上,將 遍布陸、海、空的不同參戰單位及作戰平 臺予以串聯,藉以將戰場上諸如態勢感 知、指揮管制、兵力武器、火力打擊等各 種訊息透過加密技術即時傳送至指管中心 (站臺),提供指揮官與作戰人員相關數據 與即時戰場圖像,為聯合作戰提供強而有 力的情報資訊。

美軍為研究及使用數據鏈路的先 驅,2021年1月8日,美國參謀長聯席會議 (Joint Chiefs of Staff)主席馬克·亞歷山大· 麥利(Mark Alexander Milley)上將於主席 指示(Chairman of the Joint Chiefs of Staff Instruction)紀錄中,對於「戰術數據鏈 路」定義為:「藉由採用美國國防部批准 適用於數位資訊傳輸的標準涌訊鏈路, 使不同平臺間得以鏈結,以達數據發送 與接收目的。其特點是具備標準化的訊 息格式、協定及傳輸特性,參與者間可 近即時(Near-Real-Time, NRT)地進行各種 數據交換」5。而「戰術數據鏈路」是因 應不同的軍事需求及用途所研發的,不 同的數據鏈路各有其相應的系統編號與 通信標準,發展迄今,美軍使用過Link-1 \ Link-4A \ Link-11 \ Link-14 \ Link-16 等6,例如美軍及北約的主要現役裝備為

- 2蘇紫雲,「C5ISR指戰一體化及產業發展」,國防安全週報,第78期,2019年12月,頁23。
- 3 〈美國提供台灣Link-22數據鏈的意義〉,《中時新聞網》,2023年6月,〈https://www.chinatimes.com/newspapers/20230628000517-260118?chdtv〉(檢索日期:2024年1月9日)。
- 4 中華民國國防部,《國軍軍語辭典(八十九年修訂本)》,2001年11月,頁10-58。
- 5 Joint Chiefs of Staff, "TACTICAL DATA LINK STANDARDIZATION AND INTEROPERABILITY", CJCSI 6610.01F, 8/2021, pp.4-5.

「聯合戰術資訊分配系統」(Joint Tactical Information Distribution System, JTIDS),其主要終端就是Link-16數據鏈路,具有保密強、大容量、抗干擾的特點,支援通信、導航和識別等多種功能,並可滿足電子戰、監偵、武器控制與分配等數據的即時交換⁷,將各軍種或盟軍兵力等資料轉換成統一格式,再以跨數位化介面快速傳遞接收,以建立共同作戰圖像提供美軍指揮管制使用,是現代化聯合作戰的基礎。

二、戰術數據鏈路功能

數據鏈路是利用數位信號來傳輸及

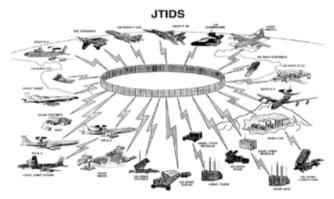


圖 1 聯合戰術資訊分配系統(JTIDS)連結示意 圖

資料來源:Global Security.org,"Joint Tactical Information Distribution System (JTIDS)", (https://patents.google.com/patent/US7953110B1/en), (檢索日期: 2024年1月9日)。

交換數據資料,可將複數的指管系統或武器系統鏈結在一起,其價值在於能夠提供語音通信以外的指揮管制方式、增加使用者多樣通訊手段以及更加廣泛的情資整合與分享能力,進一步延伸到更有效率的武器系統運用,以提升作戰效益。針對數據鏈路的組成及功能,分段說明如後。

(一)數據鏈路組成要素

所謂的數據鏈路是由通訊協定、標準化的訊息格式及傳輸流程等三大要素所組成,摘述如後。

1.通訊協定(Communication Protocol):網路可以視為由許多各式各樣的電腦所組成,彼此的規格配備、作業系統及工作平臺都不盡相同,為了讓所有的電腦達到彼此連接溝通,便要在網路上使用共同的語言,這就是通訊協定。通訊協定是一種用於格式化和處理資料的規則,在網路上所有用戶都要依照特定規則始可進行通連,而依照不同的需求亦會有不同的通訊協定,如Link-16即是運用「傳輸控制協定/網際網路協定(TCP/IP)」來執行戰術鏈路之資料傳輸。

2.標準化的訊息格式:由於各數據鏈

- 6 曾智修,「Link-16戰術數據鏈路同步時間源之研究」,陸軍通資半年刊,第121期,2014年4月, 頁8。
- 7 許志豪,「共軍戰術數據鏈路發展對我之威脅評估」,陸軍通資半年刊,第136 期,2021年10月,頁23。
- 8 李春枝, <什麼叫做 Protocol (通訊協定)? >, 《iThome》, 1998年9月, 〈https://www.ithome. com.tw/ news/6349〉(檢索日期: 2023年12月27日)
- 9 Google Patents, "TCP/IP tunneling protocol for link 16", 〈https://patents.google.com/patent/US7953110B1/en〉, (檢索日期: 2023年12月27日)

為獨立發展,技術體制不同且訊息序列相異,惟數據鏈路的訊息交換需講求資料格式的標準與統一,經過持續的發展演進,各數據鏈的訊息標準逐漸統一使用美軍軍用標準(Military Standard, MIL-STD)訊息格式。其中,Link-11數據鏈路所採用的標準訊息格式為MIL-STD-6011規範之「M系列」訊息,而Link-16數據鏈路使用的標準訊息格式則為MIL-STD-6016之「J系列」訊息¹⁰。唯有透過一致的訊息格式進行戰場資訊轉換及傳遞,方能確保參與作戰單位之間可識別傳送的訊息內容。

3.傳輸流程:首先由甲方用戶的系統 平臺將欲傳輸的數據資料傳送至資訊系 統,依協定規範轉換成標準化的訊息格式 後,再傳送至通信系統(通常為終端機)經 由無線環境將訊息發送至乙方接收,乙方 用戶再以相同的架構接收及解譯來自發送 端的訊息(傳輸流程如圖2)¹¹。以Link-16為 例,數據資料自用戶系統平臺傳送至資訊 系統,將訊息格式編成J系列訊息後,透 過MIDS終端機傳送至無線環境,再由接 收端用戶依反向流程完成接收及處理,藉 此達成傳輸之目的。

(二)數據鏈路功能

數據鏈路是一種特殊的數據通信系統,其自動化程度、資訊傳輸效率及通信能力等,都不是傳統通信系統能夠相提並論的,透過數據鏈路的連接,可大幅地優化戰場情資傳遞,使能妥善且有效地運用作戰能量,可以說數據鏈路絕對是發揮部隊戰力之最佳且最重要的通信技術。故在軍事上,數據鏈路的首要功能為戰場情資共享,其次則是武器火力分配¹²。

首先,在戰場情資共享方面,數據 鏈路可鏈結不同單位的監測及感知系統如 陸基雷達、衛星、預警機、偵察機、戰鬥 機、直升機、艦艇、潛艇、地面偵察部

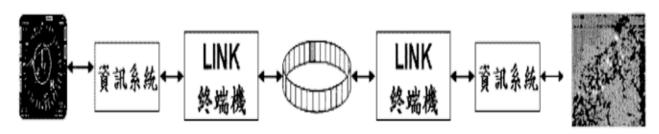


圖2 數據鏈路資料傳輸流程示意圖

資料來源:陳高智,「建立地面指管共同作戰圖像基礎作業環境架構之研究」,陸軍通資半年刊,第111 期,2009年4月, 頁4。

- 10 周翔、王兆偉、李曉波、張海斌,「數據鏈中訊息標準的標準化研究」,中國電子科學研究院學報,第12卷第2期,2017年9月,頁16。
- 11 萬濟人,「數據鏈路對空軍指揮管制系統運用之影響-以Link-16為例」,國防雜誌,第20卷第4期,2005年2月,頁108。
- 12 同註3。

隊,將我方作戰單位的類型、位置及戰力等資訊,加上所值獲到的敵方目標資訊,自各種資訊管理系統、指揮管制系統與資訊平臺匯集整合後,呈現共同作戰圖像(COP)¹³,促使聯合作戰指揮中心指揮官可迅速、全面地掌握戰場態勢。

其次,在武器火力分配方面,聯合作戰指揮中心可透過數據鏈路,將敵方資訊傳送給不同作戰單位的資訊平臺,無需透過指揮體系逐級轉發,大幅縮短從偵察單位發現目標到攻擊單位完成開火之間所需時間¹⁴,使戰鬥部隊能立即集中兵火力,發揮作戰效能,作戰支援部隊亦可精準、迅速地支援戰鬥,於決勝時空迅速集中優勢兵火力,以獲取戰場優勢。

三、戰術數據鏈路演進

數據鏈路的緣起最早可追溯到1950年,當時美軍開發出一套可自動化追蹤並攔截敵方戰機的「半自動地面防空系統(Semi-Automatic Ground Environment, SAGE)」,在指管中心與雷達站之間建立點對點型式的數據鏈路,大幅縮短防空預警時間¹⁵。此系統於1950年至1980年期間為北美防空司令部所用,能夠將在空戰機的高度、距離和方位等資訊通過雷達設備自動記錄下來,並編成二進制的數位訊

號,透過通信設備傳送至北美防空部的訊息處理中心,經過處理後計算出戰機的位置、航向和速度,進而判別是否為入侵敵機,並將這些資訊迅速傳送至其他參戰部隊,使其有足夠時間做戰鬥準備¹⁶。這是首次將電腦與通信設備結合使用,在當時可謂之為創新,之後隨著參戰單位多樣化、資料傳輸量增加及傳輸距離延伸等因素,面對不一樣的作戰情勢與作戰需求,美軍及北約陸續開發了一系列戰術數據鏈路系統,以滿足軍事應用需求,具代表性包括Link-4A、Linl-11、Link-16和Link-22等系列,摘述如後:

(—)Link-4A

Link-4是以無線電對戰機傳送導引指令的數據鏈,屬於一種網狀的分時多工 (Time Division Multiple Access, TDMA)鏈路,工作於超高頻(UHF)頻段,傳輸速率為5Kbps,不具備抗干擾及保密能力,以美國海軍為對象研製而成,原始的設計目的是用於取代控管戰機的語音通信,之後的運用包含慣性導航系統校準、空中攔截控制、空中管制與地面控制轟炸系統等。其設計初期僅能執行單向傳輸,經過不斷改良後,發展出支援雙向傳輸能力的Link-4A及Link-4C,功能也擴展到可支援

13 梁華傑,「論資訊時代戰爭戰場管理新概念」,陸軍通資半年刊,第115 期,2011年4月,頁63。

- 14 弘安, <美軍售「迅安系統」有助提昇台灣網狀化作戰效能!?>,《風傳媒》,2023年12月30日, 〈https://www.storm.mg/article/4964533?mode=whole〉(檢索日期:2024年1月9日)。
- 15 陶政權,<美軍為何密集測試戰術數據鏈系統>,《科普中國-軍事科技前沿》,2021年10月27日,〈https://junshi.gmw.cn/2021-10/27/content 35290154.htm〉(檢索日期:2024年1月10日)。
- 16 百科知識,<半自動地面防空系統>,《百科知識中文網》,〈https://www.jendow.com.tw/wiki/半自動地面防空系統〉(檢索日期:2024年1月10日)。

地面、水面及空中載臺間進行數據傳輸¹⁷;惟此數據鏈的數據處理能力低,且因系統結構單一而造成應用上的侷限,就現代化作戰觀點,已無法滿足軍種協同作戰的需求¹⁸。

(二)Link-11

Link-11是美軍和北約普遍使用的一 種無線電數據鏈路,於1960年著手研發, 並於1970年開始服役迄今,主要配備於 海軍艦艇,採用標準訊息格式與網路通信 技術,工作於高頻(HF)或超高頻(UHF)頻 段,傳輸速率一般不超過2.5Kbps。可藉 由陸岸設置的Link-11高頻(HF)天線場, 具有超視距與保密傳輸能力,惟抗干擾能 力較差,它可在艦艇、艦對空、艦對地以 及空對地之間進行數位資訊傳輸與交換。 此外,為了克服裝備Link-11數據鏈與未 裝備Link-11數據鏈之艦艇間的數據傳遞 問題,北約另外研製了Link-14數據鏈, 用以接收友艦Link-11數據鏈訊息而不能 發送訊息¹⁹,功能較為陽春,故本研究不 予探討之。

(三)Link-16

Link-16起源於1970年,為現今美軍、北約各國及我國最普遍使用的戰術數據鏈路,用於提供不同軍種間資訊交

換的共同傳輸介面規範,美軍稱為「戰 術數據資訊鏈-J(Tactical Data Information Link-J)」。其為美軍因應作戰需求所研製 的「多功能資訊分配系統」(JTIDS)而制 定的數據通信技術,採分時多工(TDMA) 存取技術,工作於超高頻(UHF)頻段, 傳輸速率達238Kbps,其特性為抗干擾、 容量大、傳輸率高、低截收率及保密能 力強等。Link-16採用密碼加密、高速跳 頻、直接序列展頻及R-S錯誤糾正編碼等 技術,有別於Link-11的「網路主節點」 架構,Link-16採用「無節點」的網路架 構,當網路內任何一個站臺或載臺失效, 仍不會影響到其他單位運作,具有很高的 系統存活性20。Link-16可以說是Link-4A 及Link-11的集合體,提供通信、導航、 偵察、目標識別、語音加密、任務執行、 武器分配、中繼等功能,雖然戰術資料鏈 能力強大,但由於地球曲面的關係,其無 線電波受到視距限制,若要達到戰場全面 透明度,仍有一定難度。

(四)Link-22

Link-22是北大西洋公約組織(North Atlantic Treaty Organization,以下簡稱北約或NATO)所研發之系統,在1980年代後期,北約提出提升Link-11性能需

- 17 黃俊傑,「從中共數據鏈路發展探討我應有作為之研究」,軍事專題研究,第111期(2022年7月),頁8。
- 18 軍事新聞,<美軍數據鏈(Link-4/11/16/22)介紹>,《每日頭條》,2019年2月3日,〈https://kknews.cc/zh-tw/ military/69kympq.html〉(檢索日期:2024年1月12日)。
- 19 同註18。
- 20 朱盈豪,「數據鏈路整合運用之安全性探討」,陸軍通資半年刊,第110期,2008年9月10日, 頁4。

求,並制定了一份任務需求聲明,作為建立「北約改進Link-11(NATO Improved Link Eleven, NILE)」計畫之基礎,在北約標準化協定(Standardization Agreement, STANAG)STANAG-5522中提出新的戰術訊息標準,用以增強數據交換並提供新的分層通信架構,北約將其命名為Link-22²¹。

Link-22具備電子反反制(Electronic Counter-Counter Measures, ECCM)²²的視距外(Beyond Line Of Sight, BLOS)通信能力,是以Link-16為基礎升級而成的新一代戰術數據鏈,採分時多工(CDMA)或動態分時多工存取(DTDMA)技術,工作於高頻(HF)或超高頻(UHF)頻段,傳輸速率達12.6Kbps,Link-22也具備更強的跳

頻、展頻之抗干擾能力,以及傳輸速度快、傳遞單位增加等特性²³。Link-22的開發有2個特點,其一是取代過去的Link-11(Link-22也稱為進階版Link-11),當通訊條件惡劣時,Link-22可憑藉更穩定的訊號頻率以保持通連(如圖3),在頻寬和通訊距離運用方面更為廣泛;其二是採用自Link-16衍生而出的訊息標準及結構與協議,故可與Link-16兼容互通,進行數位訊息格式的轉換與傳遞,提升指管情傳效率(如圖4)²⁴。

Link-22同時採用具跳頻功能的HF及 UHF兩種通信頻段,不僅克服了Link-16 必須透過中繼才能達成超視距通信的限 制,有效延展跨視距連網的通信距離(如 圖5);此外,Link-22的自動編組功能,

圖3 Link-22可在Link-11無法運作的條件下工作

資料來源:同註21。

- 21 Northrop Grumman, "History and Background", 《Link22 Guidebook Overview》, 7/2013, 〈https://manualzilla.com/doc/5657368/link-22-guidebook---overview-version?page=3〉(檢索日期:2024年2月4日)。
- 22 中文百科, <電子對抗戰 > , 《中文百科全書》, 〈https://www.newton.com.tw/wiki/電子對抗戰 /12021164 〉 (檢索日期: 2024年2月4日)。
- 23 林克倫, <Link-22可讓國軍與美方鏈結形成共同作戰圖像>,《中央社》,2023年5月25日, 〈https://www.cna.com.tw/news/aipl/202305250309.aspx〉(檢索日期:2024年2月5日)。
- 24 同註21。

圖4 Link-22可以包含完整或部分的Link-16訊

資料來源:同註21。

Beyond Line-Of-Sight Communication

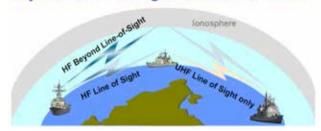


圖5 每個Link-22的通信頻段都可採用HF及 UHF通訊

資料來源:同註21。

可將敵軍與友軍地面載具、海上艦艇及 在空機的位置納入共同作戰圖像(COP)完 整呈現,達成真正與美軍作戰網鏈結²⁵。

「戰術數據鏈路」具體的特性取決於不同 的類型和用途,針對前述的數據鏈路代表 系統,彙整涵蓋特性如表1。

聯合作戰之應用研析

美國為世界上軍事發展最為先進的

表1 各型數據鏈路特性一覽表

特性類別	通信 頻段	傳輸速率 (bps)	語音 功能	保密 功能	視距 傳輸	抗干擾
Link-4A	UHF	600-5K	無	無	無	無
Link-11	HF/UHF	1.3K/2.5K	無	有	有	無
Link-16	UHF	28.8K-238K	有	有	有	有
Link-22	HF/UHF	HF:1.5-4K UHF:>12.6K	無	有	有	有

資料來源: 本研究整理

國家,為建立聯合互通性與跨聯盟網路整合,統合運用空中、地面及水上部隊之兵、火力遂行作戰,發展出各式通資指管系統,並朝向鏈結戰術無線網路模式整合²⁶,對於「戰術數據鏈路」系統設計、裝備研發以及作戰運用上,都具備相當發展概念與實務經驗。本章探討美軍聯合作戰之Link-22數據鏈路應用實例,從中分析應用效能,俾為國軍發展軍事數據鏈路技術之適用性及發展策略之立論基礎。

一、戰術數據鏈路與聯合作戰之關係

國軍對聯合作戰的定義為「凡兩個 (含)以上軍種部隊,執行共同任務,達成 同一作戰目的所遂行之作戰,不論其階層 與指揮關係如何均謂之」²⁷。而「戰術數 據鏈路」與聯合作戰的關係是密切相關 的,要使不同軍種和單位之間遂行作戰任 務,「戰術數據鏈路」必須可以有效提供 戰場上各種軍事設備間即時數據傳輸和共

25 同註23。

26 李書全,「聯合戰術無線電機發展與運用之研究」,陸軍通資半年刊,第136期,2021年10月, 頁13。

27 中華民國國防部,《國軍軍語辭典(九十二年修訂本)》,2004年3月,頁6-133。

享的能力,使得不同戰術單位能夠即時掌握同一戰場上的敵我情報、動態和指揮控制訊息,獲致更好的打擊效果,同時減少誤傷友軍的風險。在聯合作戰中,可運用「戰術數據鏈路」來達成以下目標:

- (一)數據資訊整合與共享:將不同軍種、單位之間的情報、目標訊息、戰術指令等不同來源的數據進行整合及分享,以支援戰場全局感知和整體規劃,提高聯合作戰能力。
- (二)即時情報和影像傳輸:通過「戰 術數據鏈路」即時傳輸戰場上的各種數據 和影像,使作戰人員能夠更即時地了解戰 場狀況、敵情和友軍位置,從而做出更有 效的戰術反應。
- (三)軍事指揮和控制:指揮官可透過「戰術數據鏈路」即時掌握作戰單位的狀態和位置,並下達相應的指令,達成更靈活和明確的指揮和控制,以應對快速變化的戰場情況。

運用戰術數據鏈路 有助於提升聯合作戰的 效能,對於掌握部隊作 戰行動,統一部隊行動 及作戰意圖,即時傳遞 戰況並掌握戰爭局面,在精準的時間及地點,有效集中兵、火力,快速制訂作戰計畫並且下達決心,其作用實屬關鍵²⁸。

二、Link-22數據鏈路應用實務

NILE計畫係由美國、英國、西班牙、義大利、德國、法國和加拿大等7個國家在協議後展開合作,以美國為主辦國家,責由美海軍資訊戰系統司令部(Naval Information Warfare Systems Command)專案管理辦公室管理整個專案計畫,致力於連接空中、陸地和水面戰術數據系統,達成參與國軍事單位之間的戰術數據交換(如圖6)²⁹。本節列舉於盟軍鏈結互通、戰場情資蒐集及強化任務執行等面向應用Link-22之實務。

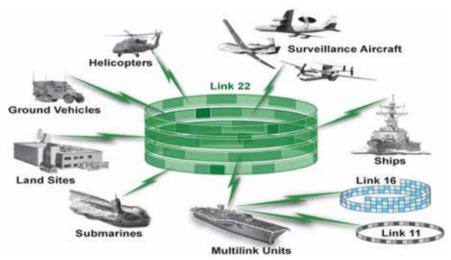


圖6 Link-22與其他戰術數據系統及軍事單位連接示意圖 資料來源:同註29。

- 28 晏啟華, <學習型指管決策支援系統研究>,《行政院國家科學委員會專題研究計畫成果報告》,2008年3月,頁9。
- 29 NILE PMO, "About Link22", 《NILE PMO Official Webpage》, 〈https://www.link22.org/about.html 〉, (檢索日期: 2024年2月25日)。

(一)盟軍鏈結互通

2022年6月29日至8月4日所舉辦世界上最大規模的海軍演習-「環太平洋軍事演習(Rim of the Pacific, RIMPAC)」,總計有26個國家、38艘水面艦艇、4艘潛艇、9個國家地面部隊、30多個無人系統、約170架飛機和超過25,000名人員在夏威夷群島和南加州及其周邊地區進行訓練和行動³⁰。

NILE專案辦公室亦於2022年的環太 軍演中驗證Link-22之運作,以測試及確 保來自不同國家的艦艇能夠透過Link-22 達成通訊,包括美國、法國、加拿大和智 利在內的幾個參與國都在使用該系統,透 過聯合軍演來增加經驗並提高操作互通 性。於軍演第一天,智利剛在其軍艦上安 裝Link-22系統,卻無法使其鏈結正常運 作,經過法國及加拿大的協助,三國之船 艦於當天即成功使用Link-22互通,藉多 國聯合演習行動證明了Link-22系統的成 熟度及優勢。

擔任環太軍演的總指揮官Michael

Boyle中將,在各部隊領導人的起始會議上如是說:「當我們談論到多國部隊的互通性和相容性時,所強調的即是無線電設備相互通信的能力以及數據鏈路相互連接的能力,必須良好地協調工作且不會造成摩擦」³¹。

(二)戰場情資蒐集

俄羅斯與烏克蘭的軍事衝突已持續超過二年,俄烏戰爭反映出兩種不同的戰爭思維,以美國為主的西方國家因資訊科技快速進步,在冷戰結束後便積極發展出資訊導向的作戰概念、部隊組織和武器裝備。相較之下,俄羅斯自瓦解後,因長期財政匱乏且受限於前蘇聯時期軍民產業分立,使其軍隊仍維持冷戰時期的作戰裝備及概念,未能與時俱進,越來越多報導顯示,俄羅斯軍隊的侵略行動仍停留在冷戰末期機械化的思維,反觀烏克蘭自2014年俄羅斯併吞克里米亞後,持續接受西方國家資訊作戰環境下的訓練,特別是美軍提供的情監偵系統,在戰爭中確保了烏國軍隊的指揮、管制、通信、情報之完整性³²。

- 30 U.S. Navy, "Rim of the Pacific 2022 Officially Begins", 《U.S. Indo-Pacific Command》, 30/6/2022, 〈https://www.pacom.mil/Media/News/News-Article-View/Article/3081151/rim-of-the-pacific-2022-officially-begins/〉, (檢索日期:2024年2月25日)。
- 31 U.S. Department of State, "Special Briefing via Telephone on RIMPAC 2022 with Vice Admiral Michael Boyle, Commander, U.S. Navy and Rear Admiral Christopher Robinson, Deputy Commander, Royal Canadian Navy", 《SPECIAL BRIEFING VIA TELEPHONE》, 3/8/2022, 〈https://www.state.gov/special-briefing-via-telephone-on -rimpac-2022-with-vice-admiral-michael-boyle-commander-u-s-navy-and-rear-admiral-christopher-robinson-deputy-commander-royal-canadian-navyan-and-pacific-affairs-d/〉, (檢索日期:2024年2月26日)。
- 32 丁樹範,「俄鳥戰爭的啟示:必須保持戰時指、管、通、情的通暢」,遠景論壇,第34期,2022 年5月,頁2。

在這場戰役中,俄烏雙方都致力於 戰場上的聯合作戰行動,結合步兵、砲 兵、裝甲車輛、防空、通信、工程及電子 戰等要素,而美軍運用其在烏克蘭空域部 署的合成孔徑偵照機、電子偵察機及空中 預警機等,持續蒐集作戰區域情資,並藉 由Link-22地、空鏈路將資訊提供使用相 同系統的烏軍作戰指揮中心,使其能明確 掌握戰場情況,持續修正作戰計畫,遂行 作戰任務³³,從而給予俄軍重大打擊。

(三)強化任務執行

Hensoldt公司是一家歐洲國防工業領域的跨國企業,主要業務包括國防安全和航空、太空等相關領域的防禦及監控任務,該公司於2020年將Link-22取代Link-11納入「海軍監視和國防作戰管理系統」中,該系統是一個開放的模組化作戰管理系統,可支援各種類型的水面或水下任務,例如經濟海域保護、反水面和反潛作戰、反非法販運、海上或漁業控制及搜索救援行動等,提供艦艇護衛監控能力並建立多個單位之間的鏈結(如圖7)³⁴。

此外,系統得益於Link-22的超視距安全通信,通訊距離達到300海浬,大幅延長目標探測及提高任務執行效率,並且可與雷達、光電設備、聲納、電子戰、北



圖7 運用Link-22達成多單位鏈結及超視距通 信示意圖

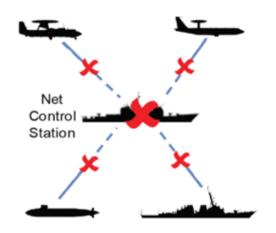
資料來源:同註32。

約或非北約數據鏈等其他平臺共用和監控 戰術圖像,確保武器管理並支援決策命 今³⁵。

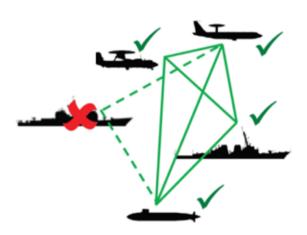
三、應用效能分析

綜合前述美軍運用Link-22數據鏈路的實例,探究其發展緣由及實際成效,Link-22在數據傳輸速率、抗干擾能力、網路透明度和安全性等方面都相比前幾代的數據鏈路有著明顯的改進,這使得它成為現代戰場上有效的通信和情報共享工具,大幅提高軍事作戰能力,經分析Link-22的應用效能包含以下幾點:

(一)取代Link-11,從而消除Link-11 的既有限制


Link-22採用分時多工存取技術,不

- 33 國防安全小組,<Link-22數據鏈路對我聯合作戰之影響>,《思想坦克》,〈https://voicettank. org/link-22數據鏈路對我聯合作戰之影響1/〉(檢索日期:2024年2月26日)。
- 34 Hensoldt, "Embedded naval surveillance and defence CMS", 《HENSOLDT Lyncea》, 〈https://www.hensoldt.net/solutions/lyncea/〉, (檢索日期:2024年2月25日)。
- 35 Xavier Vavasseur, "NEXEYA France Integrates NATO Link 22 Into Its Naval CMS LYNCEA", 《NAVAL NEWS》, 〈https://www.navalnews.com/naval-news/2020/11/nexeya-france-integrates-nato-link-22-into-its-naval-cms-lyncea/〉, (檢索日期:2024年2月25日)。


同於Linl-11網路主節點架構,透過大幅運用路由和中繼協定,即使發生單一節點(單位)失效,仍不影響網路中其他節點之間資料傳輸及鏈路存活性,反觀Link-11要求所有子節點都必須與主節點構連,而限制了其鏈路操作及作戰範圍(如圖8)。

相較Link-11的主節點架構,容易因參與單位數量增加,導致網路傳輸延遲狀況發生,故參與節點設計限制為62個, Link-22則是在主網路中創建不同的子網路,可容納最多125個節點(如圖9)。

Link-22運用先進的頻譜管理技術,

Loss of controlling unit causes Network failure with Link 11

Network continues after loss of a unit with Link 22

圖8 Link-22的網路存活性及靈活度更高

資料來源:同註33。

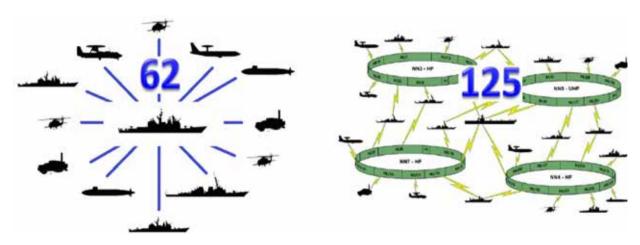


圖9 更多單位可加入Link-22主網路

資料來源:同註33。

能夠識別和排除其他干擾源,確保在高雜訊或惡劣的環境條件下仍可正常運作,提高了通信的可靠性和穩定性,並且採用更先進的加密技術,以保護數據的安全性和完整性;另外,Link-22採用F系列訊息格式,可傳遞的戰術數據內容遠多於Link-11的M系列訊息格式,使得在戰場上共享複雜的情報變得更有效率³⁶。

(二)使Link-16更加完備

Link-22所使用的F系列訊息屬於J系列訊息格式的一部分,F系列訊息是由兩種類型的訊息格式組成,即Unique F訊息和FJ訊息(如圖10)。其中,Unique F訊息是Link-16訊息的壓縮版本,FJ訊息則是將Link-16所使用的J系列訊息封裝在Link-22訊息中,使Link-16訊息無需額外編碼便能夠在Link-22網路中傳輸,兩種數據鏈因採用相同的訊息格式,故可達成即時數據傳遞及分享,確保戰場數據的完整性及穩定性。

Link-22的視距外通信能力,無須透 過衛星或機動中繼平臺,即可實現長距 離的通訊,擴展了軍隊的作戰區域,構建 範圍更廣的共同作戰圖像,提高作戰靈 活性,不但彌補了Link-16的傳輸特性限 制,更能減少開設傳輸節點,避免成為敵 人的攻擊目標³⁷。

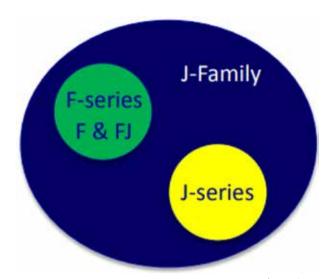


圖10 Link-22與Link-16使用相同訊息格式 資料來源:同註34。

(三)提高盟軍之間的互通性。

Link-22能夠即時收集、分析和共享 數據,支援多種武器平臺和聯合作戰部隊 的指揮與操作控制,並與其他不同類型的 數據鏈路進行互通操作,使得不同平臺和 系統之間能夠共享情報、地圖數據、戰術 圖表等關鍵資訊,協助指揮官提高了整體 戰場環境的整合性和協作性,以強化作戰 能力。

相較於Link-16需要依賴中繼才能達成超視距傳輸,Link-22的最大有效傳輸距離達1,000海浬(約1,800公里)³⁸,且具備傳遞單位增加、訊息傳遞更快、自動路由和中繼等優勢,這代表盟軍可在廣泛的作

- 36 NILE PMO, "Link 22 Overview: Replacing Link 11", 《NATO Improved Link Eleven (NILE) Link 22 Introduction and Project Update》, 30/10/2017, PP14-28.
- 37 NILE PMO, "Link 22 Overview: Complementing Link 16", 《NATO Improved Link Eleven (NILE) Link 22 Introduction and Project Update》, 30/10/2017, PP31-32.
- 38 NILE Program Manager, "LINK 22 Technical characteristics", 《LINK 22 PRESENTATION》, 05/11/2014, PP44-45.

戰範圍外即時監控部隊位置、移動和行動,並直接透過Link-22將訊息傳遞至我作戰指揮中心,有助於盟軍之間溝通、調度資源,並促進跨部隊協調能力(如圖11)。故此,Link-22的部署不僅增強與盟軍的作戰能力,並體現了美軍和北約盟國對我國的信任,對國防及未來軍事合作將是一大助益。

國軍數據鏈路精進建議

經前文彙整Link-22數據鏈路的發展和應用效能分析成果,接續將從我國軍角度觀察數據鏈路應用現況,整理出相關差異或不足之處,據以探討我國軍未來在數據鏈路發展及建軍備戰上,應加以深思著墨之環節。

一、現況探討

中共為我國目前主要的軍事威脅, 共軍不斷擴充其軍事力量,並積極發展 海、空軍新一代兵力與部署各式飛彈,此 種軍事擴張態勢已對臺灣和周邊地區的安 全構成巨大威脅,且中共同時亦增強了數 據鏈路的技術及能力,也使我國防衛作戰 反應時間日漸縮短,對國防安全造成了挑 戰。故此,國軍自2004年著手建構支援三 軍聯合作戰之「迅安系統」,用途在於整 合各軍種武器平臺和指管系統,用以實現 戰術數據的同步交換及情資共享,有效建 立資訊優勢,增強軍隊的作戰能力。國軍 現行使用之「戰術數據鏈路」為Link-11 及Link-16,架構區分有線網路與無線網 路,摘述如後:

> (一)有線網 路

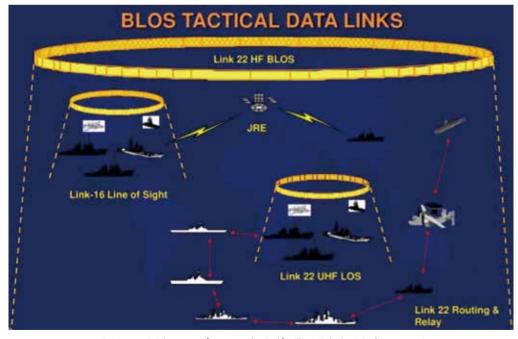


圖11 盟軍可即時加入作戰範圍及Link-22連網互通

資料來源:同註35。

處理監偵系統所傳遞情資;地空中繼站主 要設置有訊號處理器、網路設備和數據鏈 路終端機,為有線與無線網路間介接之橋 樑。

(二)無線網路

主要以數據鏈路構連各軍種機動載臺,戰機及車載以Link-16達成構連,艦艇則以Link-11/16達成構連,建構成綿密的數據鏈路網。機動載臺主要設置有指管伺服器、網路設備、數據鏈路終端機和操作席位,地面作戰指揮中心須藉由地空中繼站或中繼載臺之終端設備,方能傳遞指管訊息給其他機動載臺³⁹。

二、問題研析

我國軍目前在聯合作戰指管系統的 發展已具備一定之技術水準,從整體作戰 需求層面來看,仍面臨顯而易見的問題和 挑戰,而可能會帶來以下困境:

(一)作戰協調性不足

數據鏈路系統能夠在不同軍種或載臺間提供即時的作戰情資和命令傳遞,有助於促進關鍵情報共享和協作,提高作戰的協調性。惟我國Link-16數據鏈路尚未普及於各單位,目前僅安裝於海、空軍部分主戰兵力、作戰區、重要指管中心及陸岸作戰載臺,且作戰區以下旅、營級地面部隊均未納入,從而導致情報無法充分地分享,降低聯合作戰部隊之間的溝通效率和整合能力,增加作戰進程中指揮和管制的困難度。

(二)情監偵蒐能力限制

戰場資訊瞬息萬變,必須依靠數據 鏈路系統的支援傳遞戰場情資,提供指揮 官和作戰人員即時掌握戰場上的變化,以 利部隊迅速、準確地作出反應。以國軍現 況來說,Link-16工作頻段屬視距誦信節 疇,傳輸距離受限,必須透過E-2K空中 預警機、GMR機動中繼車或區域地空中 繼站作為訊號中繼,以便將訊息轉發給視 距外(BLOS)的單位;此外,我國海、空 偵察之預警雷達站臺以及Link-16使用之 涌信中繼站臺多建置於高山地區,容易漕
 敵掌握其位置,實施精準或反輻射武器的 攻擊破壞,而當誦信中繼節點故障或遭到 破壞,將造成戰場情報蒐集和監視偵查行 動的延誤及混亂,影響作戰指揮和決策的 進確性。

(三)系統熟悉度不足

數據鏈路系統的使用可以提供更高的自動化和數據交換能力,但因應裝備精密、複雜度增加、操作習慣改變等因素,基層操作人員能力及經驗均難以提升及累積,需要更多的時間和資源來訓練和適應,進而導致技術培訓、作戰程序修訂等方面的難度和成本增加。而國軍目前使用Link-16系統雖已有部分中文化,但主要仍為英文介面,作戰人員對於系統介面上的指令、選項、提示訊息等的理解程度及操作熟悉程度更是受到考驗,進而增加了執行錯誤的風險。

39 同註20, 頁5。

以上為國軍目前運用Link-16數據鏈路所遭遇到的問題,然而,根據具體的行動和戰場地形、氣候的條件與限制等因素,可能還會出現各種其他問題有待逐一克服,國軍應認清自身不足之處,積極釐清窒礙問題並研擬對應之道,為不可忽視的重要課題。

三、精進建議

為了有效發揮聯合作戰效能,高科技武器裝備的快速發展及其在現代戰爭中的運用,必須在聯戰指管系統上投入相當的技術、財力、人力等資源。數據鏈路的建置是一項循序漸進、逐步發展的過程,國軍需持續探討應有思維及可採取之因應作為,並與美國和相關部門密切合作,針對未來有望售予我國之新一代Link-22數據鏈系統,提出以下建議事項,以呼應本研究動機與目的,希冀做為國軍數據鏈路精進之參據。

(一)擴展系統佈建範圍,提升友軍單 位鏈結

在資訊化條件下,加強指揮中心和基層部隊之間的資訊交流,可提升戰場指揮速度、部隊反映時間和遠距打擊能力。美軍自2003年起開始藉由個人數位助理(Personal Digital Assistants)蒐集戰場數位化資訊,美軍將其命名為「指揮官數位助理(Commander's Digital Assistants,

CDA)」,透過顯示螢幕上的共同戰術圖像,不但能讓第一線作戰的部隊知道自己以及鄰近我軍和友軍排組或裝甲部隊的所在位置,也能夠不斷的將最新敵情傳遞給指揮官⁴⁰。

我國國防部於2016年委託中科院打造全數位化的旅、營級指管系統,包含部隊情資分享、動態管制、指揮所作業、野戰防空預警、砲兵火力支援、勤務支援作業及氣象與地形分析等數個次系統⁴¹,期能獲得Link-22系統技術,將數據鏈持續推展、佈建至單兵或各主要武器載臺,透過有、無線及衛星的通信鏈結,才能在各種複雜的戰術環境中與美軍和北約盟國共通,實現聯合作戰的價值。

(二)降低通信中斷風險,提升情報偵 蒐能力

隨著高科技的發展,目標採取匿蹤、偽裝、機動、干擾等反偵察措施,使得戰場感知變得更加困難和複雜,Link-22可跨視距連網,覆蓋範圍更廣,可減少通信節點開設,避免成為敵搜索攻擊目標;另外,在陸、海、空等多維空間配置多種探測系統,對戰場空間實施不間斷、重疊式探測,為部隊提供即時、精確、全天候及全時空戰場感知圖像,將戰場態勢進行威脅估算和預測,亦有利於後續作戰任務遂行。

- 40 蔣河山,「從美軍看PDA在數位化戰場用途」,陸軍通資半年刊,第112期,2013年9月1日,頁 134。
- 41 洪哲政, <美軍宣稱共同作戰圖像合作進程曝光 迅安系統可望升級>,《聯合新聞網》,2023年5月,〈https://udn.com/news/story/10930/7180581〉(檢索日期:2024年1月17日)。

為有效發揮監察偵蒐效能,快速達成情資回饋,國軍於2022年向美採購「海上衛士(Sea Guardian)」MQ-9B大型無人機,該型機具備長時間滯空能力,能夠延伸整體戰場通信指管距離,並可在高空發揮強大的偵察能力⁴²,我國空軍更規劃將MQ-9B所偵獲之目標情資透過數據鏈路匯入至聯戰指管系統,形成共同戰術圖像供各單位運用⁴³,未來國軍可透過Link-22達成情資共享,以提升任務執行效率,確維指管效能。

(三)統一訊息交換格式,確保系統相 容整合

因應數據鏈路的持續佈建,國軍必 須進一步思考系統相容和訊息整合的問題,國防部積極推動新式武器、載臺的接 裝,若是僅著眼於系統所具備之性能,而 忽略與既有或未來可能銜接設備的相容性 能力,恐衍生硬體無法介接或訊息格式無 法轉譯等問題。佈建Link-22的同時可保 有Link-16持續使用,僅需針對現有系統 實施研改、升級或通信基礎設施改善,便 可遂行數據訊息的傳遞與共享,確保戰場 資訊的完整性及穩定性。

目前我海軍部分艦艇同時配置Link-11和Link-16兩種數據鏈路,因分別採用 M及J系列訊息格式,仍需透過轉譯器來 對雙向訊息執行解譯44;另外,空軍近期 新購的F-16V BLK70戰機也具有整合數據 鏈路的資訊網路交換能力,值得注意的 是,美方此次售台的戰機搭載「新式終端 機系統」,將取代原先的Link-16數據鏈 路專用終端機,並支援各種戰術連網應 用45,未來在空機能否可順利接收及處理 Link-22的指揮、武管命令,回傳資訊是 否可整合至共同作戰圖像供各單位運用, 將大大影響不同單位之間的訊息共享和作 戰協調。綜前所述,數據格式和通信協定 的統一是整合不同版本「戰術數據鏈路」 系統,確保戰場數據安全、可靠傳輸之關 鍵。

(四)持續人員教育訓練,提高操作維 運能力

為滿足現代戰爭和安全挑戰的需求,「戰術數據鏈路」技術不斷發展,高 科技武器系統須由高素質人才操作,人才 由教育訓練培育而成,任憑有再精良的武 器,若作戰人員訓練不佳,則無法發揮應

- 42 林克倫, <俄烏戰爭看台灣無人機戰術3/MQ-9B無人機 專家:創造戰場優勢交換情報>,《中央通訊社》,2022年4月, 〈https://www.cna.com.tw/news/aipl/202204030154.aspx〉(檢索日期: 2024年1月20日)。
- 44 黄俊傑,「從中共數據鏈路發展探討我應有作為之研究」,軍事專題研究,第111期(2022年7月) ,頁36。

有的效能。資訊科技進步越迅速,專業人才的培育就越不容易,進行適當的訓練能夠確保人員具備必要的技能和知識,了解數據傳輸的基本原則和技巧,並學習如何熟稔使用各種通訊和指管系統,以能夠有效地協調和整合來自不同來源的數據,支援指揮官下達決策。

教育訓練可以幫助作戰人員熟悉數 據鏈路系統及操作介面,使人員能夠有效 地操作和傳遞戰場數據,同時也必須瞭解 系統安全和注意事項,包括系統和網路安 全事件的處置與恢復計畫,均仰賴持續的 人員培訓,並藉由參與模擬真實戰鬥情境 的訓練活動熟悉各種情況,有助於增強人 員的技能和信心,以在緊湊的作戰環境中 迅速反應和解決問題,增加我方優勢。

結 論

於現代戰爭中,運用「戰術數據鏈路」的能力已是取得戰爭勝利之關鍵。回顧研究內容,美國歷經半個多世紀的數據鏈發展,先後研製了多種數據鏈系統,分析其發展歷程,可以看出美軍在相容現有裝備的前提下,改進網路結構、增加系統容量、提高部隊資訊共享及訊息傳輸能力46,並於各項演習時機進行訓練驗證,使美軍在全球任何戰場都能將作戰能力最大化。

我國國防部為達成「防衛固守、重 層嚇阻」的戰略目標,致力於指揮管制和 武器系統之鏈結,以形成「網狀化作戰」 能力,而國軍「迅安系統」自2004年建構 迄今已逾20年,系統已難以有效應對臺海 情勢需求,為因應我國軍未來陸續接裝之 HIMARS多管火箭系統、MQ-9B無人機、 F-16V BLK70戰機和岸置型魚叉飛彈等新 式武器系統47,國軍應全面審視、規劃及 升級指管系統, 俾充分運用戰術數據鏈路 之技術優勢,滿足防衛作戰需求。本研究 旨於美軍戰術數據鏈,同時整理我國軍自 身能力不足之處,提出後續精進方向,強 化數據鏈路佈建,並持續構築更完善、可 適應資訊化戰爭的數據鏈體系,提升未來 大規模聯合作戰所需之指管情傳能力,以 發揮刺敵制勝之效果。

作者簡介別常

林克正少校,航空技術學院95年班、電子戰 正規班101年班。曾任通修官、資網官、分 隊長、資戰官、隊長。現任職於國防大學管 理學院少校學員。

李建鵬中校,中正理工學院正87年班、管院 指參班101年班、國防大學理工學院資工所 網路安全在職碩班108年班。曾任電子官、 修護組長、分隊長、科長、資參官、電戰 官。現任職於國防大學管理學院中校教官。

46 孫治水、翁麗娜、劉春旭、劉軼銘,<美軍數據鏈發展分析>,《中國指揮與控制學會》,2018年5月6日,〈https://itw01.com/GFZ6KEF.html〉(檢索日期:2024年1月29日)47 同註14。