國防科技與軍隊後勤支援發展

作 者 簡

介

黄俊麟上校,中正理工學院航空系71年 班、中正理工學院兵研所75年班、美國陸 軍後勤學校後管班1994年班;曾任所長、 主任、處長、廠長、研發室主任,現任職 於聯合後勤學校。

提 奪

- 一、國防科技的發展,除了導致武器系統與裝備性能的大幅提升外, 新一代指、管、通、資、情、監、偵(C⁴ISR)等科技的發展均造 成軍隊後勤支援模式的大幅變化,但相對的也增加後勤支援的難度 與複雜性,文內提出因科技進步所帶來在後勤支援發展上的各項問 題,我們應同時思考如何突破與協進之道。
- 二、後勤支援能力將決定戰爭成敗,本文首先從兩次波灣戰爭論國防科 技與軍隊後勤支援發展,其次本軍針對新一代國防科技的發展,應 從加強後勤理論的研究、強化後勤支援管理、提升後勤人才培育、 發展後勤裝備整備、實現後勤指管自動化、建立數位化補保模式、 合理後勤支援結構、強化武器自製能力、動員民間後勤能量等方面 加強準備。

前言

「國防科技」依國軍軍語辭典解釋 為:「與國防軍事發生密切關係之科 學與技術」;當前嶄新的新式科技時 代已針對包括軍事在內的社會各個領域 带來新的生機和活力,尤其戰爭的成敗 常繫於後勤的支援能力,故美軍的後勤 思想與作為中,始終認為後勤是戰力的 乘數(Force Multiplier)。國防科技的 發展,除了導致武器系統與裝備性能的 大幅提升外,新一代科技的發展與後勤 資訊系統的建構均造成軍隊後勤支援模 式的大幅變化。1991年的波灣戰爭至 2003的第二次波灣戰爭(以下簡稱美 伊戰爭)中,顯示現代戰爭正以驚人 的速度向新式科技化邁進,而且推動著 軍事領域的變革,從軍事理論到作戰模 式,及武器裝備到編裝體制等,都出現 了前所未有的改變,本文中將討論國防 科技對軍隊後勤支援的影響及我軍後勤 未來的發展方向。

國防科技與軍隊後勤支援

美國賓夕法尼亞大學國家戰略顧問科恩博士說:「21世紀的戰爭具有數位時代的特徵,需要要求很高的技術系統的支持…①。」,故藉由現代國防科技的發展與運用,已逐漸轉變了軍隊後勤支援觀念,尤其自1991年波灣戰時結束後,美軍為因應21世紀作戰部隊的需要,進行軍事事務革新,並遂行戰

場後勤作業資訊化,並將後勤支援納入 美軍的聯戰願景中,企圖建構有效的 戰場支援能力,以下說明如何藉由國 防科技的發展,建構良好的軍事後勤支 援。

一、建立整合性後勤作業環境

現代戰場後勤作業資訊化與即時作 業系統,如美軍「全球戰鬥支援系統」 等的發展與建立,有效的將後勤支援系 統與全球戰鬥支援系統連結,並透過全 球的聯網,速捷的傳送至戰場上的戰鬥 部隊。又如美國國防先期研究計畫局於 2000年發展的未來戰鬥系統(Future Cambat System, ICS) 計畫,以「戰 場網路 | 為骨幹將士兵與各種作戰、火 力支援和指揮控制等系統相連,並利用 通信網路將為直射火力、間接火力、偵 察及監控、部隊運輸及機動的指揮與管 制等連結一起,以便使部隊能更快反 應、更易於部署,而其間的後勤支援 亦通過資訊連結而達到整合運用的目的 **2** °

二、提升後勤補給作業效率

註❶:編輯室,《高科技在軍事領域的應用及對作戰影響》,八一出版社(中共書籍),頁203。

註❷:陳台生,〈未來戰鬥系統之研究〉《國防譯粹》,第27卷11期,民國90年1月,頁36~39。

美軍致力速度管理與資產透明化 資料來源:美國國防部網站,http://www.defenselink.mil/

並運用新式無線射頻RFID技術,再配 合軍備物資補給過程「貨櫃化」,可精 確掌控從美國至波斯灣戰區全部軍品運 送過程,並精準、快速、可靠的對各戰 鬥部隊遂行各類軍備物資的補給作業, 達到縮短後勤反應時間的目標,以建構 「即時後勤補給」的物資補給方式。另 外,波灣戰爭期間,美軍所使用「戰力 補給包件」(Strength Provide)也是 一個運用現代科技的例子,該「戰力補 給包件」之內部裝備完整且為具可部署 性,可充分建立簡易後勤基地系統3。

三、強化保修支援裝備

國防科技的發展帶動保修部隊的轉 型,因此,提升指管通資能力、強化 保修裝備功能,使其具備多能力作業 條件,以適應多元之作戰型態,並於

高機動性之作戰環境中,具有更 精確、迅速之應變能力。另導入 優勢科技,使得裝備較具模組化 與通用性,因此,促使保修作業 更加便捷,以便快速恢復裝備妥 盖。

一發展整合性作業平臺

美軍為使保修部隊作業具 備輕便、多能之特性,與達到 減少鈍重性之目的,特研製相關 装備,如發展重型前進支援系統 (Forward Repair System Heavy, □

FRSH),即將保修修護站所需之 各種保修機具與裝備設置於平行載運 系統(Parallel Load System, IPLS)的 載臺上,由M1075平行載運系統底盤 車運載,所配賦之裝備包括戰場損壞 評估修理裝備等,可有效執行前方保修 作業4;另外,針對戰場支援,發展機 動零件修理站(Mobile Part Hospital.□ MPH) (如圖二) 主要功能為總成/ 零件直接交換站與機動庫儲、零件修補 功能,其設置目的為擔任前方旅級之野 戰機動補給點,以能在數小時至數日內

(二)運用科技提升支援效能

補充戰場急需零件6。

美軍為爭取保修作業速度特 別發展交談式電子技令(Interactive Electronic Technical Manual. IETM)、預測與診斷裝置,早期掌握

註❸:編輯室,〈電子標籤與無線射頻識別技術〉,RFID中國論壇,http://www.rfidchina.org

November 2003.

註6:同註4,頁29。

圖二 美軍MPH機動零件修理站

資料來源:美國國防部網站,http://www.defenselink.mil/

(三)改良保修後勤資訊系統

美軍為了改善與整合後勤資訊系統中補給、保修與後勤管理功能,使 之具備作業與管理功能,並與指揮管 制系統與戰鬥支援系統連結,使補保 作業、管理、管制能做到即時處理之 能力,以提升資產透明度、累積 後勤資訊、強化後勤管制與決策 支援功能,達到提升作業效能與 後勤作業處理能量之目標。如發 展之戰鬥勤務管制系統(Combat Service Suppot Control System,□ CSSCS)可透過衛星、通信與定 位系統,隨時掌握運補車輛或 位系統,隨時掌握運補車輛或 補單位之位置,直接實施各類補 給品運補或前往完成保修任務③。

四發展自我檢測與診斷系統

四、提升油彈支援作業效率

國防科技的發展提升油彈後勤支 援效率,並於高機動性之作戰環境中, 使武器系統更具有精確、迅速之應變能

註**6**:同註**4**,頁29。 註**7**:同註**4**,頁29。

註❸:朱艷芳,〈波灣戰爭美軍作戰考驗後勤長鞭效應〉《國防雜誌》,第18卷11期,民國92年5月, 頁50。

註 9: 同註 4, 頁 31。

圖三 IETM電子技令相關配備

資料來源:美軍聯合電子資料庫,http://www.dtic.mil/doctrine/ index.html

力。

(一)發展速捷之野戰補充油囊

在波灣戰爭中,美軍針對伊拉克 地形之後勤支援特點,為了支援直升機 和裝甲部隊之燃料,研製特殊性能的野 戰橡膠油囊,體積小、重量輕,既可用 卡車拖曳,也可用直升機載運或降落傘 空投,當戰車輾過野戰橡膠油囊,油料 即可通過導管補充到戰車內⑩。

仁發展空中加油支援設施

美國和英國為了增加戰機、艦的 作戰半徑和時間,分別發展空中加油 支援設施,並運用KC-135、KC-10空 中加油機,對作戰飛機進行立體支援, 再配合航母戰鬥群為艦載機空中加油 •

(三)增加彈藥酬載能力

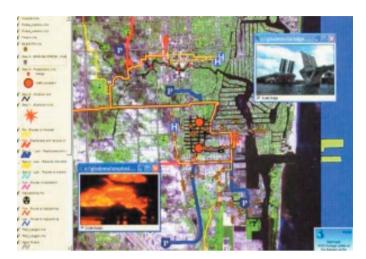
隨著新式科技的發展, 飛機自身攜帶載彈量普遍增 加,美B-52轟炸機專門設計長 9米的彈藥倉,隨機最大攜彈 量達27噸,是二次世界大戰 的B-29重型轟炸機載彈量的3 倍,故彈藥酬載能力增加,也 使得戰場後勤支援的能力加大 **1**2 °

四發展自動化裝 (卸)彈 系統

1984年美國陸軍及開始 發展臺板式載運系統(Palletised Load System, PLS),該系統具備自動化 裝載彈藥之能力與巨大的籌載能量, 可改善陸軍機動彈藥整補之效率,另 美軍於波灣戰爭期間配合盟軍使用機 動快速卸載系統(Demountable Rack Off-Loading and Pick-up System. DROPS)來運送彈藥, DROPS系 統為可拆貨物架板之運輸系統,不 需任何外力支援將貨物架板與彈藥 搬至母車上,同時配合設計戰鬥彈藥 配套量(Combat Configured Loads,□ CCL),配送至各需求單位,不僅能加 快彈藥裝卸載能力,更大幅提升彈藥 補給速率₿。而針對聯結在火砲上的裝 彈系統對彈藥補充的不便與安全性, 也發展出自動裝彈系統(現役主力戰車

註❶:向駿,〈波灣戰爭美軍後勤作為研析〉《國防雜誌》,第18卷第10期,民國92年4月,頁71。

註❶:同註❶,頁213。 註❷:同註❶,頁220。 註B: 同註4, 頁29。


多已配備)來降低操作人員的工作負荷,可以免除操作人員過重 負荷、降低危險性與加強戰車在 行進間連續射擊之能力。

五、增加運輸支援能量

科技發展為後勤支援提供了強而有力的運輸工具,如空運輸也,目前美軍的C-5A銀河運輸機運載能量達120~140噸,C-17A運輸機達78噸,且航程長達10,000公里,美軍目前擁有各式戰略資。海運方面,美軍目前擁有戰略海運船隻近2,000艘,總運有戰略海運船隻近2,000艘,總運

載量近5,000萬噸。美軍還組建了海上 預置倉庫船,分別配置於大西洋、太平 洋和印度洋,大幅提高了戰略機動的海 上運輸支援能力優。

一交通管理系統(Advanced Traffic Management Systems,□ATMS)(如圖四),ATMS為智慧型運輸系統的核心與基礎,係利用偵測、通訊及控制等技術,將交通監控系統偵測狀況,經由通訊網路傳輸到控制中

圖四 智慧化運輸系統配合全球衛星定位

資料來源:美軍聯合電子資料庫,http://www.dtic.mil/doctrine/index.html

心,執行整體性的交通管理,以達到運 輸效率最大化及運輸安全等目的。

二旅行者資訊系統(Advanced Traveler Information Systems,□ ATIS),ATIS係由通資技術,提供交通運輸必要資訊,包含輸具與路線選擇之決策參考,相關技術如全球衛星定位系統(GPS)、地理資訊系統(GIS)等。

(三)車輛控制及安全系統(Advanced Vehicle Control and Safety Systems, AVCSS), AVCSS係結合感測器、電腦、通訊及控制技術,應用於車輛及道路設施上,提高更安全、準確、可靠之控制,彌補駕駛人因判斷錯誤或技術不足所造成的疏失。

美軍軍事運輸利用先進的智慧化 運輸系統(ITS)技術建構全球運補網

註❷:同註❶,頁228。

註: 許世斌, 〈車輛及時指揮控制之研究〉《陸軍學術月刊》,第38卷437期,民91年1月,頁4。

路,在波灣戰爭中,美軍透過運輸司令 部交通管制及調度作業在短期內快速調 動部隊、裝備、物資支援戰爭需要, 並配合「速度管理」、「全面資產透明 化,與結合訂製後勤支援包件方式,爭 取後勤支援時效,美軍運用並配合「沙 漠快遞 | 作業模式,將重要零組件快速 送至波灣地區,使得軍品交付率由5% 提升到50%,平均運補時間縮短15%, 節省大量的運輸成本與經費₲。

六、提升衛勤支援能量

科技發展為部隊提升衛勤支援能 量,如波灣戰爭中,美軍擁有醫療設 備的直升機就達220架,地面救護車 1.000多輛,可迅速建立戰區醫療系 統。美海軍還發展兩艘「仁慈號」和 「舒適號」海上機動醫院(如圖五), 作為海軍專門的海上醫療設施,可提供 充足的醫院設備,防止或處理可能受到

的核生化武器的攻擊,同時配備 先進的傳輸系統,可以藉衛星定 位將戰地醫院傷患傷情傳回,而 達成遠距醫療效果,提供快速及 時的醫療支援❻。

軍隊後勤支援發展的挑 戰

國防科技提升了軍事後勤支 接能力,但也因科技的進步,使 得戰場上的後勤支援需求,已全 然不同於以往的型態,同時也相 對增加後勤支援發展的難度與複

雜性,如武器系統研究與採購經費廳 大、裝備維護困難度提高、後勤支援的 物資與人員培訓費用增加等,故應思考 如何突破因科技進步所帶來在後勤支援 發展上的各項挑戰。

一、武器系統研究經費龐大

科技 廣泛應用於軍事領域,將使武 器裝備日益現代化、科技化,而科技武 器裝備多是集電子、通信、光電、材 料等科技於一體,其研製難度大、時程 長、費用高。如60年代初,美國為實 現阿波羅登月計畫而研製的火箭,歷時 8年,耗資300億美元;80年代初設計 的隱形戰艦「海影號」,歷時10年, 研製費用高達10億美元;2006年美國 與英國、義大利、荷蘭等八個國家聯手 研發的F-35閃電二型隱密聯合攻擊戰 機(如圖六)經費高達2.760億美元,

圖五 美軍大型海上機動醫院

資料來源:美國國防部網站,http://www.defenselink

註❶:〈美軍五大地面保障系統〉,中共新浪網,www.xinhuanet.com

註(1)::同註(1)。

是美國有史以來最昂貴的武器研發計畫 **®**。

二、裝備採購費用突增

新式科技武器的採購費用非常高,如波灣戰爭中美軍使用的M1A3戰車約440萬美元、愛國者導彈約110萬美元、愛國者導彈約110萬美元、實際人工。 空中預警機和B-52戰略轟炸機均為1.1億美元、F-117A隱形戰鬥機1.6億美元、F-117A隱形戰鬥機1.6億美元的國防氣象衛星、衛星通信系統等價格更高級衛星、衛星通信系統等價格更高級大幅增加,美軍於1971~1980年間,總採購費為2,400億美元,而1981~1990年間,則增到8,100億美元,2000年迄今則武器採購費用已高達2兆美元®。

圖六 美國F-35閃電二型隱密聯合攻擊 戰機

資料來源:美國國防部網站,http:/www.defenselink./mil

三、裝備維護困難度提高

新式科技武器裝備的結構複雜、精 密, 導致使用前的測試、檢查、保養、 維護工作多且雜,如新一代戰車的承載 系統均以液氣壓式設計為主,用以提升 行進間射擊的精度,且採用自動裝彈系 統與大量運用車輛數位電子科技及戰場 管理系統以提高作戰效益,但卻使需要 的後勤維修等級與條件更加困難,在美 伊戰爭期間,美軍將兩萬多名後方後勤 科技人員直接送往前線,以確保裝備得 以維護妥善。新式科技武器裝備維護費 用更高,以美軍為例,在1971~1980 年間總的裝備維護費為2,900億美元, 至1981~1990年間則高達7.450億美 元,2000年迄今則武器裝備維護費用 已高達1.6兆美元②。

四、作戰物資消耗大幅增加

註⑩:編輯室,〈F-35閃電二型隱密聯合攻擊戰機〉《聯合報》,2006.7.9,版7。

註●:美國國防部網站,U.S. DoD,http://www.defenselink.mil/。

註②:同註(6)。

科技物資器材。其次,各種戰甲車、 飛機、艦船等均需要充裕的油料,如 2005年度美空軍消耗的飛行燃料就高 達32億加侖,約臺幣1.500億元,為全 美國石化燃料消耗的52%;波灣戰爭多 國部隊在空襲行動中,僅噴射燃料日消 耗量最高就達40萬桶,尤其第一裝甲 師在波灣戰爭的地面戰鬥階段,每天需 要燃料50~75萬加侖,幾乎相當於諾 曼第登陸時18個師一天的耗油量。又 如美軍在第二次世界大戰期間,每天平 均消耗費用為2億美元;越戰約為2.3億 美元;而波灣戰爭,僅美軍每天平均就 高達14億美元,上述資料顯示,隨著 科技的發展,各種類型新式科技武器裝 備的廣泛應用,使得各國的國防經費大 幅增加②。

五、後勤支援的物資增加

現代投入戰爭使用的武器裝備之科 技水準越高, 導致後勤支援物資的種類 與項量均大幅增加,波灣戰爭美軍後 勤支援的物資種類從各種武器零件到 一般生活裝備,總數達17,000餘種之 多,致使物資支援的數量激增。60年 代,美軍於越戰每人平均日消耗一般物 資110公斤;而波灣戰爭,美軍僅地面 作戰部隊每人平均日耗物資達200多公 斤,其航空母艦編隊之每人平均日消耗 更多達1.200公斤,據統計,波灣戰爭 中美軍共消耗各類物資高達3.000多萬

噸22。

六、運輸支援難度增大

現代戰爭具有較大的突發性,軍隊 被要求必須迅速實施戰略集中與機動, 因此大幅增加運輸的強度和難度。以第 一次波灣戰爭為例,1991年2月24日開 始展開地面進攻時,美軍於短短4個月 間在波灣地區集結的總兵力已高達52.7 萬,戰車2,200輛,飛機2,800架,美 軍在短短的7個多月時間裡共空運54萬 噸裝備和補給品,海運340多萬噸的戰 争物資和610多萬桶石油,其海、空運 輸量和難度可想而知23。

七、衛勤支援難度增加

科技武器的發展,大幅延長交戰時 間與增加傷亡數量,而戰爭傷情也因武 器發展而發生變化,過去主要是步槍彈 和砲彈致傷,而現代戰爭的武器使用, 導致燒傷、複合傷增加兵員傷情將呈 現多樣化,甚至會出現大量的戰爭精神 病,如果再考慮核生化武器的威脅,傷 情將更加多樣化。其次,由於科技武器 強化部隊作戰機動性,使未來作戰地域 將擴大,加之中遠程精確導引武器的廣 泛使用和遠程戰略空襲,致使傷員在更 為廣闊的地域發生,有時甚至不分前線 作戰地域和後方的後勤地域。因此,使 衛勤支援地域和距離將大幅提升,也增 加衛勤支援難度徑。

八、人員培訓費用增加

註②:同註❶,頁206。

註❷:編輯室,《高技術戰爭後勤》,國防大學出版社(中共書籍),頁135。

註❷:同註❶,頁224。 註❷:同註❷,頁128。

武器装備越是現代化、科技化,越 需要高素質的人員來操作, 而要造就高 素質的後勤人員,除了普遍提高兵員的 基礎科學素質外,更要靠平時的嚴格培 養和訓練。為此,現代各個國家都大力 加強軍隊院校建設,充分發揮院校的培 訓功能。如美軍目前有軍事院校130多 所,平均1.5萬官兵一所,在校受訓人 數約占總兵力的17%;法軍有院校160 多所,平均3.400名官兵一所,在校受 訓人數約占總兵力的14%;日軍有院 校33所,平均8.200名官兵一所,在校 受訓軍官約占軍官總數的10%。除加 強院校培訓之外,各個國家還大力加強 部隊的演習訓練,以提高部隊的整體 作戰水準。以美軍為例,其年度訓練 時間長達1.700小時;海軍水面艦艇, 年度海上訓練時間約150~160天,導彈 核潛艇時間更長,年度出海時間約達 250天;空軍飛行訓練,年度時間不少 於240小時,尤其強調夜間訓練,其他 主要國家的軍隊為提高人員的素質和 整體作戰能力,也都特別強化平時訓練 **2**5 °

九、戰場透明度增強

現代科技戰爭使情報資訊的收集向立體化發展,波灣戰爭中,美軍就動用各類偵察衛星30多顆,並輔之各式有人和無人偵察機,同時派遣特種部隊潛入伊拉克境內蒐集資訊,使得波灣戰爭的前38天空襲,就是把伊拉克的工業、軍隊後勤基地、交通運輸線等作為重點攻擊目標,迅速切斷了伊拉克軍隊

的補給線和退路,故戰場透明度因現代 高科技而增強,但也相對使部分後勤支 援設施和運輸線均暴露無遺,因而造成 極大的破壞,故這些從未出現在以往戰 場上的偵察設施,顯然對後勤支援產生 新的威脅與挑戰。

精進我軍後勤支援能力 的建議

後勤支援能力的良窳與戰爭成敗有 密切的關連性,但如何提高我軍後勤支 援能力,迎接未來科技戰爭的挑戰,我 軍應有如下措施以為精進:

一、加強後勤理論的研究

國防科技的發展導致軍隊後勤支援的變化,但應就後勤支援的全過程,分析後勤理論的發展變化,進而明確何種需要是我們在未來戰爭中應建立的理論基礎,並從戰爭中吸取經驗,如美伊戰爭的後勤支援方面,不僅要從勝利者獲得經驗,也要從失敗者獲得教訓,從之更適合未來的科技戰爭。

二、強化後勤支援管理

本軍無論是保修、補給、運輸或衛 等後勤支援管理作業,傳統上均,但 等後勤支援管理作業,傳統上均,但 所以建成後勤支援以「速度管理」 所以達成後勤支援之適時、適 質、過地的要求,故國軍對於軍品網路 質、適地的要求,故國軍對於軍品網路 應朝標準化、資訊化與網路 應朝標準化、另為使後勤更能聚焦與國防 結,全面資產透明化更是整合整個國防

註四:同註四,頁125。

供應鏈與軍事後勤系統的關鍵,未來必 須能更正確的掌握軍品動向與獲得軍品 補給與支援時間等資訊,使後勤支援更 具彈性20。

三、提升後勤人才培育

運用新式科技提高後勤支援能力, 關鍵就是要有一支高素質、高水準的後 勤隊伍。因此,必須從致力於後勤人才 的培育, 並通過各種途徑和管道引進人 才,以建構一支專業化的後勤隊伍,方 足以適應未來新一代軍事後勤支援的發 展。

四、發展先進後勤裝備

後勤支援能力的良窳直接影響新式 科技武器装備功能的發揮,目前發展我 軍後勤裝備乃是當務之急,故必須結合 目前科技研發方針,與武器裝備發展同 步,優先發展先進的後勤裝備。另外, 要加強管理,使後勤裝備與人員,後勤 科技與戰術能緊密結合。

五、實現後勤指管自動化

新一代戰爭的突發性大,各軍、兵 種協調度高,戰爭物資消耗激增,後勤 支援任務極為繁重,故需實現後勤指 管自動化,才能確保後勤支援任務的 完成。國軍以防衛作戰為主,後勤支援 模式與美軍不同,但是美軍各式補保作 為,如建立「後勤資訊系統」、「戰力 補給包件」、「數位保修包」等,均是 新一代後勤支援的特色,亦足以作為國 軍後勤持續精進之參考,尤其近年來國 軍後勤指管自動化建設確有相當發展, 但與先進國家相比,則仍待加強。因

此,我們必須配合新一代武器裝備之科 技發展與後勤支援需求,迅速發展後勤 指揮管理自動化之相關建設。

六、合理後勤支援編組結構

後勤裝備之科技水準提高,將導致 支援層次與物資儲備的數量等都發生變 化。以美軍為例,由於具有較強的戰 略海運和空運能力,加之後勤支援自動 化指揮水準提升,從第一次波灣戰爭開 始,美國國防部開始重新整合後勤供應 鏈,並透過資料庫,掌握所有供應品的 行蹤,建立「即時」(Just in Time) 後勤,除了提高了供應鏈中物資運補的 正確性、有效性和同步化的水準外,更 大幅減少人工作業,故同時也得以調整 相關後勤的編裝結構。

七、強化後勤裝備自製能力

科技的發展, 導致後勤裝備與武 器系統性能的大幅提升,我國近二十 年發展之國防武器裝備,如IDF戰機、 天弓、天劍飛彈等,均已陸續完成, 也培育相當可觀的武器研發與自製能 力,但近年來國內大型武器系統的需 求卻仍偏向依賴外購,主要自行研發 的裝備僅八輪雲豹甲車(如圖七), 故面對未來防衛作戰與國防科技發展 的需求, 應配合國防政策, 加強發展 具遠期效益的武器系統與相關之後勤支 援裝備,方足以維持未來國防武器裝備 發展實力。

八、改良本軍現有後勤支援裝備

由於我國政治上的現實環境,導致 國軍武器裝備的獲得不易,故本軍除加

註❷:〈美伊二次波灣戰爭後勤作為研析〉,國防大學國防管理學院,民國92年3月。

圖七 國產雲豹輪型甲車 資料來源:聯勤兵整中心提供

強武器系統與相關後勤支援裝備之保養維護外,應利用裝備性能提升或系統改良之方式,維持或延長後勤支援裝備的使用壽命,並針對任務需要而擴充其運用範圍,以提升整體效益。

九、動員民間後勤能量

結 論

戰爭的成敗與軍事後勤的支援 能力息息相關,1991年第一次波灣 戰爭後,美國便開始展開軍事事務 革命與後勤改革,其主軸在於結合 國防科技,包括先進的電腦系統、 通信網路、監偵系統與最新軍事科 技等,而美伊戰爭也證明新式科技 已經徹底改變了軍隊遂行戰爭與後 勤支援的方式,尤其,美國新世紀 的作戰構想係根據四年期國防總檢 的中心目標與2020年聯戰願景:機 動優勢、精準打擊、聚焦後勤、全 方位防護等為方向,將過去「植基於 威脅」的防衛計畫思維模式,改變成 「植基於能力」與「植基效能作戰」 ❷,企圖運用科技的無窮潛力,形成全 方位優勢,創造國防力量的提升。國 防科技的發展,使得現代戰爭往往呈 現多面向、全天候的作戰方式,而後 勤支援也必須從全方位、全天候同時 展開,前方和後方密切協同。所以後 勤支援能力的強弱、具體與否,其重 點在於平時的準備,在效法先進國家的 後勤支援改革模式前,必須先行強化 後勤組織能力與落實後勤支援作業, 如此方可以有效提升我軍有形之後勤支 援能量。

收件:95年9月8日

第1次修正:95年9月21日 第2次修正:95年10月19日

接受:95年11月7日

註母:同註母。

註❷:編輯室,〈2006年,美國國防部四年國防評估報告〉《聯合報》,2006.2.5,版2。