主計季刊

以系統動態思維

~建構主財軍官人力成長模型

楊浩忠 主計局参謀

潘 政主計局參謀

主財軍官是國軍主財業務推展之火車頭, 其人力編現情形影響各項任務推展順遂與否。 本文從系統動態思維出發,建構主財軍官人力 成長基本模型,期作爲推估人力需求及人事管 理決策參用。

壹、緒 論

軍以戰爲主,且戰爭以人爲決定性要素之一,影響戰爭之勝負。軍官是主財單位人力組成重要之一部,而渠等未來人力提需、平時人力維持及經管發展,端賴各級主財人事部門殫精竭慮規劃與管制。主財軍官需求之推估,現由各分監單位人事部門依人力現況及工作經驗,由下而上調查綜整後,加以評估獲得。此經驗判斷推估方法對作業同仁之人事專業能力及經驗要求高,始能精準推估結果,並提供決策參用。惟在實務上,因人事業務主由軍官負責,而軍官須實施計畫輪動,人員流動性高,且接任軍官一般未從事相關人事業務,需投入相當時間累積業務經驗,故各分監單位人事專業能量之維持存在不確定性。

另在外部環境上,依行政院國家發展委員會發布「中華民國人口推估(2022至2070

年)」數據瞭解,工作年齡人口已於2015年開始遞減,其中15-29歲年齡層人口數在中推估下,預估將由2022年398萬人續減,至2040年時降至279萬人,減幅達約3成,顯示符合主財軍官招收對象資格之人口規模,正在逐年緊縮,人力獲得難度逐漸增高。

在內外部不確定環境下,如何提出合理主 財軍官人力需求人數,極具有挑戰性。基此, 本文以系統動態(System Dynamics)思維,建 構主財軍官人力成長之基礎模型,並以不同情 境下進行模擬推估,所提出之基礎模型及資料 分析過程,期作爲主財軍官人力需求規劃及維 持之相關作業參用。

貳、系統構想

一個引擎的冷卻水箱系統,為避免引擎過熱,冷卻系統失去作用,水箱內之水存量須保持在合理水位,以維持功能運作正常(如圖1),想像主財軍官爲水箱水,水位代表現員數,水位上限之刻度如同編制數,當系統運作時,水位之變化代表現員數之流動,加水如同軍官入營服務(人力獲得),而蒸發表示離退(人力流失),使水位下降。

圖1 主財軍官人力變動示意圖

基於上述系統構想,蒐整相關變數,並依因果關係繪製因果回饋圖(Causal Feedback Loop Diagram)(如圖2),以瞭解影響變數間的因果關係,說明描述如次:



圖2 主財軍官人力需求因果回饋圖

一、水位上升(現員數增加)

主財軍官人力主要來源爲正期班及專業預備軍官班(以下簡稱專軍班)等2類,特性分述如次:

一正期班

為就學班隊,由國防大學管理學院所培育之軍校學生,其須自任官之日起服常備軍官,年限為10年。正期班於入營服務前有2項參數,分別為入學率與完訓率,其中入學率指計畫招生數與錄取報到人數之比例,另

完訓率是指當年入學人數與畢業數之比例, 一般就學期間平均爲4年。

二專軍班

屬於就業班隊,係由符合資格之民間大學畢業社會青年或在營士官,經考試並完成受訓後,任官須服現役5年。此班隊入營前亦有2個參數,分別是招募率及流失率,招募率指當年計畫招募人數與入營報到數之比例;另流失率代表於入營受訓期間選擇退訓人數,與實際完訓人數之比例。

主計季刊

二、水位下降(現員數減少)

無論正期班或專軍班軍官當服役滿年限,符合退伍條件,此時個人可選擇退伍或繼續服務,此類人屬於屆退期滿人員;而當年選擇退伍人數增加,直接使現員數減少。值得注意的是,屆退期滿數爲存量變數(Stock Variable),此變數在系統中具隨時間累積或減少之特性,代表其人數規模隨著當年服滿年限人數或當年

退除數變動。此外,現員數也同爲存量變數, 具相同特性。另留營率係代表當年已屆退期滿 人員中,志願留營服務人數之比例,此數據愈 高,表示留營人數愈多,意涵退伍人數愈少。

綜上,依據因果回饋圖,並參考流水線延遲架構(Pipeline Delay Structure) (Sterman, 2000),建立主財軍官人力成長之系統動態模型(如圖3),其中相關參數設計內容如表1。

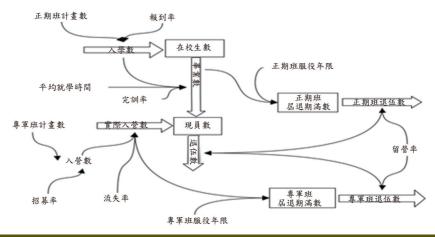


圖3 主財軍官人力成長系統動態圖

表1	變數定義

以 ↑ 交换人找												
變數	定義説明	單位	計算公式									
	當年正期班計畫招生 人數	人	此爲參數,T代表當年度									
報到率 (B_T)	當年正期班入學報到 人數比例	%	此爲參數,亦爲管理指標									
入學數 (C_T)	當年正期班入學報到 人數	人	$C_T = A_T \times B_T$									
完訓率 (D_T)	當年正期班完訓比例	%	此爲參數,亦爲管理指標。									
平均就學時間	正期班入學就讀至畢 業所需平均時間	年	4年,此爲定值。									
畢業數 (E_T)	當年正期班 (四年前 入學)實際畢業服役 人數	人	$E_T = C_{T-4} \times D_T$									
在校生數 (F_T)	當年底在校就讀正期 班人數	人	$F_T = F_{T-1} + C_T - E_T$,爲存量變數。									
正期班服役年 限	指正期班服役年限	年	10年,此爲定值。									

變數	定義説明	單位	計算公式
正期班屆退期 滿數 (P_T)	正期班屆退期滿人數	人	$P_T = P_{T-1} + E_{T-10} - 01_T$,爲存量變數,其中 E_{T-10} ,指當年正期班服役屆滿人數,即 10 年前畢業人數; 01_T 爲當年正期班退伍數。
留營率 (I_T)	當年屆退期滿主財軍 官中,留營人數比例	%	此爲參數,亦是管理指標。
正期班退伍數 $(0I_T)$	指當年正期班退伍人 數	人	$0I_{T} = (P_{T-I} + E_{T-I0}) \times (I - I_{T})$
專軍班計畫數 (L_T)	當年專軍班計畫招募數	人	此爲參數。
招募率 (M_T)	當年專軍班招募人數比例	%	此爲參數,亦爲管理指標。
入營數 (N_T)	當年專軍班招募入營 報到人數	人	$N_T = L_T \times M_T$
流失率 (Q_T)	當年報到專軍班人員 於受訓中流失比例	%	此爲參數,亦爲管理指標。
實際入營數 (U_T)	當年專軍班實際入營 服役人數	人	$U_T = N_T \times (I - Q_T)$
專軍班服役年 限	指專軍班服役年限	年	5年,此爲定值。
專軍班屆退期 滿數 (G_T)	專軍班屆退期滿人數	人	$G_T = G_{T-1} + U_{T-5} - 02_T$,爲存量變數,其中 U_{T-5} ,指當年專軍班服役屆滿數,即5年前實際入營數; 02_T 爲當年專軍班退伍數。
專軍班退伍數 (02_T)	當年專軍班退伍人數	人	$02_{T} = (G_{T-1} + U_{T-5}) \times (I - I_{T})$
退伍數 (03 _T)	當年主財軍官(正期 班及專軍班)退伍總 人數	人	$03_T = 01_T + 02_T$
現員數 (K_T)	指當年主財軍官(正 期班及專軍班)現員 數	人	$K_T = K_{T-1} + (E_T + U_T) - 03_T$,為存量變數。

參、情境設計及模擬

一、情境設計

依實際作業經驗,選擇正期班完訓率、專 軍班流失率及留營率等3變數,設計不同水準, 餘參數均設定爲固定值,組成9種情境(如表 2),各變數之水準設計說明如次:

|-||留營率

此反映當年屆退期滿人員留營服務比例,數據代表人力流出指標。基於軍官各階級服務年限因素,當年屆退期滿人員全數留營情況(即留營率100%)低,故留營率設計90%(高)、80%(一般)及70%(低)等3類水準。

二完訓率

是正期班人力流入指標,表示4年前

入學報到學生中當年順利畢業比例。從人 力需求角度而言,完訓率比例愈高,意謂 能分派至單位服務人數多,反之,比例低 時,獲得人數較少,完訓率設計區分100% (高)、85%(一般)及70%(低)等3類 水準。

(三)流失率

與完訓率相同,屬是人力流入指標之

一,比例愈低代表受訓期間耗損人數愈 少,相對地,比例高愈顯示耗損人數多, 意謂實際入營服務人數少。在此依實務經 驗設計流失情形,區分爲0%(低)、5% (一般)、10%(高)及等3類水準。如以 一般流失率(5%)爲例,表示每百位專軍 班報到人員,在訓期間行政耗損約5員,實 際入營服務任官計95位。

≢っ /	i≢ ∔卒 ≅·兀 ≅·∔
表2 ′	情境設計

情境	完訓率 (正期班)	流失率 (專軍班)	留營率
S1	100% (高)	0%(低)	
S2	85% (一般)	5% (一般)	90% (高)
S3	70% (低)	10% (高)	
S4	100% (高)	0%(低)	
S5	85% (一般)	5% (一般)	80% (一般)
S6	70% (低)	10% (高)	
S7	100% (高)	0%(低)	
S8	85% (一般)	5% (一般)	70% (低)
S9	70% (低)	10% (高)	

二、模擬結果

依據上述情境模擬於D年時,推估未來10 年(D+10年)之主財軍官人力走勢,其推估結 果說明如次:

一正期班人力推估

由圖4發現在S1及S2情境下,正期班 人力10年間呈現平穩向上走勢,尤在S1情 境。另S3~S9等7情境,10年後整體人力均 較D年時下降,其中以S9情境降幅最大。值 得一提的是,在S4、S7及S8等3情境中,人 力走勢均呈現初期下降後,再反向緩升情 況, 意涵如留營率處於一般水準, 如完訓 率達一般水準以上,有助使人力下滑走勢 反轉向上,其效應隨時間逐漸發酵。

綜上,留營率此指標幾乎決定正期班 未來10年整體人力走向,其影響效果較完 訓率強。此外,如處於長期留營率低之情 況下,運用提升完訓率之管理措施,長期 將有助提升正期班人力。

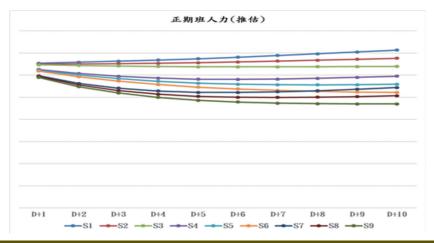


圖4 主財軍官人力推估 - 正期班

二專軍班人力推估

由圖5中,留營率處於高水準下(S1~S3),專軍班人力呈現逐年成長走勢; 另當留營率處於一般水準以下時(S4~S9),發生流出數大於流入數情況,人力 呈現處於逐年下降情況,尤在留營率爲低 水準時最嚴峻。此外,流失率對專軍班人 力變動影響效果相對留營率有限,無法改 變人力成長方向,但能作爲減緩或加速人 力水位變化之運用。

圖5 主財軍官人力推估-專業軍官班

(三)主財軍官人力推估

正規班及專軍班合併後之人力成長走勢(如圖6),除留營率處於高水準情況(S1~S3),呈現人力逐年成長外,餘情境在10年後整體人力均較10年前減少。另S4及S7等2情境,人力呈現初期下降後,再

上升情事,長期下人力有機會再回到目前 水位,其中以S4所需時間較短。

綜合上述,從各變數對人力水位影響 程度而言,以留營率此變數效果最強,影響人力成長走向,其次是正期班之完訓 率、專軍班之流失率。

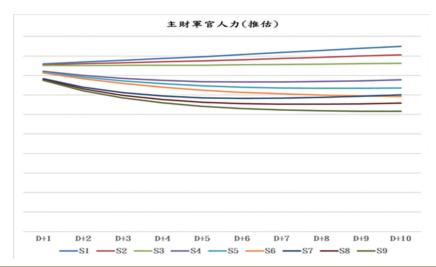


圖6 主財軍官人力推估一正期班及專業軍官班

四編現比警示

假設10年間主財軍官編制數均爲1千 人,據計算各情境下各年之編現比(=現員 數/編制數×100%),並輔以3種燈號呈現 警示(如圖7)。在S1~S3等3情境,10年 間均呈現綠燈,各年人力水位相對樂觀,而 餘情境各年度間或有黃燈或紅燈情況,意謂 處於人力水位偏低情事,尤以S9情境最嚴 峻,前2年爲黃燈,後8年均爲紅燈。

	D	+1	D) +2	D	+3	D	+4	D	+5	D	+6	D	+7	D	9+8	D	+9	D	+10
S1		86%		87%		88%		89%		90%		91%		92%		93%		94%		95%
S2		86%		86%		87%		87%		87%		88%		89%		89%		90%		91%
S3		85%		85%		85%		85%		85%		85%		86%		86%		86%		86%
S4		82%	•	80%		79%		77%		77%		77%		77%		77%		77%		78%
S5		82%		79%		77%		76%		75%		74%		74%		73%		73%		74%
S6		81%		78%		76%		74%		72%		71%		71%		70%		70%		69%
S7		78%		74%		71%		69%		68%		68%		68%		69%		69%		70%
S8		78%		73%		70%		68%		66%		66%		65%		65%		65%		66%
S9		78%		72%		69%		66%		64%		63%		62%		62%		62%		62%

註:燈號大於80%綠燈;70%~80%以黃燈;70%以下爲紅燈。

圖7 主財軍官人力推估警示燈號

肆、管理意涵

經由系統動態思維,構建主財軍官人力成 長基本模型,並加以模擬推估各情境之趨勢, 以下將獲得結果轉化爲管理意涵,說明如次:

一、應用系統動態推估人力成長,提 高工作效率

在規劃主財軍官人力需求上,採用系統性 思考觀點,並透過模型模擬人力成長趨勢之方 式,相較以往作業模式簡化,且能快速獲得各 種情境推估結果,提高人事工作效率,亦有效 減輕各分監單位人事業務承辦人之工作負荷。

二、完訓率、流失率及留營率等3項参數,以留營率對人力成長影響較強

從模擬結果發現,設計不同水準之留營 率、招募率及流失率等9種情境下,其中以留營 率對主財軍官人力變化效果較顯著,顯示有關 提升留營率之管理措施,應優先運用。

三、妥適運用指標管理,維持人力水 位

本文提出有關流入(報到率、完訓率、招募率、流失率)及流出(留營率)等參數,可作爲管理指標,主財單位可藉由目標管理方式,並配合相關人事作爲應處,以有效維持人力水位。舉正期班報到率爲例,設定當年80%爲目標時,如因故報到率低於目標時,其人數落差,可透過4年後增加專軍班人數,以補充當年人力需求;如預判留營率未達當年目標時,可運用留營措施(如鼓勵全時進修或調至眷住地服務等),提升留營意願,維持主財人力編現比。

四、依據班隊特性,規劃人力獲得期 程

正期或專軍班之受訓期程長短不同,且服務年限不同,規劃未來人力需求時,應依目標獲得期程,加以妥適配置需求數(即流入量),以維持人力水位。值得一提的是,113年起,兵役服務年限由4個月增長為1年,如將

渠等班隊納入考量,提出預備役專業專官班需求,亦是滿足短期內需求選項之一。

五、依組織特性延伸基本模型

本文所提出模型是主財軍官人力成長之基 本型,各分監單位人事部門可依據實務作業需 求,進一步區分尉官及校官、或男性及女性 等,延伸發展符合組織特性之模型,續再輔以 合理參數設定,精準推估人力成長趨勢。

伍、結 語

管理大師彼得杜拉克(Peter Drucker): 「預測未來最好的辦法,就是自己創造未來」用 於本議題而言,維持合理之主財人力編現情形, 端賴主財人事部門之有效規劃、執行及管理,其 中精準推估人力需求工具或專業能力,是不可或 缺關鍵之一。在面臨未來內部及外部不確定的環 境挑戰下,本文藉由系統動態思維,所建構之主 財軍官人力成長基本模型,後續研究可針對財務 士官建立對應模型,拼湊完整國軍主財人力成長 模型,以提升主財人力資源管理效能,俾利持恆 執行支援國防管理決策任務。

參考文獻

- 1. 行政院國家發展委員會(2022),中華民國人口 推估(2022至2070年).
- Sterman, J. D.(2000), Business Dynamics: Systems Thinking and Modeling for Complex World. McGraw-Hill, Boston.