

作者/Greg Hadley and Chris Gordon

● 譯者/張彥元 ・ ● 審者/黃坤銘

Space Order of Battle and Operationally Focused ABMS

取材/2023年8月美國空軍暨太空軍月刊(Air & Space Forces Magazine, August/2023)

科技日新月異, 敵對勢力襲擾手段日趨多元, 爲因應日趨複雜 的作戰環境,美空軍與太空軍著手發展太空戰鬥序列與先進 戰場管理系統,期能精進太空競爭耐力,強化聯盟聯合全領 域指揮管制能力,贏得決策優勢。

太空戰鬥序列與先進戰場管理系統

太空戰鬥序列

2022年美空軍暨太空軍協會空戰研討會 (AFA Warfare Symposium)上, 肯達爾(Frank Kendall)首次揭露七個作戰要務。會中更進一 步表示,發展韌性有效的太空戰鬥序列,在七 個作戰要務中「或許涵蓋最廣」,但也是「最 具潛在影響力」。

隨後一年內,美太空軍軍令部長薩茲曼(B. Chance Saltzman)上將規劃完成「競爭性耐 力」(Competitive Endurance)理論,並提出未來 戰鬥序列指導原則。


薩茲曼競爭性耐力理論的基礎,乃是避免

對手先發制人。

薩茲曼表示:「現行軍事太空架構下,太空 衛星能見度佳、突發事件肇生率低,以及太空 裝備受損後重建時程較長,前述種種因素均 有利於先發制人。但這種情況不穩定,不適用 嚇阻思維。因此,我們不能繼續採取這種架 構。」

自2007年中共首次成功進行反衛星測試迄 今,「鬼斧神工」的功能型衛星顯然面臨風險。 2017年,美國戰略司令部時任司令海頓(John E. Hyten)上將稱前述美國衛星為「令人垂涎三尺 的目標」。2022年,薩茲曼前任司令雷蒙(John

諾格公司低軌道衛星星座偵獲不明對手發射飛彈。該公司成功得標,為太空發展局第1批次追蹤層(Tranche 1 Tracking Layer, TITRK)構建14顆紅外線感測器衛星, 用以偵測、識別及追蹤極音速武器與飛彈發射全程。

(Source: Northrop Grumman)

挑戰

我們必須保護太空戰力, 確保前述各項太空戰力即 時支援聯合部隊任務,並 反制相應太空敵對行動。

W. "Jay" Raymond)上將曾經承認, 儘管「這些衛星性能無人能比 ……但很難加以防禦」。

針對這個問題,美太空軍主 要解決方案是擴散(Proliferation)—建立更多軌道,配置更 多衛星。太空軍將建立一個軌 道網狀網路(Mesh Network), 布滿數百甚至數千顆衛星,而 不再只部署少數「肥美」目標, 使得摧毀衛星星座變得難上加 難,讓敵人想都不敢想。

太空發展局(Space Development Agency)目前主導前述工 作,而龐大的「擴散式太空作 戰架構」(Proliferated Warfighter Space Architecture, PWSA)即是 前述方案首次在軍事太空領域 落實應用。太空發展局規劃朝 低軌道(Low-Earth Orbit, LEO)發 射數百顆衛星,並設法在2030年 前,將升空軍方衛星數量提升到 當前數量的四到六倍。

2023年4月5日米契爾航太研 究所太空戰力安全論壇(Spacepower Security Forum)上,太 空發展局局長圖尼爾(Derek M. Tournear)表示:「我們在空中將 有數百顆衛星,而擊落衛星的

手段

聚焦具備韌性的太空戰 力,亦即前述戰力能夠加 以防護、在敵方戰火下存 活,即便功能可能因蒙受 長時間攻擊而緩慢喪失, 但必須在可接受的時間區 間内完成戰力重建。發展 適切戰力,阻止潛在對手 由太空攻擊美國地表目 標。

成本將高於衛星單顆造價,我 們已澈底改變成本價值的計算 公式。」

初期,太空發展局預劃「第0 批次」發射28顆衛星。2023年 4月,該局發射該批次第一顆。

2024年,「第1批次」150顆衛星將開始發射。圖尼 爾預劃在「第2批次」中,發射超過250顆衛星,並 於2026年開始執行。

與此同時,太空發展局正快速擴大採購範疇。 美太空軍太空系統指揮部(Space Systems Command, SSC)正於中軌道(Medium-Earth Orbit, MEO),建構一個至少擁有36顆衛星的「全天候飛 彈預警與飛彈追蹤」(Resilient Missile Warning/ Missile Tracking)星座。這些衛星將按階段或期程 發射,首批規劃發射九顆衛星。

美空軍部主管太空採購與整合的助理部長卡 爾維利(Frank Calvelli)對此提出嘉許,並將前述規 劃納入實際採購規範。

2022年6月,卡爾維利表示:「我認為軌道多樣 化,部署衛星於低軌道、中軌道或橢圓軌道(Elliptical Orbits)——例如極地軌道(Polar Orbit)或日暈 軌道(Halo Orbit),甚至在其它軌道上不斷嘗試新

薩茲曼擘劃競爭性耐力理論,以避免對手先發制人為前 提,訂定未來戰鬥序列指導原則。

(Source: USAF/ Eric Dietrich)

做法等,都可以大幅提升太空作戰韌性。」

為了符合成本效益,卡爾維利提出「擴散式太 空作戰架構」四項基本發展戰略:

- 建構更小型系統。
- 採用現有科技與設計,減少運用「一次性工」 程」(Non-Recurring Engineering)。
- 授予合約時,明定研發至發射週期不可超過 三年。
- 採用固定價格合約,避免物價影響。

2023年6月網路研討會上,美軍太空司令部 (US Space Command)作戰處處長米勒(David N. Miller)少將表示,追求完美已不再是我們的目標, 並進一步説明:「太空發展局亦有同感……太空 系統指揮部也正著手努力,希望開發更多基礎系 統——不盡然稱得上尖端科技,只要是世界級水 準即可。L

儘管製造與發射衛星成本不斷下降,但美太空 軍仍在未來幾年增列預算,實現預期目標。僅在 2024年,該軍種即要求增加15%的年度預算。

未來五年,美太空軍爭取122億美元預算,建構 「擴散式太空作戰架構」衛星,另外35億美元支 應中軌道飛彈預警與飛彈追蹤研發作業。除了上 述預算,未來五年也另行規劃92億美元支應「下 一代高空持續紅外線系統飛彈預警追蹤衛星計 畫」(Next-Generation Overhead Persistent Infrared System, Next-Gen OPIR,以下簡稱OPIR)的研 發、測試及評估、13億美元研發全新全球衛星定 位系統,以及25億美元開發前述定位系統衛星。

當然,過程中也面臨阻礙。2023年5月,美國 政府問責署(Government Accountability Office,

GAO)發布五角大廈重要武器計 畫年度總檢討,報告中提醒太 空發展局「所面對的挑戰乃是, 將多個供應商與各式組件所構 成的複雜系統,整合成涵蓋數百 顆衛星的擴散式星座」。此外, OPIR具有「數個高風險」組件, 且可能無法依期程進行首次發 射。眾議院撥款委員會國防小組 委員亦指出,太空軍計畫「錯漏 百出、前後矛盾」,建議太空軍 300億美元年度預算案,統刪10 億美元。

■地面系統

2023年2月,美國國防部主 管太空政策的助理部長普蘭姆 (John F. Plumb)指出,太空系統 韌性必須仰賴地面系統。

確保衛星地面站與發射系統 免遭網路攻擊至關重要,不可 延誤,必須立即予以因應。薩茲 曼曾表示,網路漏洞是美太空 軍太空系統「後門」,而太空作 戰指揮部指揮官懷汀(Stephen N. Whiting)中將則警告:「網路 空間是太空軍的弱點。」

卡爾維利希望美太空軍「在 發射新款衛星前,先確保地面 系統與該系統之更新均已準 備就緒」。懷汀指出,當前網路 安全從系統開發初期即加以整 合。與此同時,太空軍任務防禦 小組(Space Force Mission Defense Teams)負責監控軍種所屬 系統網路安全。

■加速發射

在發射方面,美太空軍正 在穩步推進「戰術應變發 射」(Tactically Responsive Launch)——快速將衛星送上太 空的能力。

2023年,征服黑夜(Victus Nox)任務規劃驗證前述戰力。 事先未訂定確切發射日期,目 的是讓合約商在不知情的情 況下,提前60小時通知衛星製 造商千禧年太空系統公司(Mil-Iennium Space Systems)交付 備便太空航具, 並於衛星升空 前24小時,通知太空發射服務 供應商螢火蟲航太公司(Firefly Aerospace) °

第二次戰術應變發射任務預 於2024年進行。

■太空反制

雖然「韌性」已成為美太空 軍標語,但肯達爾與其他領導

人所設想的作戰序列並非僅止 於守勢。

2022年,肯達爾表示:「倘若 敵方太空作戰支援系統──特 別是目獲系統──可肆無忌憚執 行任務,則我方地表部隊將無 法在戰場上存活與執行所望任 務。」

在太空領域仍無敵對行動 時,太空反制系統——具備干擾 或摧毀軌道衛星的動能與非動 能武器——曾被視為禁忌,但鑑 於中共與俄羅斯曾執行各項太 空測試,太空領域已醞釀兵兇 戰危氛圍。

美空軍暨太空軍協會智庫 米契爾航太研究所所長德普拉 (David A. Deptula)退役中將近 期指出:「不久前,大家不曾將 太空與攻勢相提並論」,但當前 局面已截然不同。

事實上,薩茲曼已經呼籲,藉 由展示美國戰力,進行負責任 的太空反制行動(Responsible Counterspace Campaigning) • 米契爾航太研究所資深常駐研 究員蓋布瑞斯(Charles S. Galbreath)退役上校表示,此舉有 其必要,並於2023年6月一篇研 究論文中主張,絕不能輕忽太

空領域潛在威脅,「視太空為一 個戰鬥領域,代表太空武器不 可或缺,屬於維護太空安全重 要環節。建立全新軍種,賦予 維護太空利益使命,卻未配賦 相應武器,則兩者實為自相矛 盾」。

美太空軍許多太空反制任務 均屬機密。然而,太空軍2024 年預算案臚列6,400萬美元研 發預算需求,以及3,600萬美元 武獲經費,採購兩項公開太空 反制武器,亦即衛星通訊反制 系統(Counter Communications System)與賞金獵人(Bounty Hunter)等二項非動能武器。

先進戰場管理系統

當前,美「中」俄對抗如日中 天,美軍將網路資訊戰力視為 抗衡敵方的戰略基礎。美軍未 來展望令人神往:武器系統共享 陸、海、空及太空感測器情資、 縮短擊殺週期及提高對手守勢

挑戰

我們必須明定先進戰場管 理系統應用範疇並編列相 關預算,俾能為我軍創造 有利作戰優勢。

「戰力1」(Capability 1)是「先進戰場管理系統」專案的首批產品,實質上是一 個通訊莢艙,可由KC-46搭載,支援F-22與F-35II型進行安全通聯。「先進戰 場管理系統」整合所有作戰系統網路,以滿足「聯合全領域指揮管制」作戰 需求。(Source: USAF)

作戰複雜度。

起初,前述概念為「多領域作 戰」構想,隨著時間推移,逐漸 演變為「聯合全領域指揮管制」 (Joint All-Domain Command and Control, JADC2),後於2023年年 初,美國國防部在原名前端加上 「聯盟」(Combined)一詞,強調 國際夥伴共同參與作戰的重要 性。根據五角大廈計畫,美軍各 軍種均負責部分「聯盟聯合全 領域指揮管制」系統開發,而美 空軍負責「先進戰場管理系統」 (Advanced Battle Management System, ABMS) •

肯達爾曾指出,過往複雜指

手段

美國國防部必須超越概念 展示與實驗層面,將投資 重點置於明確、可量化任 務成效,以及發揮作戰影 響之具體戰力。

管工作通常言過其實目效能不 彰。肯達爾就任空軍部長前,美 空軍曾進行一連串「先進戰場 管理系統」實驗。肯達爾認為, 前述實驗「僅是花拳繡腿」,而 非指揮官得以遂行戰鬥的重要 作戰戰力。

2022年3月,肯達爾發布七個 作戰要務,而聚焦作戰之「先進

戰場管理系統」列居首位。

2022年9月,肯達爾在航太暨網路大會(Air, Space and Cyber Conference)中表示:「目前,作 戰要務工作推展執行窒礙是,我們沒有體認現代 化規模與過程中所需投注的心力,各項努力無法 充分聚焦,亦未充分整合。」

肯達爾指派克羅普西(Luke C.G. Cropsey)准將 負責空軍部指管通暨戰鬥管理系統(Command, Control, Communications Battle Management, C3BM)與先進戰場管理系統總負責人。

2019年迄今,克羅普西是第三位「先進戰場管 理系統」採購作業主管,工作重點是區別確實可 行項目與不切實際空想。

2023年7月,克羅普西表示:「如果放任工程師 不管,他們肯定會為賦新詞強説愁,隔靴搔癢且 抓不到工作重點。因此,我們首要任務就是找出 關鍵問題,才能要求工程師絞盡腦汁解決。」

2023年11月,克羅普西對記者表示他所面對的 挑戰:「我們在技術整合上的挑戰是,如何整合 擊殺鏈各個環節,包括偵獲目標、更新情資、追 蹤、鎖定、接戰及戰果評估,全盤整合前述流程, 讓我們所望戰力得以落地生根。」肯達爾擘劃的 未來場景是,主要指管中心分散部署,未來前述 中心戰場存活率,勢必要高於美空軍現行夏威夷 與卡達主要空中作戰中心。

克羅普西概述美空軍2024會計年度預算需求 時表示:「我們必須放棄固有以空軍作戰中心為 主軸的作戰概念,刻正群策群力、絞盡腦汁擘劃 未來發展方向。」

然而另一個問題是,美空軍未來科技須與其他

2022年凝聚計畫演習期間,美陸軍官兵測試先進尋標 與殺傷輔助系統(Advanced Targeting and Lethality Aided System, ATLAS) • (Source: DVIDS)

軍種武器系統進行有效整合。2023年1月,美國政 府問責署報告指出:「各軍種常以軍種本位研擬 指管層面解決方案,而其他軍種可能對此渾然不 知。」

即使明確如空域管制的作業,也可能成為問 題。2022年加州厄溫堡(Fort Irwin)凝聚計畫(Project Convergence)演習中,主張整合戰場偵攻系統 的美陸軍參謀長麥康威爾(James C. McConville) 上將相當忿忿不平,認為不該採用「工業時代」 過時方法,管理載人/無人飛機及陸射火箭重疊 空域。

凝聚計畫清楚顯示各軍種未來精進空間。肯達 爾表示:「當前情況很複雜,牽涉多方利害關係人, 因此協調工作經緯萬端、曠日廢時。」

「中」俄以癱瘓美國指管系統列為優先要務,試 圖藉此奪取戰場優勢。因此,先進戰場管理系統不 僅要能在遭受網路攻擊與電子干擾時保持常態, 更要能在對空中載臺虎視眈眈的敵方長程火力威

數十年前,E-3空中預警管制系統(如圖)與E-8聯合監視暨 目標攻擊雷達系統問世,在當時搖身一變成為革命性戰 力。然而,新型態威脅層出不窮,劃時代科技有如雨後春 筍,因此必須研擬先進解決方案,汰舊換新,方可因應 當前敵情威脅。(Source: Matthew Plew)

脅下正常運作。目前,美空軍老舊E-3哨兵空中預 警管制系統(Airborne Early Warning and Control System, AWACS)已分批除役,由E-7楔尾鷹(Wedgetail)接替,而E-8聯合監視暨目標攻擊雷達系統 (Joint Surveillance Target Attack Radar System, JSTARS)將全數汰除,多數任務轉由太空基武器系 統接替。

這也表示美太空軍可能承擔戰鬥管理任務。肯 達爾表示:「這對太空軍來説前所未有。」而這也 代表太空軍未來要整合更多系統。

大約於克羅普西擔任總負責人之時,美空軍擘 劃「先進戰場管理系統」數位基礎設施,旨在鏈結 各式武器系統。目前,空軍正尋求軟體相關網路科 技,試圖建構可快速重組的安全網路,用以連接感 測器與指管系統。

2023年7月,克羅普西表示:「如果沒有數位基 礎設施串連系統各部組成,那麼系統將無法正常

發揮性能。」美空軍也試圖將KC-135(1950年代開 始服役)改裝為空中通信中繼載臺,將情資回饋至 「先進戰場管理系統」。根據先進戰場管理系統 第1號戰力發布(ABMS Capability Release 1),新型 KC-46飛馬(Pegasus)加油機也將具備前述戰力,最 初構想是要讓F-35與F-22可共享資料,但囿於前述 二型戰機通信系統不同,目前仍無法達成所望目 標。後續因為空軍規劃以下一代制空(Next Generation Air Dominance, NGAD)載臺取代F-22,相關整 合計畫也嘎然而止。

同時,美空軍規劃部署全新雲端指管網路(Cloud-Based Command and Control Network, CBC2),整 合防空資料以支援國土防禦。先前第2號戰力發布 (Capability Release 2)系統蒐整軍民資料,回饋至北 美防空司令部,並取代老舊過時系統。

2023年11月,克羅普西向記者表示:「過往,策 定計畫、評估需求、編列預算及執行武獲都是以 武器系統為中心,但當前面臨的問題與過往截然 不同。」

2023年9月,肯達爾表示,解決上述問題是「畢 牛賦予的最艱難採購仟務」。

最終,先進戰場管理系統能將資料回饋至美空 軍「戰鬥網路」(Battle Network)。2023年3月,美 空軍參謀長布朗(Charles Q. Brown Jr.)上將在空 戰研討會中表示:「我們將為空軍、太空軍、聯合 部隊及盟國贏得決策優勢。」

版權聲明

Reprinted by permission from Air and Space Forces Magazine, published by the Air and Space Forces Association.