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Influence of Thermal Radiation on Free Convection adjacent to a Sphere in
Porous Media: Considering Soret and Dufour Effects
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Abstract
Influence of thermal radiation on free convection adjacent to a sphere in porous media considering Soret

and Dufour effects is numerically analyzed. The surface of the sphere is maintained at uniform wall
temperature and concentration. The governing equations are transformed into dimensionless, non-similar
forms by using suitable non-dimensional variables and then solved by Keller box method. Numerical data of
the dimensionless temperature and concentration profiles, the Nusselt and Sherwood numbers are presented by
graphic and tabular forms in the four parameters: the dimensionless coordinate &, the Soret parameter S,
the Dufour parameter D, and the radiation parameter R.
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1. Introduction available information in this field is provided in

The study of combined heat and mass transfer recent books by Bejan [1] and Nield and Bejan [2].
by natural convection in a porous medium has many In the field of the saturated porous medium,
engineering  application  problems such as Yamamoto [3] studied the free convection about a
geothermal systems and petroleum engineering sphere in using series method (SM). The problem of
applications. A comprehensive account of the natural convection boundary layers on isothermal
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axi-symmetric (e.g., sphere) of arbitrary shape was
presented by Merkin [4] using the similarity solution
(SS). Cheng [5] extended the research of Merkin [4]
to study the mixed convection about a sphere for the
(UWT).
Minkowycz et al. [6] extended the work of Cheng [5]

case of uniform wall temperature
to analyze numerically the mixed convection about a
nonisothermal sphere with variable wall temperature
(VWT) by using the local non-similarity method
(LNSM). Huang et al. [7] used Keller box method
(KBM) to investigate the mixed convection flow
over a sphere for the uniform heat flux case.
Nakayama and Koyama [8] studied the free
convective heat transfer over a nonisothermal body
of arbitrary shape by local non-similarity method
and integral method (IM). Forced convection flow
past a sphere at large Peclect numbers was examined
by Pop and Yan [9] by using the analytical solution
(AS). Yih [10] used the KBM to investigate viscous
and Joule heating effects on non-Darcy MHD
natural convection flow over a permeable sphere
with internal heat generation. Cheng [11] analyzed
free convection heat transfer from a sphere using a
thermal non-equilibrium model by the cubic spline
collocation method (CSCM).
coupled heat and mass transfer, Lai and Kulacki [12]

In the aspect of

studied coupled heat and mass transfer from a sphere
buried by series solution. Chamkha et al. [13]
presented the non-similar solution for convective
boundary layer flow over a sphere saturated with a
nanofluid.

The Dufour (diffusion-thermal) and Soret
(thermo-diffusion) effects have important role on the
geosciences and chemical engineering. Huang [14]
utilized the KBM to examine the influence of
non-Darcy and MHD on free convection of

non-Newtonian fluids over a vertical permeable

plate with Soret/Dufour effects and thermal radiation.
Moorthy et al. [15] discussed the Soret and Dufour
effects on natural convection heat and mass transfer
flow past a horizontal surface with variable viscosity.
Soret/Dufour effects on coupled heat and mass
transfer by free convection over a vertical permeable
cone with internal heat generation and thermal
radiation was reported by Huang [16]. Cheng [17]
analyzed the Soret and Dufour effects on free
convection boundary layer over a vertical cylinder.
Yih [18] investigated free convection about a
permeable horizontal cylinder with Soret/Dufour
effects for uniform heat flux and uniform mass flux
(UHF/UMF). However, concerning the study of the
case of sphere is lacking.

The aim of the present work, therefore, is to
investigate the effects of Dufour/Soret on natural

convection flow past a sphere in porous media.

2. Analysis

Consider the problem of the Soret and Dufour
effects on combined heat and mass transfer by free
convection flow past a sphere with uniform wall
temperature and uniform wall concentration
embedded in a porous medium. Figure 1 shows the

flow model and physical coordinate system.

FIG. 1 The flow model and physical coordinate
system
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The  wall
concentration C,,

temperature T, and wall
are higher than the ambient
temperature T, and ambient concentration C_. X
is measured along the circumference of the sphere
from the lowest point o and Yy is measured
normal to the surface. a is the radius of the sphere.
@ =x/a is the angle of the y-axis with respect to
vertical (0<@<7z). r(x)=a sin(x/a)=a sin®
is the local radius of the sphere. The gravitational
acceleration g is acting downward.

The flow over the sphere is assumed to be
two-dimensional, laminar and steady. We also
assumed that the boundary layer thickness is
sufficiently thin compared with the radius of the
sphere.

Introducing the laminar boundary layer
approximation (0/0x<<dldy, v<<u, d<<a)
Boussinesqg approximation (all the fluid properties
are assumed to be constant, except for density
variation in the buoyancy term), and Rosseland
diffusion approximations, the governing equations
and the boundary conditions based on the Darcy law

(valid for low velocity) can be written as follows:

Conservation of mass:
A(ru) . ()
X &

Conservation of momentum (Darcyv law):

:gSinT@K[ﬂT(T—TmFﬂc(C—Cx)]' @

Conservation of energy:

=0, (1)

él' Z ﬁzT 1 09, = 0’C
+V—= —+ D—Z,
T & d/ /Cp Oy oy
(3)
Conservation of concentration:
2 Y
U@-FV@—D %+Sg, 4)
ox oy oy oy

Boundary conditions:

y=0:v=0T=T, C=C,, (5)

y—ow: T=T, C=C,. (6)
where, u and v are the velocities in the x- and
y - directions, respectively; K is the permeability
of the porous medium; v is the kinematic viscosity;
pr and p. are the thermal and concentration
expansion coefficients of the fluid, respectively; T
and C are the volume-averaged temperature and
concentration, respectively; ¢, is the radiation heat

flux, « and D,, are the equivalent thermal

diffusivity and mass diffusivity, respectively; D
and S are the Dufour coefficient and Soret
coefficient of the porous medium, respectively.

The stream function y is defined by

ru=o(ry)/dy and rv=-o(ry)lox,  (7)

therefore, the continuity equation is automatically
satisfied.

Using the Rosseland diffusion approximation ,
the radiation heat flux is given by

4 OT*
Q=5+ ®)
3k oy
where o is the Stephan—Boltzmann constant and

k™ is the absorption coefficient. Huang [16]
obtained that the temperature differences within the
flow are assumed to be sufficiently small so that T*
may be expressed as a linear function of temperature
T wusing a Taylor series expansion about the
ambient temperature T _; and neglecting the higher
order terms, we can obtain the following
relationship:
T =T +4T3(T-T,)=4TT 3T (9
Combining equations (8)-(9), thus the radiation

heat flux can be simplified as follows:

160T2 6T
Q=0 = (10)
3k™ oy
Invoking the  following  dimensionless

variables:
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=2 Ra’ (12)
a
f(En)=—"r— 13
cm=—ts (13)
T-T
O£, ) = —= 14
(&) T T, (14)
c-C
)= 15
AC) c.-cC. (15)
Ra:w (16)
1424

where & is the dimensionless coordinate, 7 is the
pseudo-similarity variable, f is the dimensionless
stream function, 6 is  the dimensionless
temperature, ¢ is the dimensionless concentration,
Ra is the modified Rayleigh number for the flow
through the porous medium.

Inserting equations (10)-(16) into equations
(2)-(6), (10), we get the following results:

Dimensionless governing equations:

f,:ng(0+ Ng), (17)
(1+£Rj0”+(1+ d _COS%ZJfQ’Jr D¢"
3 sin &
(18)
:g(f@—eﬂ}
a
i¢"+(1+ d ?°S§Jf¢'+se"
Le sin&
B a (19)
r-oZ)
Dimensionless boundary conditions:
n=0: f=0, 6=1, ¢=1, (20)
n—w: =0, $=0. 1)

In the above, the primes denote differentiation with
respectto 7.

In addition, the other important parameters are
also defined as following:

o= I
Le:% (23)
R= %E (24)

e
e 6 0

where N, Le, R, D, and S denote the
buoyancy ratio, the Lewis number, the radiation
parameter, the Dufour parameter, and the Soret
parameter, respectively.

The results of practical interest in many
applications are both heat and mass transfer rates.
They are expressed in terms of the Nusselt number
Nu and the Sherwood number Sh respectively,

which are defined as follows:

(GT
-kl —1| +q,|a
ha guwa |: % y=0 :l
M T m -k M-T.k
w 0 w 0 (27)
[ 160Tj}(8T
-1+ el a
i ke oy )
TW_Too
(5
shomd_  MaA =0 (28)

Dy (C,-C.)by  C.-C,
with the help of equations (11)-(16), the Nusselt
number Nu and the Sherwood number Sh in

terms of Ra’ are, respectively, obtained by

Nu 4 ’
P (1+ 3 Rj[— 0'(£,0)} (29)
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3. Results and Discussion

The solution for the system of equations
(17)-(21) is by using the Keller box method
described in the work of Huang and Yih [19] with
A£=0.01, the first step size Az =0.01, and
n, =50. The variable grid parameter is chosen as
1.01.

In order to verify the accuracy of our present
method, we have compared our results with those of
Bejan [1] and Merkin [4]. Table 1 shows the
comparison of [— 9'(5,0)] for various values of &
with N D

the above case is found to be in good agreement.

R = S =0. The comparison in

Table 1 Comparison of [-#'(£,0)] for various
valuesof & with N = D =R =S =0
£ [_‘9'(9810)]
Bejan [1] | Merkin [4] Present results

0.0 0.8880 0.8875 0.8875
0.2 0.8821 0.8816 0.8816
0.4 0.8644 0.8639 0.8639
0.6 0.8351 0.8347 0.8346
0.8 0.7946 0.7941 0.7941
1.0 0.7432 0.7428 0.7428
1.2 0.6817 0.6813 0.6813
14 0.6108 0.6104 0.6104
1.6 0.5318 0.5315 0.5315
1.8 0.4464 0.4461 0.4461
2.0 0.3568 0.3566 0.3566
2.2 0.2664 0.2662 0.2662
2.4 0.1797 0.1796 0.1796
2.6 0.1029 0.1029 0.1029
2.8 0.0432 0.0432 0.0432
3.0 0.0077 0.0077 0.0076
=

314 0.0000 0.0000 0.0000

Since the effects of the buoyancy ratio N and
the Lewis number Le have been discussed by Lai

and Kulacki [12]. Therefore, in this paper, the
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numerical results are mainly presented for the
Dufour parameter D ranging from 0 to 0.3, the
Soret parameter S ranging from 0 to 0.3, the
dimensionless coordinate ¢ ranging from 0 to =
= 3.14, the radiation parameter R ranging from 0
to5,with N=3,and Le =2.

The
concentration distributions for two values of the
R (R =0, 5 and the
dimensionless coordinate & (& = 0.0, 2.0) with
N =3, Le =2, D =0.1, S =0.1 are shown in
Figs. 2 and 3, respectively. At the given R = 5,

dimensionless temperature and

radiation parameter

increasing the dimensionless coordinate & from
0.0 (red line) to 2.0 (blue line) has the tendency to
increase the thermal boundary layer thickness as

well as the concentration boundary layer thickness.
For the given & = 0.0, increasing the radiation

parameter R from O (black dashed line) to 5 (red
line) reduces the dimensionless surface temperature
gradient [-@'(£,0)] but increases the dimensionless

as

b

surface concentration gradient [— ¢’(£j,0)]

displayed in Figs. 2 and 3.

0.8
0.6
0.4}

0.2}

T R R
10 15

n
FIG. 2 The dimensionless temperature distributions
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for two valuesof & and R
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FIG. 3 The dimensionless concentration
distributions for two values of & and R

Tables 2 and 3 display respectively the values
of the Nusselt number Nu/Ra’”?> and the Sherwood
number Sh/Ra”> for various values of the
dimensionless coordinate ¢ and the radiation
D =01,
S = 0.1. First, for a fixed R, increasing the
dimensionless coordinate & reduces monotonically

parameter R with N = 3, Le = 2,

both the Nusselt and Sherwood numbers. This is
because increasing the dimensionless coordinate &
increases the thermal and concentration boundary
layer thicknesses, as illustrated in Figs. 2 and 3. The
greater the thermal (concentration) boundary layer
thickness, the smaller the Nusselt (Sherwood)
Second, for the fixed value of ¢ ,

increasing the radiation parameter R enhances not

number.

only the Nusselt number but also the Sherwood
number. On the one hand, it is because that in the
pure convection heat transfer (R=0), the Nusselt
number is only proportional to the dimensionless
surface temperature gradient [— 9’(5,0)]. For the
case of large R wvalue (the thermal radiation effect
is pronounced), although [-@'(£,0)] is low, as

shown in Fig. 2, the Nusselt number is still large.

This is because the Nusselt number is found to be
more sensitive to R than [-&(&,0)], as revealed
in equation (29). On the other hand, when the
the
dimensionless  surface  concentration gradient
[-#(£,0)] is also enhanced, as illustrated (black
dashed line and red line) in Fig. 3. With the aid of
equation (30), the larger the dimensionless surface

radiation parameter R is increased,

concentration gradient, the greater the Sherwood

number.

Table 2 Values of Nu/Ra’”? for various values of

& and R with
N =3, Le =2, D =01, S =01

£ Nu / Ra’?
R=0 R=1 R=5
0.0 1.4854 2.0104 3.1282
0.5 1.4238 1.9271 2.9985
1.0 1.2432 1.6826 2.6181
1.5 0.9572 1.2955 2.0157
2.0 0.5968 0.8077 1.2568
2.5 0.2336 0.3162 0.4920
3.0 0.0128 0.0173 0.0269
T 0.0000 0.0000 0.0000

Table 3 Values of

Sh/Ra’? for various values of

& and R with
N =3, Le =2, D =01, S =0.1

£ Sh/Ra’
R=0 R=1 R=5
0.0 2.4487 2.5686 2.6506
0.5 2.3472 2.4621 2.5408
1.0 2.0495 2.1498 22185
1.5 1.5780 1.6553 1.7082
2.0 0.9839 1.0321 1.0651
25 0.3852 0.4041 0.4170
3.0 0.0211 0.0221 0.0228
T 0.0000 0.0000 0.0000
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Figures 4 and 5 show the dimensionless
temperature and concentration profiles for two
values of the Dufour parameter D (D = 0.0, 0.3)
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and the Soret parameter S (S =0.0, 0.3) with N
=3, Le =2, R =1, & =0, respectively. For the
case of S = 0.3, enhancing the Dufour parameter
D from 0.0 to 0.3 reduces the dimensionless
surface temperature gradient [-€(£,0)] , but
enhances the dimensionless surface concentration
gradient [-¢/(£,0)]. On the contrary, for D = 0.0
case, an increase in the value of the Soret parameter
S from 0.0
dimensionless  surface  temperature  gradient
[-#(£,0)], as shown in Fig. 4, but decreases the

to 0.3 tends to enhance the

dimensionless  surface  concentration
[-#(£,0)], as illustrated in Fig. 5.

gradient

1
N=3,Le=2,R=1

0.8 £=0.0
o6k ... D=0,S=0

0 ———D=0,S=03
0.4r — D=03.S=03
0.2}
05—

FIG. 4 The dimensionless temperature profiles for
two valuesof D and S
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15 2

FIG. 5 The dimensionless concentration profiles
for two valuesof D and S

The values of the Nusselt number Nu/Ra’
and the Sherwood number Sh/Ra” for various
values of £, D and S with N = 3, Le = 2,
R =1, are shown in Tables 4 and 5, respectively.
On the one hand, for the fixed S, increasing the
Dufour parameter D decreases the Nusselt number
but increases the Sherwood number. This is because
D
enhanced, the dimensionless surface temperature
gradient [-&'(£,0)] reduces but the dimensionless

the fact that as the Dufour parameter is

surface concentration gradient [ ¢'(£,0)] enhances,
as illustrated in Figs. 4 and 5, respectively. On the
other hand, for the fixed value of D, increasing the
enhances the

Soret parameter S (decreases)

Nusselt (Sherwood) number.
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Table 4 Values of Nu/Ra’? for various values of
¢, D and S with

N =3, Le =2, R =1

Nu/Ra’?
¢ D=0.0 D=0.3
S=00 | S=03 | S=0.0 | S=03

0.0 | 2.1704 | 2.2810 1.5604 | 1.6959

0.5 | 2.0804 | 2.1864 1.4957 | 1.6256

1.0 1.8164 1.9090 1.3059 | 1.4193

1.5 1.3985 1.4698 1.0054 | 1.0928

2.0 | 0.8720 | 09164 | 0.6268 | 0.6813

2.5 0.3414 | 0.3588 | 0.2454 | 0.2667

3.0 0.0187 | 0.0197 | 0.0134 | 0.0146

T 0.0000 | 0.0000 0.0000 | 0.0000

Table 5 Values of Sh/Ra’? for various values of
&, D and S with

N =3, Le =2, R =1

Sh/Ra’
4 D=0.0 D=0.3
S=00 | S=03 | S=00 | S=03

0.0 2.6277 | 24006 | 2.6452 | 2.5081

0.5 2.5188 | 23012 | 2.5356 | 2.4041

1.0 2.1993 2.0093 2.2139 | 2.0992

1.5 1.6934 1.5471 1.7047 | 1.6163

2.0 1.0559 | 0.9646 1.0629 | 1.0078

2.5 0.4134 | 03776 | 0.4161 | 0.3946

3.0 0.0226 | 0.0207 | 0.0228 | 0.0216

T 0.0000 | 0.0000 | 0.0000 | 0.0000

4. Conclusion

In this paper, a boundary layer analysis is
presented to study the effects of thermal radiation,
Dufour and Soret on natural convection flow in a
saturated porous medium resulting from combined
heat and mass buoyancy effects adjacent to the
sphere maintained at uniform wall temperature and
concentration. The main governing parameters of the
problem are the dimensionless coordinate &, the
radiation parameter R, the Dufour parameter D,
the Soret parameter S. The results of present study
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are as follows:

[1]

[2]

[3]

[4]

[5]

[6]

Increasing the dimensionless coordinate &
reduces both the Nusselt number and the
Sherwood number.

Enhancing the radiation parameter R
increases the Nusselt number as well as the
Sherwood number.

When the Dufour parameter D is increased,
the Nusselt (Sherwood) number is reduced
(enhanced).

As the Soret parameter S increases, the
Nusselt number tends to increase yet the
Sherwood number has the tendency to
decrease.
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