PRBEE $71=% $-% 11305
JOURNAL OF C.C.ILT, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

A Study on AES-based Encryption Scheme with Face
Recognition Mechanism

Chen-Hua Fu'®, Chung-Wen Tzeng?, Hsin-Wei Kuo?, Jin-Sheng Chu'

! Department of Information Management, College of Management, National Defense University
2 Department of Industrial Engineering and Systems Management, Feng Chia University

ABSTRACT

Since more smartphones and notebook computers are available and face-recognition algorithms
are mature, this study proposes an AES-based encryption scheme with a face-recognition mechanism
to solve an issue of key management in a symmetric encryption mechanism. The proposed encryption
scheme depends on the content of a plaintext file to generate a secret key with a hashing function; then,
it encrypts the plaintext file; finally, it stores all information required in the decryption process into a
ciphertext file. And; the proposed encryption scheme depends on the face-recognition result to decide
whether one person in front of a camera can decipher the ciphertext file. This study implements the
proposed encryption scheme with Python and executes several scenarios. The execution results
confirm the feasibility and practicality of the proposed encryption scheme; they also demonstrate that
the proposed encryption scheme can solve the secret key management issue in a symmetric encryption
mechanism.

Keywords: AES encryption mechanism, face-recognition, hashing function, secret key management
Bt A et AES 3 R4 RS2

BIRED ¥¥ 2?2 FWigTH? 4By !

'R~ EEEERTAF RS
THY A B el pNEEE L

T |

EETEN R LeAR%NE 2 N2 ARFRRFE 2P R AR - AR
LM FERAS AT L AES 415 et 2 R o MRS e RS er AT g L
R o AL THRN N R RBEF P B FEREIRAL Y ELBERITENE D
By R REM Y B RIS Bfl o T MBRBAY TF T TREEIF
o e TR TR A D R BB L g Rl an e & KA TR X AT R ER
By gl o A g EE Python 2N F T HEBA L TR IR RIS TRE T
BRI - JNEFLEEHFIMRINDNP X7 FRfcF* v PREP T TR D b
BORV RAHA e R DR R AL

MG ¢ AES4 4] 4 sh fei Sl s R L

L

Manuscript received July 04, 2023; revised Nov 22, 2023; * Corresponding author

2 felcit p I 112.7.04; 2 f/i3 & {5452 p #p 112.11.22; *id 3 i’?—‘ﬁ

65

Chen-Hua Fu et al.

A Study on AES-based Encryption Scheme with Face Recognition Mechanism

I. INTRODUCTION

It highlights the importance of information
security with the evolution of information and
network technology; the confidentiality of
documentation becomes a critical information
security issue. People always use encryption
schemes to ensure the confidentiality of
considerable documentation. However, an
encryption scheme requires a secret key or a pair
of public keys; usually, more documents encrypt,
and more secret keys / public keys need. It might
be a problem for users to remember those keys
used in documentation encryption. The key
management of documentation encryption
would be an issue that require us to explore.

Due to the maturity of information and
communication technology, many mobile
devices, such as smartphones and notebook
computers, appear in daily life and work.
Usually, those smartphones and notebook
computers have an embedded camera device;
therefore, people can have a camera device
available when they can quickly and easily
access smartphones and notebook computers. In
addition, face recognition algorithms are
becoming more and more mature. We can adopt
a face recognition scheme with those available
cameras to strengthen the documentation
encryption process.

Since a secret key management issue exists
and face-recognition algorithms mature, this
study proposes an AES-based encryption scheme
with face-recognition mechanism. The proposed
encryption scheme uses a hashing function to
generate a secret key for a cipher job and avoids
the secret key management issue in an
encryption scheme; it also stores all information
required in the decryption process into a
ciphertext file. Moreover, the proposed
encryption scheme depends on the face-
recognition result to decide whether the person
in front of the camera can perform a decryption
process; the face-recognition result would be a
threshold to trigger the execution of a decryption
process in the proposed encryption scheme.

We organize the remainder of this paper as
follows. Section II discusses the related
technologies adopted in the proposed encryption
scheme. We have detailed descriptions of the
proposed encryption scheme in Section III.
Section IV presents the prototype program
implementation of the proposed encryption
scheme and the execution results of some

66

scenarios with the prototype program. Finally,
we have a conclusion in Section V.

II. RELATED WORKS

This study adopts several technologies, face
recognition, SHA hashing algorithm, and AES-
GCM mechanism, to construct the proposed
encryption scheme; we will have literature
reviews on those technologies.

2.1 Face recognition

In general, biometric identification depends
on physiological features, such as fingerprint,
iris pattern, or face, to identify a person. And; as
smartphones prevail, face recognition becomes
one of the primary biometric technologies; it
adopts automated methods to recognize the
identification of a person with his facial features
[1]. Compared with other biometric technologies,
face recognition has several advantages, such as
natural, nonintrusive, and ease of use [2].

Image/Video input

|

r| Face detection

.

1051 I
simultaneously

Face feature
extraction

l

Face recognition

|

Identification,
Verification

Fig. 1. A procedure of a computer-based face

recognition (Source: [3])

Usually, computer-based face recognition
involves three steps: Step 1 face detection from
cluttered scenes; Step 2 feature extraction from
the detected face regions; Step 3
identification/verification (See Figure 1) [3]. The
execution order of those three steps is sequential.
And, the face detection and the facial feature
extraction perform almost simultaneously.

Face detection will separate a face region
from a background image in a picture. Hjemal
and Low use two categories of face-detection
techniques; one is feature-based techniques, and
the other is image-based techniques. The

feature-based methods use a person's facial
features in their detection process; the
mechanisms used in the feature-based
approaches include low-level analysis, feature
analysis, and active shape model [4]. The image-
based methods usually depend on new study
fields, such as machine learning; the
mechanisms adopted in the image-based
approaches are neural networks, example-based
learning, and support vector machine [5, 6].
When a face recognition mechanism detects a
face region in an image, it will extract a facial
features from the detected face region at the
same time. The facial features are a set of
structural encodings to describe the presented
face in the detected area. Those feature
encodings include center-view descriptions and
some abstract descriptions of the global
configuration and features [7].

The face recognition mechanisms depend
on the three main approaches, Holistic, feature-
based, and hybrid, to complete face recognition
jobs [3]. The Holistic Approach takes a whole
face region as input data with various methods,
such as eigenfaces, fisher faces, support vector
machine, and hidden Markov model (HMM),
which are the principal component analysis-
based (PCA-based). The feature-based
approaches analyze local features of facial
organs, such as the nose, eyes, mouth, and their
geometric relationships; this approach also calls
the geometric feature-based approach [8]. Since
human facial features play a critical role in face
recognition, many researchers have determined
that the eyes, mouth, and nose are the most
significant features. Therefore, the hybrid
approach will combine local features and all
features of a detected face; usually, it will use a
modular eigenface with local feature methods
[9]. Also, several approaches, such as the
geometry-based technique, template-based
technique, appearance-based approach, and
color-based method, have been used to extract
the facial features from the detected images [10].

2.2 SHA hashing algorithm (SHA)

A hash algorithm is a one-way function;
usually, it takes an arbitrary length message to
produce a fixed-size message digest string [11].
Essentially, a message has its corresponding
unique message digest. Therefore, we can use
hash functions to check the integrity of one

67

PRBEE $71=% $-% 11305
JOURNAL OF C.C.ILT, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

specific message. Also, hash functions can
provide authentication services with digital
signature and message authentication code
(MAC) algorithms [12].

Secure hash algorithm-1 (SHA-1) is the
world's most popular hash function used in
cryptography; it takes a limited-size message as
an input and produces a 160-bit message digest
(hashing value)[13]. However, SHA-1 security
strength is comparable to 80-bit block
encryption, but its security strength is somewhat
limited [14]. There might exist a security
concern with SHA-1.

SHA-2/SHA-3 are new standards in the
hash function families; it has many changes
from SHA-1. SHA2 is composed of six hash
functions to generate message digests in
different lengths; the length of those digests is
224, 256, 384, or 512 bits [13]. SHA-1 and
SHA-2 adopt the same functional structure, but
they use some variations in the internal
operations, such as message size, message block
size, word size, number of security bits, and
message hash size [15]. SHA-3 is based on the
KECCAK algorithm; its family consists of four
cryptographic hash functions, named SHA3-224,
SHA3-256, SHA3-384, and SHA3-512 [16].
Table 1 shows those variations.

Table 1. Secure Hash Algorithms

Aleorithm SHA-|SHA-|SHA-| SHA3- | SHA3-
g 1 256 | 512 256 512

Message < 264 < 264 < 2123 any any

size size size

Block 1 515 | 510 | 1024] 136 | 72

size

Message

digest 160 | 256 | 512 256 512

size

2.3 AES-GCM

The AES (Advanced Encryption Standard)
[17] is one of the symmetric block encryption
algorithms; US NIST (National Institute of
Standards and Technology) selected it as a
federal information processing standard - FIPS
PUB 197 [18]. The AES algorithm uses a secret
key of 128/192/256 bits to encrypt/decrypt a 16-
byte (128 bits) block [17].

The AES depends

on content

Chen-Hua Fu et al.

A Study on AES-based Encryption Scheme with Face Recognition Mechanism

substitution/location transportation operations to
perform a cipher/decipher job with 10, 12, or 14
rounds of encryption/decryption. It bases on the
secret key length to determine the exact round
number of encryption/decryption. Usually, a
typical round of AES algorithm includes four
types of operations, Substitution Bytes, Shift
Rows, Mix Columns, and Add Round Key. And,
the final round omits the Mix Columns operation;
it is slightly different from a normal round
process [19]. Usually, people use the AES to
execute an encryption process with a longer
secret key; they can receive more security
robustness in the ciphertext to resist the brute-
force attack of a secret key. The AES-256
mechanism with the 14 encryption/ /decryption
rounds can resist a key-recovery attack with a
total complexity of 2'*! time and 2 memory [20,
21].

The AES-Galois/Counter Mode (GCM) is
one of the AES-based block encryption
algorithms [22]. It is a critical encryption
scheme in cryptographic practice; for example,
IPsec and TLS adopt it [23]. The AES-GCM
requires four inputs, an AES-based secret key, an
initialization vector (it is a nonce), plaintext, and
additional authenticated data (AAD) that is
optional. Moreover, it produces two outputs, a
ciphertext and a message authentication code (an
authentication tag).

The IV is a nonce essentially; its value is
unique for a specified context; it determines an
invocation of the authenticated encryption
function on the protected plaintext. Moreover,
the IV/nonce should be multiples of 8 so the
IV/nonce can be byte strings; usually, the AES-
GCM performs efficiently with the IV/nonce in
12 octets, a 12-octet IV/nonce is recommended
[24].

2.4 Information security schemes with
face recognition

A facial feature is one of the biometrics
features; it is often integrated with encryption
schemes to enhance the robustness of
information security. Using a face recognition
mechanism to strengthen related information
security schemes has become a trend.
Venkatesan, R., et al. proposed a two-way
authentication system with facial and proxy
detection to improve security during online
transactions. The system uses 128 facial feature
points of the user to increase the accuracy of the

68

system and a triple-DES encryption mechanism
to enhance the security of the work [25]. Ameen
introduced a secure e-e web application with a
secured authentication process. The secured
authentication process depends on the single
elector's selection of encryption and face
recognition [26]. Battaglia, F., et al. A multi-
factor authentication system is proposed based
on a dual cascade classifier for face recognition
and encrypted RFID tags for token-based
authentication. They avoid using a centralized
facial recognition database and store these
sensitive facial recognition data in RFID;
furthermore, this approach makes the system
performance independent of the total number of
registered subjects [27]. Sawant, V. A., et al.
combined a facial recognition technology with
the AES encryption algorithm to propose a novel
approach to enhance the security of password-
based encryption systems. They used a facial
recognition mechanism as an extra
authentication process to verify the user's
identity before allowing access to encrypted data
[28]. Vankadara, A. et al., proposed a new
security scheme. The scheme increases the data
security of a database with SHA-512 encryption
and adopts a second level authentication with
machine-learning-based face recognition [29].
Chandrasekhar et al. proposed a new
homomorphic encryption scheme with facial
templates to guarantee the security of the cloud
user information and the person's reclusive
identification; the proposed encryption scheme
performs a double abstraction methodology to
assure data protection on a cloud computing
platform with facial templates. The usage of
Facial templates is a critical aspect in the
encryption process [30].

III. AN AES-BASED
ENCRYPTION SCHEME WITH A
FACE RECOGNITION
MECHANISM

Face recognition mechanisms depend
on extracted face feature vectors to verify
the identification of a person. A person
would get his corresponding face feature
vectors from a camera with a face
recognition mechanism. Usually, two people
cannot get pretty close face feature vectors
with a face recognition mechanism from a

PRBEE $71=% $-% 11305
JOURNAL OF C.C.LT.,, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

encryption process
¥

Get face feature
wectors from a camera

¥
Perform
encryption process

Process

selection

decryption process
)

Get face feature
vectors from a camera

face feature vectors

ompare with
face feature vectors

the cipherte

Write face feature Show non-
vectors aqd autharized person
encrypted plaintext to perform Perform
into a file decryption process|| decryption process
1 message 1
Ciphertext file
Plaintext file

+ 4

End

Fig. 2. A flowchart of encryption process / decryption process in the AEFR scheme

camera. Therefore, this study will use the
face feature vectors of a person in an AES-
based encryption scheme to verify a person's
authorization to perform a decryption
process of a ciphertext file. Therefore, this
study proposes an AES-based encryption
scheme with a face recognition mechanism,
named the AEFR scheme, to enhance the
confidentiality = of documentation in
intelligent devices with a camera. The AEFR
scheme adopts a face recognition
mechanism in both the proposed encryption
process and decryption process; it will use a
set of face recognition feature vectors get in
the encryption process to verify whether a
person who is authorized person to decrypt a
ciphertext file in the decryption process or
not.

Figure 2 shows that the AEFR scheme
depends on users' selection to perform an
encryption or decryption process. First, both
encryption and decryption processes will get
a set of face feature vectors from a camera;
then, the AEFR scheme will perform the
subsequent encryption/decryption process.
The encryption process will depend on an
AES-GCM algorithm to encrypt a plaintext
file; then, it writes the extracted face feature
vectors and the encrypted result into a
ciphertext file. The decryption process will

69

get the face feature vectors of a person from
a camera and have a comparison with the
face feature vectors in the ciphertext file
first. If the person has the authority to
decrypt the ciphertext file, the decryption
process deciphers the ciphertext file and
writes deciphered plaintext results into a
plaintext file; otherwise, the decryption
process will display a message that shows
the person in front of the camera is an
unauthorized person to perform the
decryption process of the ciphertext file.

3.1 Face feature vector extraction

A set of facial features is one of the critical
biological features; we can use it to verify the
identification of a person. The AEFR scheme
will depend on the face feature vectors stored in
a ciphertext file and extracted from a camera to
determine whether a person can decrypt the
ciphertext file or not. Therefore, it is a critical
process for the AEFR scheme to extract face
feature vectors from a camera.

For extracting a set of face feature vectors
of a person from a camera, the AEFR scheme
will open a camera first; then, it captures an
image that contains a person's face from the
opened camera. Next, the AEFR scheme uses a
DLIB-based face recognition module to find the
face location of a person in the captured image

Chen-Hua Fu et al.

A Study on AES-based Encryption Scheme with Face Recognition Mechanism

and extracts a set of face feature vectors from
the found face location. Finally, the AEFR
scheme keeps the extracted face feature vectors
for sequential encryption/decryption. Figure 3
shows the flowchart of a face feature vector
extraction.

| Open a camera]
]

Capture a person face
image from a camera
+
Find the face location
of the person in the
captured image

Extract and save the
face vectors from the
found face location
+

| close a camera |
¥

Fig. 3. A flowchart of a face feature vector extraction
in the AEFR scheme

3.2 Encryption process

The encryption process of the AEFR
scheme is an AES-GCM-based encryption
mechanism with multiple variable blocks. For
solidating the confidentiality of a ciphertext file,
the encryption process divides a plaintext file
into many variable-size blocks and encrypts
those variable-size plaintext blocks with the
AES-GCM mechanism. And it uses a random
number to decide an encryption block size in
each round of encryption. Moreover, to let users
could only depend on their faces to perform an
encryption process without inputting extra
information, the AEFR scheme uses several
functions to archive this goal. Those functions
include a face recognition function, a master-key
generation function, a random number seed
generation function, a secret-key selection
function, and a data scramble function. Those
functions depend on applications of a hashing
operation, a pseudo-random number generation,
and an XOR operation.

® A face recognition function
Since it is impossible for a face feature
extraction algorithm to get the same face feature

70

vectors in every face recognition process, the
AEFR scheme cannot use extracted face feature
vectors as a secret key in a symmetric
encryption mechanism. Due to this reason, the
AEFR scheme uses extracted face feature
vectors from a person as a threshold for
determining whether a person can do a
decryption job. Therefore, the encryption
process of the AEFR scheme will capture an
image of a person who performs a
documentation encryption process from a
camera; then, it extracts a set of face feature
vectors from the captured image and stores them
in the ciphertext file.

® A master-key generation function

In general, an SHA hashing operation
depends on the content of a message to generate
its corresponding unique message digest; only
the same message content can produce the same
message digest. The AEFR scheme generates a
master key for the encryption process with the
message digest of the plaintext file. Thus, only
the person who gets the correct contents of the
plaintext file can get the right master key in an
encryption/decryption process. For increasing
the change of secret key selection from the
generated master key in an encryption process,
the AEFR scheme uses SHAS512 hashing
operation to produce a 64 bytes message digest
of a plaintext file as a master key for the
proposed encryption to do encryption/decryption
jobs with the AES-GCM mechanism. With a 64-
byte message digest, there are 256 power of 64
combinations for a master key.

® A random number seed generation function
For getting a series of controllable random
numbers in the encryption/decryption process,
the AEFR scheme uses the 64-byte master key to
generate a random number seed; it uses the
ASCII code of the 64-byte master key and the
location of a character in the 64-byte master key
to calculate the random number seed with simple
addition and multiply arithmetic operations.
Figure 4 shows a pseudo-code of the random
number seed generation with the 64-byte master
key. The encryption process depends on the
generated random number seed to get a series of
controllable random numbers to scramble the
critical data, the 64-byte master key, face feature
vectors, and pairs of nonces and tags, in the
encryption process and the decryption process.

random_num_seed = ()
for (1 =0, 1 <length of master key, =1+ 1)

j=1lmod6
random_num_seed = random_num_seed

+ ASCIl code of masterkey[l] %
/

Fig. 4. A pseudo-code of the random number seed
generation in the AEFR scheme

® A secret-key selection function

The AES-GCM mechanism performs an
encryption/decryption process with 256 bits(32
bytes) secret key; therefore, the AEFR scheme
selects a required secret key from the master key
randomly with 32 generated random numbers
for the AES-GCM mechanism for each
encryption/decryption process. The secret-key
selection function depends on the master key
size to generate a random number, which will be
in the interval (0 ~ 63); then, it uses the
generated random number as a location index of
the master key. The secret-key selection function
depends on the location index to retrieve a one-
byte content in the master key; then, it assigns
the one-byte content as a part of the selected
secret key. Since the secret-key selection
function might choose the contents of a required
secret key from the identical location of the
master key repeatly, the combination of a secret
key choosing from the master key would be 64
power of 32. Figure 5 shows the pseudo code of
the secret-key selection function.

for(i=0;i<32;i=1+1)
{

loc = random number mod 64
secret_key[i]
master_key[loc]

Fig. 5. A pseudo-code of the secret-key selection
function

® A data-scramble function

For storing the master key, face feature
vectors, and pairs of nonce and tag in an
unreadable pattern, the encryption process
scrambles those data with two operations. One is
a content substitution operation; the other is a
location transposition operation. First, the data-
scramble function performs the content
substitution operation that depends on the ASCII
codes of those data and a series of random
numbers to scramble them with three simple

71

PRBEE $71=% $-% 11305
JOURNAL OF C.C.ILT, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

arithmetic/logical operations, addition,
subtraction, and XOR; it determines one of the
three operations with the location index of one
character in the processed data and substitutes
the content of the specific character in an
unreadable pattern. Figure 6 shows the pseudo-
codes of the content substitution operation.

for (1 =0; I < length of the processed data; I =
I+1)
{
If lmod 3 == 0:
the ASCII code of scrambled data[l] = (the
ASCII code of the processed datafl] +
random_number) mod 256
Iflmod 3 == 1:
the ASCII code of scrambled data[l] = (the
ASCII code of the processed datall] -
random_number) mod 256
Iflmod 3 == 2:
the ASCII code of scrambled _data[l] = the
ASCII code of the processed_data[l] XOR
random_number

/

Fig. 6. A pseudo-codes of the content substitution
operation in the data-scramble function

After finishing the content substitution operation,
the data-scramble function performs the location
transposition operation. Also, the location
transposition operation depends on the length of

scrambled _ctr = 0
for (i=0; i < the length of processed_data; i=i+1)

gen_loc_array[i] = False

< the

of

while scrambled_ctr
processed_data
{
loc = random_number mod the length of
processed_data
if gen_loc_array[loc] == False

length

scramled data[scrambled ctr] =
processed_data[loc]
gen_loc_array[loc] = True
2
s
scrambled_ctr = scrambled _ctr + 1

}

Fig. 7. A pseudo-code of the location transposition
function

Chen-Hua Fu et al.

A Study on AES-based Encryption Scheme with Face Recognition Mechanism

—
Get EQF
face feature . i
I iﬁfe::lt i vectors from plaintext file
plaintexttile camera -
| | Get a secret key /,’- \
Generate Scramble with the secret
B4-bytes face feature key selection \—///
master key with| | [vectors with the function
The master key data scramble ¥ Write
Eeneration function Encrypt XORed number of face encodes
function | ""F”ab!e block group, scrambled face encodes
1 éléﬁﬂw't:j "E"Ef“ data, scrambled master key,
and get a i
Generale B XORed number of nonce/tag pair,

scrambled nonce/tag pairs, XORed

random number

nonce/tag pair
¥

Scramble a
nonce/tag pair

random number seed,
and ciphertextinto a ciphertext
file

seed with the) r':"-PP'E"C!
random number ciphertextinto
seed generation | | aciphertext
function and the buffer and keep
M scrambled
nonce and ta

Fig. 8. A flowchart of the encryption process

the processed data to generate a series of random
numbers as the location indexes of the
scrambled data. Since it is possible to get the
identical location index more than once by the
generated random numbers during location
transposition processes, the location
transposition function uses a boolean array to
record whether a specific location of scrambled
data is swapped and avoids swapping one
position of processed data repeatedly. Figure 7
shows the pseudo-code of the location
transposition function.

The encryption process will encrypt a
plaintext file with several functions mentioned
in the above paragraphs; first, it opens a
plaintext file and generates a master key
corresponding to the plaintext file with the
master-key generation function. And; the
encryption process depends on the random
number seed generation function to generate a
random number seed with the generated master
key for the following encryption process. Then,
it gets the face feature vectors of an encryptor
from a camera and scrambles the extracted face
feature vectors with the data scramble function.
Next, the encryption process performs an
encryption process loop with the AES-GCM
mechanism.

In the encryption process loop, the
encryption process uses the secret-key selection
function from the master key to get a secret key
for the AES-GCM mechanism and determines a

72

variable block size with a generated random
number; then, it reads plaintext content from the
opened plaintext file with the generated block
size and has an encryption process with the
AES-GCM mechanism. When the AES-GCM
mechanism performs an encryption operation, it
will produce a pair of nonce and tag for
authentication in the decryption process. The
encryption process uses the data scramble
function to scramble the produced nonce and tag
and keeps them. Also, the encryption process
saves the ciphertext into a buffer temporarily.
This encryption process loop does not end until
the end of the plaintext file.

When the proposed encryption process
finishes the encryption process loop job, it will
store the XORed number of face encodes group,
the scrambled face encodes data, the scrambled
secret key set, the XORed number of nonce/tag
pairs, the scrambled nonce/tag pairs, the XORed
random number seed, and the ciphertext into a
ciphertext file. Figure 8 shows the flowchart of
the encryption process.

3.3 Decryption process

The decryption process performs a
ciphertext decryption job with several functions.
Those functions include a face recognition
function, a master-key generation function, a
secret-key selection function, and a data-
unscramble function; only the data-unscramble

function is a new function in the decryption
process. Also, the data-unscramble function
depends on applications of a pseudo-random
number generation and an XOR operation.

® A data-unscramble function

Since the encryption process scrambles
several critical data, such as the master key, face
feature vectors, and pairs of nonce/tag, and
stores them in the ciphertext file, the decryption
process requires a function to unscramble those
data in a readable pattern. The data-unscramble
function is a reverse function of the data-
scramble function in the encryption process; the
data-scramble function wuses the content
substitution operation to substitute the content of
plaintext data with unreadable data first; then, it
performs the location transposition operation to
swap locations of the plaintext data. Therefore,
the data-unscramble function would depend on
those two operations with some modifications to
unscramble scrambled data. Figure 9 shows the
pseudo-code of the data-unscramble function.

Fig. 9. A pseudo-code of the data-unscramble

Step 1: to set random number seed
for (i = 0; i < the length of the scrambled
data; i=1i+1)

random_number_array[i] =
random number

/

Step 2: to swaps the scrambled data with the
location transposition operation of the
data-unscramble function and a series of
generated random numbers

Step 3: to substitute the swapped scrambled data
with the content substitution operation of
the data-unscramble function and the
random_number_array

function

First, the data-unscramble function depends
on the random number seed used in the
encryption process to generate a series of
random numbers; then, it keeps those random
numbers for a content substitution operation
later. Next, the data-unscramble function
performs a location transposition operation with
the scrambled data and a series of generated
random numbers. The location transposition
operation is the same as the location
transposition operation in the data-scramble
function of the encryption process. After
finishing the location transposition operation,

73

PRBEE $71=% $-% 11305
JOURNAL OF C.C.ILT, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

the data-unscramble function performs a content
substitution operation. The content substitution
operation also depends on the ASCII code of
scrambled data and a series of kept random
numbers to unscramble the scrambled data with
three simple arithmetic/logical operations,
addition, subtraction, and XOR. However, those
three simple arithmetic/logical operations have
different execution sequences in the data-
unscramble function. Figure 10 shows the
pseudo-code of the content substitution
operation in the data-unscramble function.

Fig. 10. A pseudo-code of the content substitution

for (i =0; i < the length of processed data; i =
itl)

{
Ifimod 3 == 0:
the ASCII code of scrambled datafi] = (the
ASCII code of the processed datafi] -
random_number) mod 256
Iflmod 3 ==1:
the ASCII code of scrambled data[i] = (the
ASCII code of the processed datafi] +
random_number) mod 256
Iflmod 3 == 2:
the ASCII code of scrambled datali] = the
ASCII code of the processed _data[i] XOR
random_number

operation in the data-unscramble function

For getting the critical parameters in the
encryption process, the decryption process
requires retrieving the XORed parameters, the
number of face feature vectors, the number of
nonce/tag groups, and the random number seed
in the encryption process from a ciphertext file
first. Then, it has XOR operations on those
retrieved parameters with the specific XOR
numbers to receive the values of those critical
parameters. With those key parameters, the
decryption process reads the scrambled face
feature vectors from a ciphertext file and
unscrambles them with the data-unscramble
function and a series of random numbers. Next,
the decryption process gets the face feature
vectors of a decryptor from a camera; then, it
has a comparison between these two face feature
vectors. If the decryptor's face feature vectors
are not equal to the face feature vectors stored in
the ciphertext file, the decryption process shows
a non-authority warning message; otherwise, the
decryption process keeps doing the decryption
process.

Chen-Hua Fu et al.
A Study on AES-based Encryption Scheme with Face Recognition Mechanism

Read XORed
parameters
and
ReXOR them

+
Read scrambled
face feature

decryptor’s and saved
ace feature vecto

equal

Read scrambled 64-byte
master key and
unscrambled them with
random numbers

¥

Show a warning message

that a non-authority

person cannot perform

decryption process

vectors and
unscrambled

EGF ciphertertT

Write deciphered
plaintext into a file

XORed parameters :

| 1. number of Face encodes

random No
numbers Read / unscrambled a
pair of scrambled nonce | T
¥ and tag |
Get | 2
decryptor’s face Read / decipher a |
from a camera ciphertext with AES GCM
I and nonce/ftag

|2, number of nonce/tag group

|
|
group [
|
3. Random number seed |

Fig. 11. A flowchart of the decryption process

When the decryption process begins to
decrypt the ciphertext file, first, it reads the
scrambled master key and all scrambled nonces
and tags from the ciphertext file and performs an
unscramble process with the data-unscramble
function to get the correct master key and all
unscrambled nonces/tags. Next, the decryption
process depends on the number of the nonce/tag
pairs to determine the number of a decryption
loop. In each decryption loop, the decryption
process selects a secret key from the master key
randomly with generated random numbers and
decrypts the ciphertext in a variable length with
the AES-GCM mechanism and a pair of nonces
and tags. Then, the decryption process saves the
decrypting result into a buffer. As the decryption
process decrypts all ciphertexts from a
ciphertext file, it stores the decrypting result
buffer into a plaintext file. Figure 11 shows the
flowchart of the decryption process.

3.4 An exploration of the ciphertext file

The ciphertext file contains six kinds of
XORed and scrambled data besides the
ciphertext. The decryption process will depend
on those unreadable data to decrypt the
ciphertext. The first column of the unreadable
data is the XORed number of the face features
groups, and its length is 1 byte; it records that

74

the encryption process uses how many groups of
facial features. The second column of the
unreadable data is the scrambled face feature
data. Since a group of facial features contains
128 feature values and the length of one feature
value is 48 bytes, the scrambled face feature data
depends on the value of the number of the face
features group to have a relatively variable
length. The third column of the unreadable data
is the scrambled master key; its length is 64
bytes. The fourth column of the unreadable data
is the XORed number of the nonce/tag groups.
The length of this column is 6 bytes; in this
column, it records the number of nonce/tag
groups generated by the encryption process. The
fifth column of the unreadable data is the
scrambled nonces and tags. Since the length of
each pair of nonce and tag is 16 bytes, this
column depends on the value of the number
of nonce/tag groups to have a corresponding
variable length. The sixth column of the
unreadable data is the XORed random
number seed; its length is 4 bytes. Figure 12
shows the format of a ciphertext file.

Further exploring the format of the
ciphertext file, the length of the number of face
feature groups is one byte; it allows the AEFR
scheme to have 1~255 encryptors to perform an
encryption/decryption process. Since the number

PRBEE $71=% $-% 11305
JOURNAL OF C.C.LT.,, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

XORed ‘ Scrambled XORed [Scrambled| XORed
"”Tbcm face Scrambled | number of | nonces |random Ciol
feo ;‘;ﬁe feature |master key nonce/tag and number iphertext
vectors Vectors pairs tags seed
1 M 64 & N 4 variable
* *
(128*48) {16+16)

Fig. 12. A file format of the ciphertext file

of encryptors is dynamic, the length of the
scrambled face feature data is variable, too.
Then, it would cause the opponent cannot find
the location of the scrambled master key
precisely in the ciphertext file; this can cause the
invisibility of the master key required by the
encryption/decryption process further and
reduce the possibility that the opponent
compromises the ciphertext.

Moreover, the number of the nonce/tag
pairs depends on an encryption job uses how
many variable-size blocks. Since the encryption
scheme uses a random number to generate a
variable encryption block size in each AES-
GCM encryption process, it is difficult for the
AEFR scheme to predict how many nonce/tag
pairs are yielded by the AES-GCM algorithm,
especially for a pretty large plaintext file.
Therefore, the AEFR scheme uses 6 bytes to
store the number of nonce/tag pairs generated by
the AES-GCM algorithm during the plaintext
encryption job. The 6 bytes will store a pretty
large integer; this could allow the AEFR scheme
to handle an encryption/decryption job for an
almighty big plaintext file.

The AEFR scheme uses a series of random
numbers with different random number seeds to
generate many variable-size blocks for a
plaintext file in an encryption job. Each plaintext
depends on its content to have a different
number of variable-size block encryption
processes; it is difficult to seize the number of
variable-size blocks for a plaintext. Thus, this
causes an opponent hard to know the length of
nonce/tag pairs; then, he(she) cannot locate the
store location of the XORed random number
seed correctly in the ciphertext file.

The AEFR scheme is different from the
traditional symmetric encryption mechanism; it
depends on the face feature vectors of an
encryptor to perform an encryption job without
inputting a secret key by the encryptor and
stores all information required to decrypt a

ciphertext in a ciphertext file. For an encryption
job, the face feature vectors of the encryptor are
an initiator for the AEFR scheme to trigger the
encryption process; for a decryption job, the face
feature vectors of a decryptor are a threshold for
the AEFR scheme to identify whether the
decryptor is allowed to perform a decryption job
or not.

Since all information required in a
decryption job will store in a ciphertext file, the
AEFR scheme scrambles or XORs the

information into unreadable content. Moreover,
the AEFR scheme depends on the master key to
generate a secret key for each AES-GCM
encryption operation; it also uses the random
number seed to get a series of random numbers
and scrambles the master key and the nonce/tag
pairs with those random numbers. Therefore, the
master key and the random number seed are the
most critical information in a ciphertext file. The
AEFR scheme improves the location invisibility
of the scrambled master key and the XORed
random number seed in a ciphertext file by
arranging variable-length data before them
separately.

IV.IMPLEMENTATION AND
STUDY RESULTS

In this section, we explain how to
implement the AEFR scheme on a personal
computer first; then, we demonstrate the
operation results of the AEFR scheme with a
prototype program.

4.1 The AEFR scheme implementation

Since it is necessary for the AEFR scheme to
recognize the face of an encryptor and a
decryptor, this study implements a prototype
program of the AEFR scheme on a Windows-
based notebook computer equipped with a

75

Chen-Hua Fu et al.

A Study on AES-based Encryption Scheme with Face Recognition Mechanism

camera. We code the AEFR scheme with Python
and import several required modules to support
the encryption/decryption operations in the
AEFR scheme. Table 2 lists the information
about the AEFR scheme's development platform.

Table 2. The AEFR scheme's development platform

Hardware Software
CPU |Intel i5 (0N Windows 11
RAM |8 GB IDE |[Pycharm
GPU |None Python|3.10

The prototype program of the AEFR
scheme imports several required modules, AES,
hashlib, random, cv2, and face recognition, to
support the functionalities in the AEFR scheme.
Those functionalities include the AES-GCM
function, the SHAS512 function, the random-
number generation function, the camera control
function, and the face recognition function. Also,
this study codes several functions with Python to

implement some functionalities, such as
generating a random-number seed,
scrambling/unscrambling secret key and

nonce/tag pairs, converting face feature vectors
into bytes, and writing/reading byte-based face
feature vectors. The AEFR scheme's prototype
program depends on the functions supported by
the imported modules and the coded functions

by ourselves to perform an
encryption/decryption process for
encryptors/decryptors.

4.2 Encryption/decryption process with
the AEFR scheme’s prototype
program

When a user executes the AEFR scheme's
prototype program, the prototype program lets
users select a process, encryption, or decryption.
When the user selects an encryption process, the
prototype program asks the user to input a
plaintext file name (see Figure 13); then, it
invokes the encryption function to perform an
encryption process. The encryption process
depends on the content of the plaintext file to get
the master key required in the encryption
process with the SHAS512 function first; then, it
gets the face feature vectors of the encryptor
from the camera of a notebook computer (see
Figure 14). The encryption process encrypts

76

plaintext into ciphertext with the AES-GCM
mechanism and saves ciphertext, scrambled
master key, scrambled encryptor's face feature
vectors, scrambled nonce/tag pairs, and all
XORed data in a ciphertext file with an
extension “enc” (see Figure 15).

Figure 16 shows the execution result of the
encryption process; it shows the encryption
process encrypts the content of the plaintext file
with several variable-size blocks. Figure 17
shows the contents of a plaintext file and the
content of its corresponding ciphertext file. The
ciphertext in Figure 17 is unreadable; this means
the AEFR scheme's encryption process can
encrypt plaintext into ciphertext. Moreover,
examining the sizes of the plaintext file and the
ciphertext file, the ciphertext file's size is
larger than the plaintext file (see Figure 15); this
shows the encryption process of the AEFR
scheme stores some data required to decrypt into
the ciphertext file.

When a user selects a decryption process
with the prototype of the AEFR scheme, the
prototype program asks the user to input a
ciphertext file with an extension "enc" (see
Figure 18). After inputting a ciphertext file name,
the prototype program invokes the decryption
function to perform a decryption process. The
decryption process depends on the format of a
ciphertext file to get the number of face feature
vectors and the number of nonce/tag pair with
XOR operations first; Then, it can correctly get
the random number seed with another XOR
operation from the ciphertext file and
unscramble the master key and nonce/tag pairs.
When all data used for the decryption process is
ready, the decryption process invokes the
notebook computer's camera to get the face
feature vectors of the decryptor (see Figure 19).
The decryption process compares the face
feature vectors from the camera with the face
feature vectors stored in the ciphertext file. If the
comparison result is positive, the decryption
process keeps decrypting the ciphertext file;
otherwise, the decryption process would show a
message that the person in front of the camera
has not the privilege to decipher the ciphertext
file (see Figure 20).

B ciphertext_file_format png.enc

o

ciphertext_file_format

CTHE T Ve

PRBEE $71=% $-% 11305
JOURNAL OF C.C.LT.,, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

Fig. 16. The execution result of the encryption process

Figure 16 shows the execution result of the
encryption process; it shows the encryption
process encrypts the content of the plaintext file
with several variable-size blocks. Figure 17
shows the contents of a plaintext file and the
content of its corresponding ciphertext file. The
ciphertext in Figure 17 is unreadable; this means
the AEFR scheme's encryption process can

77

encrypt plaintext into ciphertext. Moreover,
examining the sizes of the plaintext file and the
ciphertext file, the ciphertext file's size is
larger than the plaintext file (see Figure 15); this
shows the encryption process of the AEFR
scheme stores some data required to decrypt into
the ciphertext file.

When a user selects a decryption process

Chen-Hua Fu et al.

A Study on AES-based Encryption Scheme with Face Recognition Mechanism

XORed

Scrambled XORed |Scrambled] XORed
numberof | f5c0 Scrambled | numberof | nonces |random .
fef:tcugre feature |master key| nonceftag| and |number Ciphertext
aChors Vectors pairs tags sead
1 M 64 [N 4 variable
E 3 ¥®
(128*48) (16+16)
plaintext
RHOEE H OMqiBs S B D L7 SEEER
? 7 P47 ERPETIER =S| TR EIAS ¢ R TR ZavEk e 3
7 NEEARGTEID 7B¢ (@0 kSTt GRS MTEERNELGE TdEtT
mzBR]Y § W _7 WERERNETRAWEL nS. T sl R iR s
@ fa =q47 BWaBRHETTGT | +FEPTASIT-EHIMTET BE
hER TPz E T o T NW

¥? EudTHV HE

WE - TEENEEENCPTTTTIRBEAL ThA T UNTE I TIARTD MM reb P B BT

M, DETIEW FTWNEGL ERER;
WO TR fEE<
HMiemreE mmrdt m Ob=TE RS 1R T
RS I

WETHERT on T whE Ol

fe? T'HE ¢ 7

wl @0y T~ESH 7 eofr 8l 100G
HTYEE? 9,
(TR CH % W Twk D 7L ARAR

R TN F0n BB TR

TR H 7 O DTN BE L.
WP SRR FErRE ot
ufpdbg

B Dn M 8 [ERE 0

7
En

o | 0. M@ WET?? TEEDMEES LAEMETER M = BSEESRITAE A

Wedll THEEH®
i*l-c
WHAHLTMEN 7 18R

%7 KESERE 7Y _orre koL iT=il
AL B WelE? CotEIHP R4 TR IWIINT

7 p EENOQRENOTEy) TR 7

IV n WL TR B =0T

ietviP BE WEESA 1<% L7 omIRUTERLT wodviE TEE To5 NS HE
STENG T« RETEEL %EeTdger t i

-

WhEkr 5 s ERVETR S Tray BHRE WY e ritSEime

ciphertext
Fig. 17. The contents of the plaintext file and the ciphertext file

with the prototype of the AEFR scheme, the
prototype program asks the user to input a
ciphertext file with an extension "enc" (see
Figure 18). After inputting a ciphertext file name,
the prototype program invokes the decryption
function to perform a decryption process. The
decryption process depends on the format of a
ciphertext file to get the number of face feature
vectors and the number of nonce/tag pair with
XOR operations first; Then, it can correctly get
the random number seed with another XOR
operation from the ciphertext file and

unscramble the master key and nonce/tag pairs.
When all data used for the decryption process is
decryption process

ready, the invokes the

notebook computer's camera to get the face
feature vectors of the decryptor (see Figure 19).
The decryption process compares the face
feature vectors from the camera with the face
feature vectors stored in the ciphertext file. If the
comparison result is positive, the decryption
process keeps decrypting the ciphertext file;
otherwise, the decryption process would show a
message that the person in front of the camera
has not the privilege to decipher the ciphertext
file (see Figure 20).

When the decryption process completes the
decryption job of the ciphertext file (see Figure
21), it saves the deciphered plaintext into a file
with an 'R’ extension (see Figure 22). Looking at

Fig. 18. The screen of a decryption process selection and a ciphertext file input in the prototype program of the

AEFR scheme

78

PRBEE $71=% $-% 11305
JOURNAL OF C.C.LT.,, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

Fig. 21. The execution result of the decryption process

Z5%

B ciphertext_file_format

B ciphertext_file_format png.enc

B ciphertext_file_format png.R

Fig. 22. The deciphered plaintext file with “R” extension

79

Chen-Hua Fu et al.
A Study on AES-based Encryption Scheme with Face Recognition Mechanism

@ corenon e Soommpeg

5 a : @ *9%00 0000
. v R Eelelelvl < 3 v
XORed |scrambled XORed |Scrambled| XORed
numberof [500 Scrambled | number of | nonces |random ioh
face feature |masterkey|nonce/tag| and |number Ciphertext
feature | vectors pairs tags seed
vectors
% M 64 6 N 4 variable
* *
(128%48) (16+16)

Fig. 23. The content of the decrypted plaintext file

the decryption process result in Figure 21, we
can find that the decryption process deciphers
the ciphertext with several variable-size blocks
corresponding to the variable-size blocks in the
encryption process. Figure 23 shows the content
of the decrypted plaintext file; it can display the
format of a ciphertext file. It means that the
prototype program of the AEFR scheme can
decipher a ciphertext file correctly.

4.3 A validation of the encryption/
decryption process of the AEFR
scheme

This study tries to realize the ability that the
AEFR scheme's prototype program to
encrypt/decrypt different types of files; we use
four types of files, txt, png, pdf, and pptx, to
execute encryption/decryption processes with
the prototype program of the AEFR scheme and
tries to open those deciphered plaintext files
with the proper software. The results show that
the software can open those deciphered plaintext

ryption_process_+1
tion_process_tLlowchart.pptx

files normally; this means the AEFR scheme's
prototype program can decrypt the ciphertext
files correctly.

Also, this study depends on the original
plaintext file and the deciphered plaintext file to
validate the encryption/decryption correction of
the AEFR scheme's prototype program. This
study uses two ways to compare the contents of
the original plaintext file and the deciphered
plaintext file to validate the content correctness
of the decrypted plaintext file. One is the
Windows "comp" command; Figure 24 shows
the comparison results of those files. The
comparison results show that all the deciphered
plaintext files are the original-plaintext files.
And; the other is to use the SHA256 algorithm
to validate the sameness of file content. Table 3
shows all the SHA256 message digests of the
original/deciphered plaintext files. Looking at
Table 3, it is clear that each pair of the
original/deciphered plaintext files receive the
same SHA256 message digest. Therefore, the
contents of each of the original/deciphered

ichart.pptx decryption_f

#| decryptlon_pro

Fig. 24. The Windows "comp" command comparison result

80

plaintext files are the same. These two
comparison results demonstrate that the AEFR

PRBEE $71=% $-% 11305
JOURNAL OF C.C.ILT, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

Table 4. The statistics of encryption variable block
size of plaintext files

scheme's prototype program can decrypt the File lFﬂ?h Variable block size | Block
encrypted file correctly. name (%I;% o) (byte) number
Table 3. The SHA256 message digest comparison P 2745|2745 1
results
Fil . 4544, 13696, 4000,
nallrfle SHA256 message digest C 39460 12224, 3824, 1172 6
P e25b7cb96db57336713838d5eb6955f4a25 7744, 8112, 6032,
d1c5a825786a4c8d77d787d63c31b 4480, 15664, 3056,
3808, 3120, 13488,
PR [625D7cb96db573367f3838d5eb69554a25 10720, 432, 6736,
' d1c5a825786a4c8d77d787d63c31b 5584, 11120, 11792,
1 245740(992, 10640, 12576, 32
C 786233fd2106cf32¢a0240632dad66c0325 9696, 15440, 13920,
7e555f5ad51cdal37d8168155030¢ 176, 7648, 1456,
10416, 9200, 1856,
CR 786233fd2106¢f32ea0240632dad66c0325 12608, 3920, 11264,
' 7e555f5ad51cdal37d8168155030e 8816, 3228
1 87333df477d75af27039f0107693636d0bf 13952, 7072, 14112,
cd35306d24fcbc72cd00caf73233e D1 505691664 3769 5
1R 87333df477d75af27039f0107693636d0bf Legend:
cd35306d24fcbc72cd00caf73233e P: poetry.txt,
C: ciphertext file fi t.png,
b [F5c4761822d15593bdad3b6d3e490a4 7865 |1 11 1-1CCITS1-ITOC.pef.
00e84bd90db099354e5205d363ab D: decryption_process_flowchart.pptx
DR [[5c47618a2d15593bdad3bfod3e490a47165
' 00e84bd90db099354¢5205d363ab V. CONCLUSION
Legend: As face-recognition technology becomes
P: poetry.txt, I, >
- mature, many face-recognition applications keep
C: ciphertext_file format.png, . . i i
1: 111-ICCIT51-1-TOC emerging. This study proposes an AES-GCM
o 1-TOC. pdf, based tric block tion sch ith
D: decryption_process_flowchart.pptx . fase Symmetric }?C lencryfl ton sc em}f wi
R: ciphertext recovery file ace-recognition technology (the AEFR scheme).
The AEFR scheme uses the SHAS512 message

Table 4 shows the statistics of variable
block size for each plaintext file. Data in Table 4
demonstrates that the AEFR scheme's prototype
program performs an encryption job for each
plaintext file with different variable-size blocks.
Also, the size of each block is different from the
others. Usually, the larger a plaintext file size is,
the more variable-size blocks have. Since the
AEFR scheme's prototype program depends on a
series of random numbers to assign all encrypted
block sizes, thus, it is difficult to predict the size
of a plaintext block; this would reduce the
possibility that the opponent compromises the
ciphertext file.

81

digest as a master key for the
encryption/decryption process without inputting
a secret key; it also depends on the master key to
generate a random number seed. The AEFR
scheme performs an encryption process of a
plaintext file with the master key and the
generated random number seed; it stores all data
used in the decryption job in the ciphertext file.
Moreover, the AEFR scheme depends on a
face-recognition result to determine whether one
person in front of a camera can decrypt a
ciphertext file. When the AEFR scheme
performs the decryption process of a ciphertext
file, it uses face recognition technology to
confirm the identification of the decryptor. If

Chen-Hua Fu et al.

A Study on AES-based Encryption Scheme with Face Recognition Mechanism

one person in front of a camera is the person
who has the privilege to perform a decryption
job, the AEFR scheme performs the decryption
process; otherwise, the AEFR scheme shows a
warning message.

This study implements the prototype
program of the AEFR scheme with Python. We
use four types of files, txt, png, pdf, and pptx, to
validate the encryption/decryption correctness of
the prototype program of the AEFR scheme. The
results show that the prototype program can
correctly decipher all ciphertext files; it confirms
the feasibility and practicality of the AEFR
encryption scheme. Therefore, a person can
depend on his (or her) face to invoke the AEFR
encryption scheme and execute an
encryption/decryption job without a secret key
input; this can avoid the issue of a secret key
keeping in an encryption mechanism.

The AEFR encryption scheme is an AES-
based encryption scheme with a face recognition
mechanism; therefore, its time/space complexity
depends on the AES. The AEFR encryption
scheme randomly selects 32 bytes (256 bits)
from the master-key as a secret key in each
encryption/decryption round; thus, it can resist a
key-recovery attack with a total complexity of
23! time and 2 memory.

REFERENCES

[1] Barnouti, Nawaf Hazim, Al-Dabbagh,
Sinan Sameer Mahmood, and Matti, Wael
Esam. "Face recognition: A literature
review." International Journal of Applied
Information Systems 11.4 (2016): 21-31.
Jain, Anil K. and Li, Stan Z. Handbook of
face recognition. Vol. 1. New York: springer,
2011.

Zhao, Wenyi, et al. "Face recognition: A
literature survey." ACM computing surveys
(CSUR) 35.4 (2003): 399-458.

Hjelmas, Erik, and Low, Boon Kee. "Face
detection: A survey." Computer vision and
image understanding 83.3 (2001): 236-274.
Brimblecombe, Phil. "Face detection using
neural networks." H615-Meng Electronic
Engineering, School of Electronics and
Physical Sciences, URN 1046063 (2002).
Kaur, Rajkiran, and Rajput, Rachna. "Face
recognition and its various techniques: a
review." International journal of scientific
engineering and technology research 2.3
(2013): 670-675.

[2]

[3]

[4]

[5]

[6]

82

[7] Bruce, Vicki, and Young, Andy.
"Understanding face recognition." British
journal of psychology 77.3 (1986): 305-327.

[8] Himanshu, S. Dhawan, and Neha Khurana.
"A Review of Face Recognition."

[9] International journal of research in

engineering and applied sciences 2.2 (2012):

921-939.

Ellis, H. D. "Introduction to aspects of
face processing: Ten questions in need of
answers." Aspects of face processing
(1986): 3-13.

Bakshi, Urvashi, and Singhal, Rohit. "A
survey on face detection methods and
feature extraction techniques of face
recognition." International Journal of
Emerging Trends & Technology in
Computer Science (IJETTCS) 3.3 (2014):
233-237.

Penard, Wouter, and Werkhoven, Tim van.
"On the secure hash algorithm family."
Cryptography in context (2008): 1-18.
Guesmi, Ramzi, et al. "A novel chaos-
based image encryption using DNA
sequence operation and Secure Hash
Algorithm SHA-2." Nonlinear Dynamics
83 (2016): 1123-1136.

Pittalia, Prashant P. "A comparative study
of hash algorithms in cryptography."
International Journal of Computer Science
and Mobile Computing 8.6 (2019): 147-
152.

Sklavos, Nicolas, and Koufopavlou,
Odysseas. "On the hardware
implementations of the SHA-2 (256, 384,
512) hash functions." Proceedings of the
2003 International Symposium on Circuits
and Systems, 2003. ISCAS'03.. Vol. 5.
IEEE, 2003.

Pub, NIST FIPS. "180-2,“Announcing the
Secure Hash Standard,” Aug. 1, 2002, pp.
i-iii and 3-16." Available from NTIS at
above address.

Dworkin, Morris J. "SHA-3 standard:
Permutation-based hash and extendable-
output functions." (2015).

Daemen, Joan, and Rijmen, Vincent.
"AES proposal: Rijndael." (1999).

FIPS, PUB. "197: Specification for the
Advanced Encryption Standard (AES)."
Information Technology Laboratory,
National Institute of Standards and
Technology, Gaithersburg, MD (2001):
20899-8900.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[26]

[27]

(28]

Dobbertin, Hans, Knudsen, Lars, and
Robshaw, Matt. "The cryptanalysis of the
AES—-a brief survey." International
Conference on Advanced Encryption
Standard. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004.

Biryukov, Alex, Khovratovich, Dmitry,
and Nikoli¢, Ivica. "Distinguisher and
related-key attack on the full AES-
256." Annual International Cryptology
Conference. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009.

Bogdanov, Andrey, et al. "Bicliques with
minimal data and time complexity for

AES." Information Security and
Cryptology-ICISC 2014: 17th
International Conference, Seoul, South

Korea, December 3-5, 2014, Revised
Selected Papers 17. Springer International
Publishing, 2015.

Housley, Russell. “Using AES-CCM and
AES-GCM authenticated encryption in
the cryptographic message syntax
(CMS).” No. rfc5084. 2007.

Krovetz, Ted, and Rogaway, Phillip. "The
software performance of authenticated-
encryption modes." Fast Software
Encryption: 18th International Workshop,
FSE 2011, Lyngby, Denmark, February
13-16, 2011, Revised Selected Papers 18.
Springer Berlin Heidelberg, 2011.
Dworkin, Morris J. "Sp 800-38d.
recommendation for block cipher modes
of operation: Galois/counter mode (gcm)
and gmac." (2007).

Venkatesan, R., et al. "Secure online
payment through facial recognition and

proxy detection with the help of
TripleDES encryption." Journal of
Discrete Mathematical Sciences and

Cryptography 24.8 (2021): 2195-2205.
Ameen, Zinah Jaffar Mohammed. "Face
Recognition Integrated with Chaotic
Encryption for Secure Electronic Election
Application." Multi-Knowledge
Electronic Comprehensive Journal For
Education And Science Publications 23
(2019): 1-19.

Battaglia, F., lannizzotto, Giancarlo, and
Bello, L. Lo. "A biometric authentication
system based on face recognition and rfid
tags." Mondo Digitale 13.49 (2014): 340-
346.

&3

[29]

PRBEE $71=% $-% 11305
JOURNAL OF C.C.ILT, VOL. 53, NO. 1, MAY, 2024
DOI : 10.30188/JCCIT.202405_53(1).0006

Sawant, Vedant A., et al. "Face
Recognition Based Password Encryption
and Decryption System." 2023 4th
International Conference for Emerging
Technology (INCET). IEEE, 2023.
Vankadara, Anurag, et al. "Enhancing
Encryption Mechanisms using SHA-512
for user Authentication through Password
& Face Recognition." 2023 International
Conference on Inventive Computation
Technologies (ICICT). IEEE, 2023.
Chandrasekhar, Tadi, and Kumar,
Sumanth. "A noval method for cloud
security and privacy using homomorphic
encryption based on facial key templates."
Journal of Advances in Information
Technology 13.6 (2022).

Chen-Hua Fu et al.
A Study on AES-based Encryption Scheme with Face Recognition Mechanism

84

