國防部軍備局生產製造中心第二0二廠「雇用九等化工技術作業」筆試測驗題庫選擇題400題

 編整 答案 が色式焼時呈無色並發出強光的輸上元素是①M(②Ca3BaGSr。) 1012 20(3)1.216g·01.245℃。 2012.20(3)1.216g·01.245℃。 2012.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.245℃。 2014.20(3)1.216g·01.248 2015.20(3)1.216g·01.248 2016.20(3)2.210(3)3.3.5 2016.20(3)2.210(3)3.3.5 2016.20(3)2.210(3)3.3.5 2017.20(3)3.3.5 2018.20(3)2.210(3)3.3.5 2019.20(3)2.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2010.210(3)3.210(3)3.3.5 2011.210(3)3.210(3)3.3.5 2012.210(3)3.210(3)3.3.5 2013.210(3)3.210(3)3.3.5 2014.210(3)3.3.5 2015.210(3)3.3.5 2106.210(3)3.3.5 2107.210(3)3.3.5 2108.210(3)3.3.5 2108.210(3)3.3.5 2109.310(3)3.3.5 2109.310(3)3.30(3)3.5 2109.310(3)3.30(3)3.5<th></th><th>AS 400</th><th></th>		AS 400	
002 利用 - 般實驗室中所使用之分析天秤(精密天秤)秤室試練、下列數據何者正確?①1.2g ②1.2g(3).24g(3).245g(4).245g。 003 驗檢商定時,而和指示制之最適劑量為多少詢?①2-3②5-8③10-15(4)20-25。 004 為了減少氧化鈣的溶解,在洗滌其沉澱時可用①濃鹽酸②稀鹽酸③減磷酸①稀磷酸。 005 20m1之川鹽酸與40m1之排鹽酸混合後之濃度為多少附?①2②.5⑤33-3.5。 006 口打與金屬離子形成螯合時,是以下列何種美單數比的方式結合?①1:1②3:1③2:1① 1:1。 007 也(4)室也。 以磷酸銀滴定水中氨離子,若以絡酸鉀為指示劑,則與點時之沉澱物為①白色②黄色③紅色(4)室也。 008 故配製21.之0.5M之NaOH溶液,高秤取NaOH若干克?(NaOH-40)①10②20③40(4)80。 009 與添加火序與水農關份水與濃酸酸兩者一处對入混合。 010 蘇齡滴定所用之指示劑其本身為①弱酸或額驗②率性低資素或強酸分平均應於水中③配製時與溶加大原染水農關份水與濃酸酸兩者一处對入混合。 011 甲基橙為指示劑時,常用於①強酸滴定新驗②熱配滴定新酸或洗驗(小排離子性。 011 甲基橙為指示劑時,常用於①強酸滴定新驗②熱配滴定形破或消酸液洗粉酚(全)化透原滴 112 提定鹽裝溶之標定劑常用①點苯二甲酸盐鉀②氢氧化钠(金)酚酸液质新酸(金)化)。 113 由液酸與新酸所形成的鹽、水縣後星①酸性②酚性③中性仍不一定。 114 與氢氧化例之其平數相等③醣酸與氢氧化的含量数相等(4)溶液的性氮素。 115 減度為10-61的的氢氧化劑水溶液,其例值為(1)4 26(3)除(1)0。 116 份稀太髮打成海波之化含物是①或餘約②或破髮類(2)0溶液質數(2)0%。 117 (3)11-12,9。 118 在酸性液中湿無色的混示劑是①甲基核②甲基紅(3)石炭(1)0。 119 以旧(1)海定加內(1)0。 110 以田(1)海定、海底原原、水溶、中侧性變色域(1)13)附近。 111 以口(2)。 112 以田(1)海流、海底原体(1)中收量色域(1)中收量量水(3)物性均等(1)被性物質。 112 以田(1)海流、海底原体(1)中收量量之域的型高水溶液性(1)等。 113 (2)與滴定用時(3)皮癌完成後) 114 (2)與滴定用時(3)皮癌完成後) 115 (2)以底、水分分水水中之聚合产,是以溶液体(1)以聚金(2)以及、1)以及、1)以及、1)以及、1)以及、2)以及、1)以及、2)以及、2)以及、2)以及、2)以及、2)以及、2)以及、2)以及、2	編號	答案	試題
21. 25g31. 246g①1. 2457g。 003	001		焰色試驗時呈無色並發出強光的鹼土元素是①Mg②Ca③Ba④Sr。
21. 25g31. 246g①1. 2457g。 003	000		利用一般實驗室中所使用之分析天秤(精密天秤)秤量試樣,下列數據何者正確?①1.2g
 003	002		
 ○04 為了減少氣化鉛的溶解,在洗滌其沉澱時可用①濃鹽酸②稀鹽酸③濃硝酸①稀硝酸。 ○00 20mL之 N鹽酸與40mL之相鹽酸是合後之濃度為多少N?①202.3⑤3(4)3.5。 ○00 11:1。 ○00 20mL之 N鹽酸與40mL之相鹽酸是合後之濃度為多少N?①202.3⑤3(4)3.5。 ○00 20mL之 N鹽酸與40mL之相鹽酸是合後之濃度為多少N?①202.3⑤3(4)3.5。 ○00 20mL之 N鹽酸與40mL之相鹽酸是合後之濃度為多少N?①202.2.5③3(4)3.5。 ○00 20mL之 N豐酸海水产品、 景平水水平 11:1。 ○00 20mL2 N⊞ 20mL之 15世之NaOH溶液, 景平水NaOH岩干克(NaOH-40)①102203/40(4)80。 ○00 30 数配製2L2.0.5世之NaOH溶液, 雪秤取NaOH岩干克(NaOH-40)①102203/40(4)80。 ○00 4 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	003		
 20mL×1M鹽酸與40mL×4M鹽酸混合後之濃度為多少M?①2②2.5③3①3.5。 EDTA與金屬雜子形成螯合時,是以下列何種莫年數比的方式結合?①4:1②3:1③2:1①1:1。 20m 20m 20mと対象公局報子形成螯合時,是以下列何種莫年數比的方式結合?①4:1②3:1③2:1①1:1。 20m 20m 20m 20m 20mと製記之0.5M之NaOH溶液、富秤取NaOH若干克?(NaOH=40)①10②20③40①80。	004		
EDTA與金屬離子形成螯合時,是以下列何種裝平數比的方式結合?①4:1②3:1③2:1④ 1:1。 以磷酸銀滴定水中氣離子,若以絡酸鉀為指示劑,則終點時之沉澱物為①白色②黄色③紅色①紫色。 以磁製21之0.5M之NoH溶液,需释取NoH岩干克?(NaOH-40)①10②20③40④80。 物硫酸溶液的製備方法是①在提样下加水浴溝礦酸中②在提样下加減硫酸於水中③配製時與添加文序與水無關①水與濃硫酸兩者一起倒入混合。 印基陸為指示劑時,常用於①發酸滴定弱酸②強驗滴定弱酸③弱酸滴定弱驗①或化氢原滴 甲基陸為指示劑時,常用於①發酸滴定弱酸②強驗滴定弱酸③弱酸滴定弱驗①或化邊原滴 印基酸與药驗所形成的鹽,水解後至①酸性②触性③中性①不一定。 關於醋酸與氫氧化鈉之莫平數和等③點錄與氫氧化鈉(3)與其來碳酸鈉()草酸() 日韓國與到檢所形成的鹽,水解後至①酸性②触性③中性心不一定。 關於醋酸與氫氧化鈉之滿定、在當量點時,下列有關較減何者錯誤?①溶液2歐性②醋酸與氧氧化鈉之支其中數和等3個結與與氫氧化鈉含量數和等④溶液用值為7。 混度為10-6160 的氧化鈉水溶液、提別值為20/2638金110。	005		
1:1。 007 以磷酸機滴定水中氯離子,若以絡酸鉀為指示劑、則終點時之沉澱物為①白色②黄色③紅色①紫色。 ①紫色。 ①紫色。 ①紫色。 008 欲配製記之0.5M之NaOH溶液、當靜取NaOH若干克?(NaOH=40)①10②20③40④80。 009 稀硫酸溶液的製備方法是①在攪拌下加水於濃硫酸中②在攪拌下加濃硫酸於水中③配製時與添加水戶與水無關①水與濃硫酸兩者一处倒入混合。 010 酸鹼滴定所用之指示劑其本身為①防酸或紡鹼2种性③強酸或強鹼①非離子性。 011 甲基橙為指示劑時,常用於①強酸滴定弱鹼②螯量流光碳酸钠②弱酸流空肠鹼①复氮剂。 012 標定鹽酸溶液之程定劑常用①鄰苯二甲酸氢鉀②氢氧化鈉3為水碳酸邻(草酸鈉) 013 由強酸與弱鹼所形成的鹽,水解後呈①酸性②酚性③中性④不一定。 014 與氫氧化鈉之莫耳數相等④醋酸與氫氧化鈉當量數相等④溶液pH值為7。 015 濃度為10-6M的氢氧化鈉水溶液,其pH值為①4②63%40H0。 016 俗稱大蘇打或海波之化含物炭①碳酸氫鈉35硫代硫酸鈉①氧化鈣, 017 用發鹼滴定形成酸酶、應使用下列何種變色域(內附範圍) 的指示劑?①3~5②5~7.1③7~9 ①11~12.9。 018 在酸性液中黑血色的指示劑是①甲基橙②甲基紅③石炭()酚。 020 含有給離子的廢液絕不可與下例何者混合①水②食鹽水③酚性物質①酸性物質。 021 以EDTA测定水之硬度時,其由應控制在①8②10③12②13附近。 022 取0.04克酚NaOH以配成一升之溶液時,则此溶液的用品多少(Na=23)①8②9③10④11。 023 加低代硫酸钠溶液溶液定碘化种析出光硬膏等水所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成物/反應完成後 024 退房劑在氧化退房之反應(redox)中,是為何種的反應?①失去電子②獲得電子③獲得 025 以KSCN束分析水中之與含量,若以緩明紫為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黄色④藍色 026 然身是①生色。 027 硫化氢的水溶液使石溶鼓纸①變鹽②變紅③變粉紅色①不變色。 028 二甲基乙二醛二與①幹離子②線離子④線離子④機離子作用呈紅色。 029 較光光清簡稱相內,其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定①共輕變經至鑑定。 029 輕變經之鑑定 029 輕變經之鑑定 020 如外線光清簡預補內,其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定①共輕變經之鑑定。 021 如外線光清簡預相內,其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定①共輕變經之過度,與過減速速度。 022 如時酸銀光溶液中,使用的指示劑為①酚酞②甲基紅③碳明紫④澱粉。 023 在碘滴定時,使用的指示劑為①酚酞②甲基紅③碳明紫④澱粉。 024 在碘滴定時,使用的指示劑為①酚酞②甲基紅③碳明紫④澱粉。 025 如時酸銀光溶液中,於有S-2離子①核酶子①機類子作用星紅色。 026 如外線光清隨預解內,其主學如能與子作用星紅色。 027 硫化氫的溶液使用於原料。 028 在碘滴定時,使用的指示劑多一酚酞②中基紅③碳酮等①聚劑。 029 較數是個素色。 029 較數與學不與學不與學和學不與學學不與學學不與學學學與學學與學學與學學與學學與學學與學學與學學與學學與學			
007	006		
 ●①蒙色。 ○08			
 ○008	007		
009	008		
 9019 與添加次序與水無關①水與濃硫酸兩者一起例入混合。 1011 酸鹼滴定所用之指示劑其本身為①弱酸或銷鹼②申性③強酸或強鹼①非離子性。 1012 標定鹽酸溶液之標定劑常用①鄰苯二甲酸氫鉀②氫氧化鈉(3)無酸滴定弱鹼(3)系酸(4)系)。 1013 由強酸與弱鹼所形成的鹽、水解後呈①酸性②鹼性③中性④不一定。 1014 開於醋酸與氫氧化納之滴定、在當量點時,下列有開敘透何者錯誤?①溶液呈鹼性②醋酸與氫氧化鈉之其其粗角等(3)結酸與氫氧化鈉當量數相等(3)溶液用值為(5)。 1015 濃度為10-6M的氫氧化鈉水溶液、其份量為(1)化金)(3)8-8-10。 1016 俗稱大蘇打或海波之化合物是①碳酸鈉②碳酸氫鈉③硫代硫酸鈉④氧化药。 1017 用強鹼滴定弱酸時,應使用下列何種變色域()同範圍)的指示劑?①3~5②5~7.1③7~9。 1018 在酸性液中层無色的指示劑是①甲基橙②中基紅③石蒸旬酚。 1019 以旧()病定NaOll溶液時,應運用的指示劑是①甲基橙②中水()到粉近。 1020 含有絡離子的療液絕不可與下到何者混存()水②食鹽水()酸性物質。 1021 以EDTA测定水之硬度時,其用應控制在①8②10③12④13附近。 1022 取0.04克的NaOll以配成一升之溶液時,則此溶液的間為多少(Na=23)①8②9③10④11。 1023 以流坏硫酸納溶液液液定碘化如析出之溶液等,所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 1024 這原劑在氧化退原之反應(redox)中、是為何種的反應?①失去電子②獲得電子③獲得氫離子①失去氧原子。 1025 以KSCN來分析水中之銀合量、若以緩明聚為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黄色①藍色 1026	000		
 010 酸融滴定所用之指示劑其本身為①弱酸或弱融②中性③強酸或強融①非離子性。 011 甲基橙為指示劑時,常用於①強酸滴定弱驗②強驗滴定弱酸③弱酸滴定弱酸④氧化透原滴 012 標定鹽酸溶液之裸定劑常用①瓤苯二甲酸氫鉀②氢氧化钠③無水碳酸鈉④草酸鈉。 014 由強酸與弱鹼所形成的鹽,水解後呈①酸性②軸性④中性④不一定。 015 開於醋酸與氫氧化鈉之滴定,在當量點時、下列有關發述何者錯誤?①溶液呈鹼性②醋酸與氫氧化鈉之其平數相等③醋酸與氫氧化鈉當量數相等④溶液內H值為7。 016 俗籍大蘇打或海波之化含物是①碳酸類②碳酸氫鈉③硫代硫酸鈉④氧化鈣。用強鹼滴定弱酸時,應使用下列何種變色域(pH範圍)的指示劑?①3~5②5~7.1③7~9④11~12.9。 018 在酸性液中层無色的指示劑是①甲基醛②甲基紅③石滤①酚少②11~12.9。 019 以HC1滴定NaOH溶液時,應運用的指示劑是①甲基盤②動③甲基橙①澱粉液。 021 立区TA测定水之硬度時,其則應控制在10象②10312④13附近。 022 取0.04克的NaOH以应成一升之溶液時,則此溶液的pH為多少(Na=23)①8②9③10④11。 023 以底的水液液流度水液溶液,則此溶液的pH為多少(Na=23)①8②9③10④11。 024 退原劑在氧化遏原之反應(redox)中、是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。以KSCN来分析水中之銀含量、若以鐵明蒙為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 026 以及SCN来分析水中之銀含量、若以鐵明蒙為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 027 硫化氢的水溶液使石滤試纸①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①幹離子②綠離子③與離子4/鐵離子作用呈紅色。 029 硫化氮的水溶液使石滤試纸①變藍②變紅③變粉紅色④不變色。 029 红外線光譜簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共轭雙鍵之鑑定。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鏡明整①繳粉。 031 在碘滴定時,使的指示劑為①酚酞②甲基紅③鏡明整①液粉。 032 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鏡明整①液粉。 033 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鏡明整0溶網樣溫度③反應前後之溫度差異①減度過度過度 034 在碘滴定時,使的的指示劑為①酚酞②甲基紅③鏡明等①激粉。 035 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鏡明整0溶機。 036 在碘滴定時,使用的指示劑為①酚酞②甲基红③鏡明可以類粉。 037 在碘滴定時,使用的指示劑為①酚酞②甲基红③鏡明等①激粉。 038 在碘滴定時,使用的指示劑為②配應。 039 在碘滴定時,使用的指示劑為②配應。 030 在碘滴定時,使用於液分配度。 031 在碘滴定時,使用的指示劑為②配度。 032 在碘滴定時,使用於 033 在碘滴定時,使用於 034 在碘滴定時,使用於 035 在碘滴定度。 036 在碘滴定時,使用於 037 在碘溶管。 038 在碘溶管。 039 在碘溶管。 030 在碘滴定的, 030 在碘溶管。 031 在碘溶管。 032 在碘溶管。 032 在碘溶管。 033 在碘溶管。 034 在碘溶管。 035 在原流管、 036 在原流管、 036 在原流管、<!--</td--><td>009</td><td></td><td></td>	009		
 □11 甲基橙為指示劑時,常用於①強酸滴定弱驗②檢驗滴定弱酸③弱酸滴定弱驗④氧化遏原滴 1012 標定鹽酸溶液之標定劑常用①鄰苯二甲酸氫鉀②氫氧化鈉③無水碳酸鈉④草酸鈉。 □13 由強酸與弱驗所形成的鹽,水解後呈①酸性②鹼性③不一定。 關於醋酸與氫氧化鈉乙滴定,在喬量點時,下列有關敘述何者錯誤?①溶液呈鹼性②醋酸與氫氧化鈉乙莫平數相等③儲酸與氫氧化鈉含量數相等④溶液內性值為7。 □15 濃度為10-6M的氫氧化鈉水溶液,其pH值為①4②6③8④10。 □16 俗稀大蘇打或海波之化合物是①碳酸鈉②碳酸氫鈉③硫代硫酸鈉④氧化鈣。 用強鹼滴定弱酸時,應使用下列有種變色域(即範圍)的指示劑?①3~5②5~7.1③7~9 ④11~12.9。 在酸性液中星無色的指示劑是①甲基橙②中基紅③石蒸旬酚。 □17 用強鹼滴定弱配時,應運用的指示劑是①甲基橙②中基紅③石蒸旬酚。 □19 以HC1滴定NaOH溶液時,應運用的指示劑是①甲基橙②內數學基橙①澱粉液。 含有路離子的廢液絕不可與下列付者混存①水②食鹽水③鹼性物質①酸性物質。 以EDTA测定水之硬度時。其中應控制在①8210312④13附近。 □20 取0.04克的NaOH以配成一共之溶液時,則此溶液的內格多少(Na=23)①8②9③10④11。 以硫代硫酸鈉溶液水滴定碘化鉀析出之碘實時、所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 還原劑在氧化還原之反應(redox)中,是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 以KSCN來分析水中之銀含量、若以鐵明整為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。	010		
 (112 標定鹽酸溶液之標定劑常用①鄰苯二甲酸氫鉀②氫氧化鈉③無水碳酸鈉④草酸鈉。 (13 由強酸與弱鹼所形成的鹽,水解後呈①酸性②鹼性③中性①不一定。 (14 開於醋酸與氫氧化鈉之滴定、在當量點時、下列有關敘述例者錯誤?①溶液呈鹼性②醋酸與氫氧化鈉之莫耳數相等③醋酸與氫氧化鈉當量數相等(必溶液則值為7。) (15 濃度為10-6M的氫氧化鈉水溶液,其pH值為①426(38④10。) (16 俗稱大蘇打或海波之化合物是①碳酸鈉②碳酸氫鈉③硫代硫酸鈉④氧化鈣。用強鹼滴定弱酸時。應使用下列何種變色域(四範圍)的指示劑?①3~5②5~7.1③7~9④11~12.9。 (17 相強鹼滴定弱酸時。應使用下列何種變色域(四範圍)的指示劑?①3~5②5~7.1③7~9④11~12.9。 (18 在酸性液中星無色的指示劑是①甲基橙②甲基紅③石蒸①酚②甲基橙①澱粉液。○20 含有絡離子的療液絕不可與下外何者混存①水②食鹽水③鹼性物質④酸性物質。202 以任DTA测定水之硬度時、其pH應控劑在①8210312④13附近。202 取0.04克的NaOH以配成→升之溶液時,則此溶液的內服為多少(Na=23)①829③10④11。203 以硫代硫酸鈉溶液水滴定碘化蚵析出之碘量時、所用之澱粉指示劑應在何時添加?①滴定剂②與滴定同時③反應完成前④反應完成後。204 還原劑在氧化還原之反應(redox)中、是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 (26 以KSCN來分析水中之銀含量、若以鐵明裝為指示劑、當達終點時,溶液之顏色星①血紅色②白色③黃色④藍色 (27 硫化氫的水溶液使石蒸試紙①變藍②變紅③變粉紅色④不變色。20 上甲基乙二醛二與①蜂藥子②綠離子①賴離子作用呈紅色。20 白色③黄色④藍色 (28 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共轭雙鍵之鑑定。 (29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共轭雙鍵之鑑定。 (29 紅蜂滴定時,使用的指示劑為①酚酞②甲基紅③鐵明整①澱粉。 (21 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明整①澱粉。 (22 位明月克曼溫度計可精密测量出①氣溫之高低②熱量計中之燃烧溫度③反應前後之溫度差異①漁球温度。 (23 如醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 			
□13 由強酸與弱鹼所形成的鹽,水解後呈①酸性②鹼性③中性①不一定。 □14 關於醋酸與氫氧化納之滴定、在當量點時,下列有關敘述何者錯誤?①溶液呈鹼性②醋酸與氫氧化納之漢耳數相等②醋酸與氫氧化納當量數相等②溶液則值為了。 □15 濃度為10-6例的氫氧化納水溶液,其pH值為①4②6③8④10。 □16 俗稱大蘇打或海波之化合物是①碳酸鈉②碳酸氫鈉氮硫代硫酸鈉④氧化药。 □17 用強鹼滴定弱酸時,應使用下列何種變色域(即範圍)的指示劑?⑤3~5②5~7.1③7~9④11~12.9~ □18 在酸性液中屋無色的指示劑是①甲基橙②甲基紅③石藻①酚) □19 以HC1滴定NaOH溶液時,應選用的指示劑是①甲基藍②酚③甲基橙④澱粉液。 □20 含有餘離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。 □21 以EDTA测定水之硬度時,其pH應控制在①8②10③12④13附近。 □22 取0.04克的NaOH以配成一升之溶液時,則此溶液的pH為多少(Na=23)①8②9③10④11。 □23 以硫代硫酸鈉溶液水滴定碘化鉀析出之碘量時,所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 □24 氫原劑在氧化透原之反應(redox)中,是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 □以KSCN水分析水中之銀含量,若以鐵明裝為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黄色④藍色 KSp是代表下列何種賞數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常数。 □25 如KSCN水分析水中之銀含量,若以鐵明裝為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黄色④藍色 C26 松下及水石系。 □27 硫化氫的水溶液使石蒸試紙①變藍②變紅③變粉紅色④不變色。 □甲基乙二醛二與①幹離子②綠離子③銅離子④鐵離子作用呈紅色。 □甲基化三的水溶液使石蒸試紙①變藍②變紅③變粉紅色④不變色。 □甲基乙二醛二與①幹離子②綠離子③銅離子④鐵離子作用呈紅色。 如外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共轭雙鍵之鑑定。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③皮應前後之溫度差異過減或過時,使用的指示劑為①酚酞②甲基紅③鐵明繫④澱粉。 □30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明繫④澱粉。 □31 使用克曼溫度計可精密测量出①氣溫之高低②熱量計中之燃烧溫度③反應前後之溫度差異④減球溫度。			
□14 關於醋酸與氫氧化鈉之消定、在當量點時,下列有關敘述何者錯誤?①溶液呈鹼性②醋酸與氫氧化鈉之莫耳數相等③醋酸與氫氧化鈉當量數相等④溶液pH值為7。 □15 濃度為10-6M的氫氧化鈉水溶液,其pH值為①426③8金①10。 □16 俗稀大蘇打或海波之化含物是①碳酸鈉②碳酸氫鈉③硫代硫酸鈉①氧化鈣。 □17 用強鹼滴定弱酸時,應使用下列何種變色域(pH範圍)的指示劑?②3~5②5~7.1③7~9 例11~12.9。 □18 在酸性液中星無色的指示劑是①甲基橙②甲基紅③石蕊①酚。□19 以HCI滴定NaOH溶液時,應選用的指示劑是①甲基盤②酚③甲基橙①澱粉液。 □20 含有絡離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。 □21 以EDTA测定承之硬度時。其pH應控制在①8②10③12④13附近。 □22 取0.04克的NaOH以配成一升之溶液时,則此溶液的pH為多少(Na=23)①8②9③10④11。 □23 以硫代硫酸鈉溶液、潮流定碘化鉀析出之碘量時,所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 □24 還原劑在氧化還原之反應(redox)中,是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 □25 以KSCN來分析水中之銀含量,若以鐵明豢為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 □26 KSp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數①沸點上升常數。 □27 硫化氫的水溶液便和蒸試紙①變藍②變紅③變粉紅色④不變色。 □28 二甲基乙二醛二與①針離子②綠離子④娥離子作用呈紅色。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定①共輕雙鍵之鑑定。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定①共輕雙鍵之鑑定。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定①共輕變建之鑑定。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定①共輕變建之鑑定。 □29 紅外線光譜(簡稱IR),其主要功能為①根數學子④娥離子④娥離子④娥離子④娥離子。 □20 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明紫④澱粉。 □21 中國酸鍵之鑑定。 □22 如醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。			
 95氧化納之莫耳數相等③醋酸與氫氧化納當量數相等④溶液pH值為7。 1015 濃度為10-6M的氫氧化納水溶液,其pH值為1/42638金10。 016 俗稱大蘇打或海波之化合物是①碳酸鈉②碳酸氫鈉③硫代硫酸鈉④氧化药。 017 開強鹼滴定弱酸時,應使用下列何種變色域(pH範圍) 的指示劑?①3~5②5~7.1③7~9 ④11~12.9~ 018 在酸性液中星無色的指示劑是①甲基橙②甲基紅③石蕊中酚。 019 以HC/清定NaOH溶液時,應使用下列何者混存①水②食鹽水③鹼性物質④酸性物質。 020 含有絡離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。 021 以EDTA测定水之硬度時。其时應控制在①8②10③12④13附近。 022 取0.04克的NaOH以配成一升之溶液時,則此溶液的pH為多少(Na=23)①8②9③10④11。 023 以硫代硫酸鈉溶液浆滴定碘化鉀析出之碘量時。所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 024 還原劑在氧化還原之反應(redox)中、是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。以KSCN來分析水中之銀含量、若以鐵明整為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 025 以KSCN來分析水中之銀含量、若以鐵明整為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 026 然5p是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 027 硫化氫的水溶液使和蕊試紙①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①鋅離子②綠離子③銅離子①鐵離子作用呈紅色。 029 紅化氫的水溶液使和蒸試紙①變藍②變紅③變粉紅色④不變色。 029 红果夏二二醛二與①鋅離子②綠離子③銅離子①鐵離子作用呈紅色。 029 紅性國的水溶液使和蒸試紙①變藍②變紅③變粉紅色④不變色。 029 红果夏二二甲基乙二醛二與①鋅離子②綠離子①鐵鄉是不作用呈紅色。 029 紅性國的水溶液使用原子②綠離子②綠離子①鐵明整①水粉。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明整①澱粉。 031 使用見克曼温度計可精密測量出①氣溫之高低②熱量計中之燃烧温度③反應前後之温度差異④減減温度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	013		
四15	014		
 ○16 俗稱大蘇打或海波之化合物是①碳酸鈉②碳酸氫鈉③硫代硫酸鈉④氧化鈣。 ○17 相強鹼滴定弱酸時。應使用下列何種變色域(pH範圍)的指示劑?①3~5②5~7.1③7~9④11~12.9~ ○18 在酸性液中星無色的指示劑是①甲基橙②甲基紅③石蒸①酚。○ ○19 以旧○滴定內間溶液時,應選用的指示劑是①甲基整②酚③甲基橙④澱粉液。○ ○20 含有鉻離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。○ ○21 以EDTA測定水之硬度時《其財應控制在①8②10③12④13附近。○ ○22 取0.04克的NaOH以配成→升之溶液時,則止溶液的附為多少(Na=23)①8②9③10④11。○ ○23 以硫代硫酸鈉溶液水滴定碘化鉀析出之碱量序,所用之澱粉指示劑應在何時添加?①滴定前②臭滴定同時③反應完成後度。 ○24 還原劑在氧化還原之反應(redox)中、是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 ○25 以KSCN來分析水中之銀含量,若以鐵明裝為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色 ○26 Ksp是代表下列何種常數。①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 ○27 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 ○28 二甲基乙二醛二與①鋅離子②鎳離子③銅離子④鐵離子作用呈紅色。 ○29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 ○29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 ○30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 ○31 使用見是溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 ○32 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 			
 1017	015		濃度為10-6M的氫氧化鈉水溶液,其pH值為①4②6③8④10。
 ①11 ②11~12.9。 ○18 在酸性液中星無色的指示劑是①甲基橙②甲基紅③石藻④酚。 ○19 以HC1滴定NaOH溶液時,應選用的指示劑是①甲基盤②酚③甲基橙①澱粉液。 ○20 含有絡離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。 ○21 以EDTA测定水之硬度時,其pH應控制在①8②10③12④13附近。 ○22 取0.04克的NaOH以配成一升之溶液時,則此溶液的即為多少(Na=23)①8②9③10④11。 ○23 以硫代硫酸鈉溶液水滴定碘化鉀析出之碘量時、所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 ○24 還原劑在氧化還原之反應(redox)中、是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 ○25 以KSCN來分析水中之銀含量、若以鐵明裝為指示劑、當達終點時、溶液之顏色呈①血紅色②白色③黃色④藍色、若以鐵明裝為指示劑、當達終點時、溶液之顏色呈①血紅色②白色③黃色④藍色、方以緩明整為指示劑、當達終點時、溶液之顏色呈①血紅色②白色③黃色(基色、一里基乙二醛一與①幹離子②線離子③銅離子④鐵離子作用呈紅色。 ○26 無型乙二醛二與①幹離子②線離子③銅離子④鐵離子作用呈紅色。 ○27 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 ○28 二甲基乙二醛二與①幹離子②線離子③銅離子④鐵離子作用呈紅色。 ○29 紅外線光譜(簡稱1R),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 ○30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明裝④澱粉。 ○31 使用見曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 ○32 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	016		俗稱大蘇打或海波之化会物是①碳酸鈉②碳酸氫鈉③硫代硫酸鈉④氧化鈣。
 ○118 在酸性液中星無色的指示劑是①甲基橙②甲基紅③石蕊①酚。 ○119 以HC1滴定NaOH溶液時,應選用的指示劑是①甲基盤②酚③甲基橙①澱粉液。 ○20 含有軽離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。 ○21 以EDTA测定水之硬度時。其即應控制在①8②10③12④13附近。 ○22 取0.04克的NaOH以配成一升之溶液時,則此溶液的則為多少(Na=23)①8②9③10④11。 ○23 以硫代硫酸鈉溶液來滴定碘化鉀析出之碘量時。所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 ○24 還原劑在氧化還原之及應(redox)中,是為何種的反應?①失去電子②獲得電子③獲得氫離子①失去氧原子。 ○25 以KSCN來分析水中之銀含量、若以鐵明繫為指示劑、當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 ○26 KSp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數①沸點上升常數。 ○27 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 ○28 二甲基乙二醛二與①穿離子②鎮離子④鐵離子作用呈紅色。 ○29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 ○30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明繫④澱粉。 ○31 使用克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 ○32 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	017		用強鹼滴定弱酸時,應使用下列何種變色域(pH範圍)的指示劑?①3~5②5~7.1③7~9
 □19 以旧门濱定NaOH溶液時,應選用的指示劑是①甲基藍②酚③甲基橙①澱粉液。 □20 含有絡離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。 □21 以EDTA測定水之硬度時、其时應控制在①8②10③12④13附近。 □22 取0.04克的NaOH以配成一升之溶液時,則此溶液的即為多少(Na=23)①8②9③10④11。 □23 以硫代硫酸鈉溶液來滴定碘化鉀析出之碘量時、所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 □24 選原劑在氧化選原之反應(redox)中、是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 □25 以KSCN來分析水中之銀含量、若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色 □26 KSp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 □27 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 □28 二甲基乙二醛二與①鋅離子②線離子③銅離子④鐵離子作用呈紅色。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 □29 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 □30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明整④澱粉。 □31 使用見克曼温度計可精密測量出①氣溫之高低②熱量計中之燃燒温度③反應前後之温度差異①温球溫度。 □32 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	017		@11~12.9° \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
 ②20 含有鎔離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。 ○21 以EDTA測定水之硬度時ぐ其別應控制在①8②10③12④13附近。 ○22 取0.04克的NaOH以配成一升之溶液時,則此溶液的阳為多少(Na=23)①8②9③10④11。 ○23 以硫代硫酸鈉溶液水滴定碘化鉀析出之碘量時,所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 ○24 還原劑在氧化還原之反應 (redox) 中、是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 ○25 以KSCN來分析水中之銀含量、若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 ○26 Ksp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 ○27 硫化氫的水溶液使石蒸試紙①變藍②變紅③變粉紅色④不變色。 ○28 二甲基乙二醛二與①鋅離子②鎳離子③銅離子④鐵離子作用呈紅色。 ○29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 ○30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 ○31 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 ○32 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	018		在酸性液中呈無色的指示劑是①甲基橙②甲基紅③石蕊④酚。
 □21 以EDTA測定水之硬度時、其pH應控制在①8②10③12④13附近。 □22 取0.04克的NaOH以配成→升之溶液時,則此溶液的pH為多少(Na=23)①8②9③10④11。 □23 以硫代硫酸鈉溶液水滴定碘化鉀析出之碘量時、所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 □24 還原劑在氧化還原之反應 (redox)中,是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 □25 以KSCN來分析水中之銀含量、若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 □26 KSp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 □27 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 □28 二甲基乙二醛二與①鋅離子②鎮離子④鐵離子作用呈紅色。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 □30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 □31 使用貝克曼温度計可精密測量出①氣温之高低②熱量計中之燃燒温度③反應前後之温度差異④濕球温度。 □32 か醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	019		以HC1滴定NaOH溶液時,應選用的指示劑是①甲基藍②酚③甲基橙④澱粉液。
 □21 以EDTA測定水之硬度時、其pH應控制在①8②10③12④13附近。 □22 取0.04克的NaOH以配成→升之溶液時,則此溶液的pH為多少(Na=23)①8②9③10④11。 □23 以硫代硫酸鈉溶液水滴定碘化鉀析出之碘量時、所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 □24 還原劑在氧化還原之反應 (redox)中,是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 □25 以KSCN來分析水中之銀含量、若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 □26 KSp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 □27 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 □28 二甲基乙二醛二與①鋅離子②鎮離子④鐵離子作用呈紅色。 □29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 □30 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 □31 使用貝克曼温度計可精密測量出①氣温之高低②熱量計中之燃燒温度③反應前後之温度差異④濕球温度。 □32 か醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	020		含有鉻離子的廢液絕不可與下列何者混存①水②食鹽水③鹼性物質④酸性物質。
 取0.04克的NaOH以配成→升之溶液時,則此溶液的pH為多少(Na=23)①8②9③10④11。 以硫代硫酸鈉溶液來滴定碘化鉀析出之碘量時,所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 3 選原劑在氧化還原之反應 (redox) 中,是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 以KSCN來分析水中之銀含量,若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 KSp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 3 流化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 2 二甲基乙二醛二與①鋅離子②鎳離子③銅離子④鐵離子作用呈紅色。 3 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 4 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 6 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 6 付用見克曼温度計可精密測量出①氣温之高低②熱量計中之燃燒温度③反應前後之温度差異④濕球温度。 4 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	021		以EDTA測定水之硬度時人其内H應控制在(182103)12(4)13附近。
023 以硫代硫酸鈉溶液來滴定碘化鉀析出之碘量時,所用之澱粉指示劑應在何時添加?①滴定前②與滴定同時③反應完成前④反應完成後。 024 還原劑在氧化還原之反應 (redox) 中,是為何種的反應?①失去電子②獲得電子③獲得氫離子④失去氧原子。 025 以KSCN來分析水中之銀含量,若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 026 Ksp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 027 硫化氫的水溶液使石蒸試紙①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①鋅離子②鎮離子③銅離子④鐵離子作用呈紅色。 029 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。	022		取0.04克的NaOH以配成一升之溶液時,則此溶液的叫為多少(Na=23)(1)8(2)9(3)10(4)11。
 前②與滴定同時③反應完成前④反應完成後。 024 還原劑在氧化還原之反應(redox)中,是為何種的反應?①失去電子②獲得電子③獲得 氫離子④失去氧原子。 025 以KSCN來分析水中之銀含量,若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色 ②自色③黃色④藍色。 026 Ksp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 027 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①鋅離子②鎳離子③銅離子④鐵離子作用呈紅色。 029 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬①澱粉。 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 			
□24	023		
 ①24			
 以KSCN來分析水中之銀含量,若以鐵明礬為指示劑,當達終點時,溶液之顏色呈①血紅色②白色③黃色④藍色。 1026 Ksp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 027 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①鋅離子②鎳離子③銅離子④鐵離子作用呈紅色。 029 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	024		
2白色③黄色④藍色。 (2白色③黄色④藍色。 (126)			
 Ksp是代表下列何種常數?①反應速率常數②反應平衡常數③難溶鹽的溶解度積常數④沸點上升常數。 027 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①鋅離子②鎳離子③銅離子④鐵離子作用呈紅色。 029 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	025		
 1026 點上升常數。 027 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①幹離子②鎳離子③銅離子④鐵離子作用呈紅色。 029 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 			
 027 硫化氫的水溶液使石蕊試紙①變藍②變紅③變粉紅色④不變色。 028 二甲基乙二醛二與①鋅離子②鎳離子③銅離子④鐵離子作用呈紅色。 029 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	026		
 □ 28 二甲基乙二醛二與①幹離子②鎳離子③銅離子④鐵離子作用呈紅色。 □ 29 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共軛雙鍵之鑑定。 □ 030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 □ 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 □ 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。 	097		
029 紅外線光譜(簡稱IR),其主要功能為①化合物的分離②分子量之鑑定③官能基之鑑定④共			
 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	020		
030 在碘滴定時,使用的指示劑為①酚酞②甲基紅③鐵明礬④澱粉。 031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。	029		
031 使用貝克曼溫度計可精密測量出①氣溫之高低②熱量計中之燃燒溫度③反應前後之溫度差異④濕球溫度。 032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。	020		
U31 異①濕球溫度。 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。	030		
032 加醋酸銀於溶液中,若有S-2離子之存在,則可得到下列何種顏色的沉澱物?①白色②紅色③綠色④黑色。	031		
032 色③綠色④黑色。			
色③綠色④黑色。	032		
033 化學家用X射線研究晶體,主要是想瞭解其①結構②成分③溶解度④濃度分佈。			
	033		化學家用X射線研究晶體,主要是想瞭解其①結構②成分③溶解度④濃度分佈。

	下列有關滴定曲線的敘述,何者錯誤?①橫座標為滴定液的mL數,縱座標為溶液的pH值②
034	可決定當量點,此點在滴定曲線垂直部分的中點③滴定液的濃度愈低,垂直線之範圍愈大
	④根據垂直線之pH值範圍選擇適宜的指示劑。
035	天平的靈敏度係由多少克的額外重量,使指針移動的刻度數?①0.1g②0.01g③0.001g④
000	0.0001g ·
036	欲測量物質中之水分含量時,通常需將物質加熱至多少℃?①50℃②105℃③150℃④
037	陽離子分屬時,所使用的屬試劑是為下列何者①氧化劑②催化劑③脫水劑④沉澱劑。
038	下列各項中何者不是海水淡化處理法中冷凍法之優點?①設備簡單②消耗能量少③鍋垢少④腐蝕性小。
039	目前最重要之海水淡化法中,何者成本最低?①多效蒸發法②冷凍法③離子交換膜電透析法④半透膜法。
040	下列之各種工業廢水中,何者是屬於鹼性廢水?①金屬工業②有機工業③食品工業④皮革工業。
041	含有腐敗性成分的廢水,一般都採用何種的方式來處理?①化學方式②生物化學方式③物
042	理方式④離子交換方式。 一般合於廢水規定標準的廢水,其pH值的範圍是在於①1.0~3.5②3.5~6.0③6.5~8.0④
	8.0~10.0 •
043	在工業上,以何種處理方法,所得到的水質純淨?①離子交換法②沈澱法③過濾法④曝氣
044	鍋爐用水中當含有何種成分時,容易產生硬質鍋垢?①酸性成分②油脂成分③砂酸鹽成分④鹼性成分。
045	水質分析時,所使用的單位是為①%②ppm3ppt4ppb。
046	一般原子能之污染,都採用何種處理法①中和法②稀釋法③機械處理法④埋藏法。
047	漂白粉因其在分解過程中,會產生何物致起強烈氧化作用而生漂白之效?①初生氯②初生氧③初生氮④初生氮。
048	在鹼液蒸發過程中為避免受鐵分污染而著色,故加熱管應使用①銅管②鋅管③鉛管④鎳
	隔膜法中陽極採用石墨,主要原因是除了對氣之過電壓較低外,尚有①耐強鹼性②更換電
049	極容易且價格便宜③耐濕氣之侵蝕④所得之NaOH溶液純度較高。
050	一般為防止在合成HC1(g)時發生爆炸,下列何者不是正確之操作法?①混以不活性氣體②
051	使氫過剩③使用大容積之燃燒室④加入氧氣。
051	目前製造NaOII的主流方法為①鐘形法②半透膜法③苛性化法④水銀法。
052	以氨鹼法製造碳酸鈉,所需的原料除了食鹽、焦碳及氨氣外,尚有①石灰石②氫氧化鈉③ 氯化鈣①硝酸鈉。
053	在索耳末法中,何種成分是參加反應後又可回收,故可視為一種催化劑?①食鹽②石灰石③氨④焦炭。
054	下列各種複合肥料中,何種肥料之三要素的含量較高?①化成肥料②混成肥料③配合肥料④調和肥料。
055	經過合成所生成之氨氣產品,大部分是如何處理①用吸收劑加以吸收②通入水中以生成氨
	水③立刻和酸反應生成酸性的銨鹽④經冷卻液化而成液氨。
056	下列各項中,何者不是水泥之組成①矽酸三鈣②鉻錳酸四鈣③矽酸二鈣④自由態氧化鎂。
057	何種原料是琺瑯質的基質①助熔劑②黏土③色料④耐火物。
058	下列各項中,何者不是素燒的目的?①增加生坯之強度②使坯成多孔性以便於施釉③除去有機物④阻塞氣孔以防止滲透。
059	在陶瓷的材料中添加助熔劑原料,其主要功用是①防止黏性原料之被破壞②增大非黏性原料之功效③降低瓷化之溫度④提高黏土熔化時的溫度。
060	成形之玻璃置於適當溫度的室內而令其徐徐冷卻,是為防止應變或除去內應力,此項作業稱之為①整修②退火③冷凝④熱處理。
061	一般家庭用的玻璃製烹飪鍋具或餐具,是屬於何種特殊玻璃的製品①96%石英玻璃②耐火
	玻璃瓷③玻璃纖維④鈉鈣玻璃。
062	何種安全玻璃,當破裂時其碎片會四處飛散?①強化玻璃②夾網玻璃③膠合玻璃④膠合夾網玻璃。
063	何種元素含量之多少,對鐵與鋼之性質有顯著之影響,故成為鐵合金之分類基礎?①碳②矽③錳④硫。
	1: 5 5

· · · · · · · · · · · · · · · · · · ·	_
064	黃鐵礦為何不適於直接煉鐵?①鐵之含量太低②雜質太多③直接煉製所得之鐵,會因含碳
<u> </u>	量太高而無法再製成其他合金鋼④含有多量之硫。
065	留、鋁合金及精密之鎂合金構件的防蝕處理,大都採用①鉻酸酸洗處理②陽極氧化處理③
	金屬噴鍍處理④重鉻酸處理。
066	紅色的防銹底漆是以氧化鐵顏料為主成分,另再加用少量的①氧化銅②硫酸鉛③鉻酸鋅④
	碳酸鈣。
067	鋼製構件鍍錦之功用是在於①增強耐蝕力②增加塗料之附著力③增大抗摩擦性能④增加美
068	化學性安定、耐蝕、不變色且量少致價昂者稱為①重金屬②貴金屬③卑金屬④輕金屬。
069	下列各化合物中,何者無法以乙烯為原料且由單一反應步驟來完成①乙醇②醋酸乙酯③二
000	
070	無鉛汽油是在汽油中加入何物來當做代鉛劑以增加辛烷值①甲基第三丁基醚②甲醇③甲乙
010	酮④二乙基醚。
071	何種工程是將高分子量之重質油,變成低分子量之輕質油的作業?①裂解工程②重組工程
	③聚合工程④烷基化工程。
072	在石油之分餾過程中,下列何物之餾出溫度最低?①輕油②煤油③汽油④重油。
073	下列各汽油中,何者之辛烷值最高且抗震爆性最好?①96汽油②95汽油③98汽油④92汽
074	重組汽油工廠除了可供應芳香烴之外,下列敘述何者錯誤?①提高辛烷值②生產氫氣③減
011	低含硫量④不必使用觸媒。
075	將丙烯、氨及氧混合後,於450℃之下通過以銷為主成分之觸媒時,可生成①異丙醇②丙
010	三醇③丙烯醇④丙烯。
076	下列何種物質俗稱為安息香酸,可做為防腐劑,並且又是酚、對苯二甲酸合成時的原料?
	①丙二酚②苯甲酸③環己酮④對二甲苯。
077	賦予塗膜色彩並使塗膜因而具有遮蔽的能力的成分為卫河塑劑②顏料③乾燥劑④硬化劑。
078	耐綸(Nylon)是屬於何種纖維?①聚醯胺②聚多元酯③聚氟乙烯④聚乙烯醇。
079	何種合成纖維具質輕、保暖特性並有類似羊毛之觸感且生產是以短纖為主①達克龍
0.0	(Dacron)②奧龍(Orlon)③將多龍(Tetoron)①鐵氣龍(Teflon)。
080	何種之合成纖維紡絲法具有紡絲速度快,致大多數纖維之紡絲都採用此法①乳化紡絲法②
	熔融紡絲法③濕式紡絲法④乾式紡絲法。
0.01	何種之橡膠對化學藥品及老化均有相當抵抗性,但彈性較差,致常用做電線或電纜之包覆
081	材料①苯乙烯一丁二烯橡膠(SBR)②異戊二烯一異丁烯橡膠(IIR)③聚氯丁二烯橡膠(CR)④
	丙烯腈丁二烯橡膠(NBR)。
000	何種之合成橡膠其分子構造和性質略與天然橡膠相同,故為唯一類天然橡膠之合成橡膠?
082	①苯乙烯—丁二烯橡膠(SBR)②異戊二烯—異丁烯橡膠(IIR)③丙烯腈—丁二烯橡膠(NBR)
	④異戊二烯—丁二烯橡膠(IR)。
083	尿素對人體無毒性,可適用稻田、甘蔗等農作物的施肥,深受農民歡迎。尿素是一種①氮
	肥②鉀肥③磷肥④鈣肥。
084	何種的補助材料,其作用是在縮短橡膠硫化時間,降低加硫溫度及提高加硫製品之品質?
	①發泡劑②老化防止劑③加硫促進劑④軟化劑。
085	有關玻璃之敘述,下列何者不正確?①是一種固態溶液②是一種過冷液體③主要成分為 \$\circ{\c
	Si02④是一種典型的結晶。
	關於高分子物質特性的敘述,下列何者錯誤①高分子物質因其分子巨大,致分子間有強大
086	吸引作用,故無氣態存在而僅有固態與液態兩種②高分子物質大多由各種不同分子量的分
	子集合而成,故其分子量常以平均分子量表示③分子內之親水基含量較多時,則該高分子
	物質將具耐水性但耐油性差④線狀構造的高分子物質在膨潤後,有機會逐漸完全溶解而變
	成膠狀液。
005	聚乙烯之合成法依聚合壓力之不同而有多種方法,何種製法中所得之PE塑膠,密度最高且
087	硬度之相對值最大?①齊格勒法(ZieglerProcess)②標準石油法(Standard0ilProcess)③
	飛利浦法(PhillipsProcess)④ICI法ImperialChemicalIndustriesProcess)。
000	有關於PVC塑膠的敘述何者錯誤?①氯乙烯單體的聚合方式是以懸浮聚合為主②單體通常
880	是由乙炔和氯化氫氣體反應而得③平均聚合度約為7,000~10,000④製品有硬質與軟質之
	分,有添加可塑劑者則屬軟質。

089	下列何種樹脂適於成泡沫,故可加入發泡劑而製成發泡製品,且該發泡的製品俗稱為保利龍(Polylon)?①聚乙烯②聚氯乙烯③聚丙烯④聚苯乙烯。
	下列各種樹脂用的添加劑中,何者的功用是在於確保樹脂於加工或使用期間,不因光或熱
090	的作用而發生劣化現象①可塑劑②安定劑③著色劑④發泡劑。
	何種的界面活性劑為耐鹽、耐酸及耐鹼之活性劑,故可在中性、鹼性、酸性及鹽溶液中使
091	用①陰離子②陽離子③非離子④兩性離子。
	有關於一般家庭用合成清潔劑的敘述,下列何項錯誤?①內約含25~40%的十二烷基苯磺
092	酸鈉②磷酸鹽類為增強劑,可除去無機性污物③矽酸鈉可防止清潔劑及水對洗衣機、金屬
0.52	及陶瓷器皿的侵蝕④軟性清潔劑不容易分解。
093	皂化反應之副產品的學名是①丙三醇②乙二醇③丁二酸④己二胺。
094	HLB值在多少範圍的界面活性劑為適當的合成洗劑①9~12②13~15③10~13④20~24。
004	在油脂的精製時,何種的處理方法是今日最廣用之物理精製法?①靜置法②過濾法③離心
095	
	分離法①鹼精製法。
096	中和1公克油脂中所含之游離脂肪酸時,所需的KOH毫克數稱為①酸價②碘價③力價④皂化
	價。
097	下列各項之敘述何者錯誤?①酸價大的油脂,其新鮮度較差②皂化價大者,是為低級脂肪
	酸之甘油酯所構成的油脂③碘價愈高油脂愈不飽和④製造肥皂的原料為胺基酸。
098	將油脂熱至300℃以上時,油脂則起分解而生成甘油的分解物為①乙醛②丙烯醛③異丙酮
	④乙酸異丁酯。
099	油脂與空氣接觸而著火時的溫度稱為閃火點(Flashpoint),通常油脂之閃火點都約在多
000	少℃以上?①100②200③300④400。
	關於油脂黏度的敘述,下列何項錯誤①油脂之黏度通常很小②黏度與油脂長鏈的構造有關
100	,不飽和度相同時分子量愈大,則黏度愈高③一般不飽和度增大時,則黏度減小④油脂若
	加氫時,則黏度會增加。
101	在白色顏料中,何者因遮蓋力強且成本低,故用量最多?①二氧化鈦②鋅鋇白③鹼式硫酸
101	鉛白④氧化鋅。
102	何種染料因製造容易入價格低廉、顏色種類繁多,故生產量幾乎佔全部合成染料的半數且
102	被應用的範圍也最廣了蔥醌染料②偶氮染料③可溶性甕染料④類靛藍染料。
103	影響染料之堅牢性的最主要因素是①染料之物理結構②染料的化學構造③染料外之共存物
100	質種類和數量④照射光的強度、溫度、濕度。
104	下列各芳香族化合物中,何者不是染料製造時的主要原料①萘②苯③菲④蒽。
105	波爾多混液(Bordeausmixture)的配法是先將生石灰以溫水消發後,再加入何種物質的水
105	溶液並攪拌即得?①昇汞②硫酸銅③氣化乙基汞④亞砷酸鈉。
106	下列各種的殺蟲劑中,何者為天然殺蟲劑①巴拉松②DDT③除蟲菊精④氫氰酸。
	有關於DDT的敘述,下列何項錯誤①是DichloroDiphenylTrichloroethane的簡稱②是由氯
107	苯與三氯乙醛反應而製得③有數種異構物但僅P,P'-DDT具殺蟲效果④是一種延毒力極弱的
	殺蟲劑。
	下列有關蒸餾酒的敘述,何者錯誤①是將釀造酒再加蒸餾所得②酒精之含量較其他酒類為
108	高且在40%以上③通常可貯存較長的時間④市售啤酒屬於蒸餾酒。
	下列各種酵素中,何者不屬於水解酵素(Hydrolase)?①酒精酵素(Zymase)②糖化酵素
109	(Diastase)③蛋白質分解酵素(Protease)④脂肪分解酵素(Lipase)。
	使酒精氧化成為乙醛,更氧化為乙酸的酵素是為①氧化酵素(Oxidase)②凝固酵素
110	
	(Coagulase)③轉化酵素(Invertase)④酒精酵素(Zymase)。
111	在製造紙漿程序的漂白工程中,通常是使用下列何物將紙漿漂白?①臭氧②硫酸鈉③次氯
	酸鈣④亞硫酸。
112	有關於機械紙漿的敘述,何項錯誤?①纖維較短②成品紙張曝露於日光或空氣中時,易變
	成棕黃色③適於製造價格低廉之新聞紙④製成之紙張具堅韌性。
113	木材紙漿在製造時,何種的化學紙漿法在蒸解時會產生劇毒的HCN氣體,故很少採用此法
	來製造紙漿?①氯化法②硝酸法③蘇打法④硫酸鹽法。
114	在紙漿的調漿作業中,何種的操作是為填充纖維間之孔隙,使紙面平滑並減少紙之透明度
_	而適於印刷?①水分含量調整②加染料③加填充料④施膠。

115	常用做乳化劑或洗髮精的「壬基酚聚乙二醇醚」(PolyethyleneGlycolAlkylPhenolEther)
110	,是屬於何種類型的界面活性劑?①非離子性②陰離子性③陽離子性④兩性離子。
116	十二烷胺基乙基甘胺酸鈉可做為纖維的柔軟劑及靜電防止劑,它是屬於何種性質的界面活
110	性劑?①非離子性②陰離子性③陽離子性④兩性離子。
	塑膠光纖之透光率較低,不適合長距離的光傳遞,但它具有價格低且操作容易的優點,下
117	列何者是該種光纖的材料①壓克力和聚苯乙烯②聚丙烯和聚氯乙烯③高密度聚乙烯和聚四
	氟乙烯④環氧樹脂和三聚氰胺甲醛樹脂。
118	葡萄酒是為①單醱酵酒②複醱酵酒③蒸餾酒④混合酒。
119	化工廠內單元操作不包括下列那一項目?①乾燥②萃取③蒸餾④聚合。
120	在工廠設備上儀表gc值為若干1bm·ft/1bf·sec?①32.174②9.8③1④980。
121	在工廠設備上溫度儀表攝氏25度(℃)相當於華氏多少度(°F)①33②55③77④99°F。
122	下列何項為非化工廠操作?①蒸餾②萃取③蒸發④加工裁切。
123	下列何者為化工廠操作基本之物理量①壓力②功③速度④時間。
124	下列何者非化工單元操作?①蒸餾②氣體吸收③萃取④硝化。
125	下列何者非化工廠之單元操作?①蒸發②蒸餾③過濾④中和。
126	在工廠設備上儀表壓力之SI單位為:①Pa②psi③atm④mmHg。
197	化工廠常將製造程式中所涉及物理操作分類成單元、稱為①單元程式②單元操作③物理單
127	元④化學單元。
128	製鹽工業與製糖工業的共同操作是①蒸發②蒸餾③萃取④吸收。
129	煉油工業與酒精工業之共同操作是①萃取②吸收③蒸發④蒸餾。
100	水中所含有機物被好氧性微生物氧化分解時,所消耗的氧量稱為①溶氧量②生化需氧量③
130	化學需氧量①總有機碳。
131	水中含何者物質稱為永久硬水①氧化鐵物②硫酸鎂鹽③氯化鋁物④碳酸氫鹽。
132	何種金屬的離子有毒且危害人體(Ba(2)Na(3)Ca(4)Hg/5)
1.00	使用沉澱法進行水淨化時,常使用何者吸附水中懸浮微粒而使其沈澱下來①鈉鹽②鋁鹽③
133	鈣鹽④鉀鹽。
134	以相對而言,常溫下何者易溶於CCI①食鹽②沙拉油③米酒④葡萄糖。
135	何者是天然氣主要成分①甲烷②丙烷③乙烯④乙炔。
136	用何種芳香族化合物最易進行硝化反應①苯②酚③苯甲酸④硝基苯。
137	石油分餾使不同成分分離,是利用各成分之何種性質差異①沸點②溶點③溶解度④濃度。
138	變性酒精不能飲用,因加入何物?①甲酸②甲酸甲酯③甲醇④甲醛。
139	動物排泄物利用醱酵得到沼氣,其主要成分為①甲烷②甲酸③甲醇④甲醚。
1.40	利用動物排泄物醱酵得到溶氣來發電,屬何種能源應用①核能②生質能③太陽能④石化能
140	源。
141	鐘乳石主要成分為①CaCO②MgCO③CaSO④MgSO。
142	水玻璃製成極小的顆粒,主要成分為①硫酸鈉②矽酸鈉③碳化矽④硼酸。
143	鉛蓄電池常用於汽車中,以何種溶液當電解液①硝酸②鹽酸③硫酸④磷酸。
144	質量為100kg的水以10m/s之速度流動時,其動能為①5000J②10000J③2500J④1000J。
1.45	某鋼瓶之壓力讀數為50psig,若當時氣壓計的讀數為14.71b/in2,則鋼瓶f之壓力為多少
145	psia? ①35. 3②64. 7③81. 4④94. 7。
1.40	有一含水量為70wt%(重量)的濕紙漿1kg,經乾燥處理後除去原有水分的60%,試求該濕紙
146	聚失去之水重多少? ②0.21kg②0.28kg③0.42kg④0.18kg。
	某生產程序中每小時需使用60wt%的硫酸1000kg,若60wt%的硫酸是用80wt%的濃硫酸及
147	30wt%的稀硫酸混合而形成,應如何配製才能得到所需要的硫酸?①濃硫酸300kg/hr②稀
	硫酸800kg/hr③濃硫酸600kg/hr④稀硫酸300kg/hr。
	今有一連續操作式精餾塔,在大氣壓下此塔每小時需分離3000kg之苯與甲苯的混合物,若
148	進料中苯之質量分率為0.4, 塔頂產物中苯之質量分率為0.80, 塔底產物中甲苯之質量分
	率為0.80,則塔底產物每小時為多少kg?①500②1000③1500④2000。
1.40	有一纖維含水量為80wt%,當除去100kg的水分後含水量降為60wt%,則原含水纖維的重量
149	為多少kg?①200kg②300kg③400kg④500kg。
150	欲將1000kg的NaOH溶液,由5%的重量濃度濃縮至40%,則須除去多少水分?①875kg②
150	600kg(3)375kg(4)250kg ·
	J =

ı	
	下列敘述,何者錯誤?①產率(yield)是以輸入的反應物為基準②轉化率(
151	selectivity)的定義為生成物的產出量與反應物輸入量的比③反應中完全被用盡的反應
	物稱為限量劑量④選擇性是以實際作用掉的反應物為準。
152	燃燒100g的甲烷(M=16g/mo1),在STP之下需要多少空氣?①1.4m3②1.0m3③2.2m3④
153	燃燒220g的丙烷(M=44g/mol)時,若使用50%過量的空氣,則在STP下需要多少公升的空氣
100	(假設1mo1空氣由0.8mo1之N2和0.2mo1之O2所組成)?①6200②5400③4200④1250。
	一家庭在冬季時用去1.4m3天然氣,假如天然氣中含甲烷(M=16g/mo1)80%與20%非燃性氣體
154	(體積百分率),則燃燒時需多少m3的空氣(設空氣中含氧的體積百分率為20%)?①
	11m3225m3350m3467m3 ·
155	取10kg的甲烷(M=16g/mol)與300kg的空氣(設02之重量百分率為20)燃燒,產生13.2kg的
155	CO2與5.6kg的CO,則空氣的過量百分率為①80%②70%③60%④50%。
	在壓力0.6MPa下,體積0.4m3之容器中,含液態水及其平衡水蒸氣共2kg(若在此狀況下,
156	飽和液體與飽和蒸氣比容分別為0.001101m3/kg及0.3157m3/kg),則液態水的質量為多少
100	kg? ①0.3678②0.6332③0.7356④1.2664。
	在1atm、26.7℃之空氣中,水蒸氣的分壓為0.0272atm,水之飽和蒸氣壓為0.0345atm,則
157	該空氣之濕度約為多少(kg水蒸氣/kg乾空氣) 2 D0.017020.017430.017840.0182。
158	下列有關於焓—濃度圖(enthalpy-concentrationdiagram)的敘述何者不正確?①通常以二成分溶液之單位質量焓值或單位莫耳焓值為縱座標②一般都以某一成分之濃度(莫耳分
136	
	率或質量分率)為橫座標③可以知道不同濃度下的焓值④元素的焓值可以由圖得到。
150	在濕度表(humiditychart)內的濕比容直線之右下方另有一直線,它是代表①乾燥空氣之
159	比容與溫度的關係②入口空氣溫度與濕度的關係③濕比熱和濕度的關係④飽和比容和溫度
	的關係。
	若知未飽和空氣之乾球溫度(dry-bulbtemperature)及百分濕度(relativehumidity),當
160	由已知條件的交點處水平向左交於飽和濕度線,可於下方的橫軸讀出①乾球溫度②濕球溫
	度③露點④絕熱飽和溫度。
161	下列何種方法不適用於估算真實氣體?①凡得瓦爾方程式②理想氣體方程式③立方狀態方
101	程式④壓縮係數法。
162	水蒸氣表(steamtable)的參考狀態是以下列水之何種狀態為基準①沸點②冰點③臨界點④
102	三相點。
163	下列何者不是壓力的單位?①kg/cm3②Pa3psi④mmHg。/
164	所謂穩態操作,是製程中所有變數皆不會隨著何者而改變?①質量②時間③體積④濃度。
165	以焓-濃度圖決定一混合物的比焓值時,由已知濃度對應於下列何項即可求得①壓力②溫
105	度③體積④莫耳數。
166	氣化熱雖為溫度的函數,但一經確定壓为則可確定其沸點,如此氣化熱便可成為①體積的
100	函數②濃度的函數③物量的函數④固定值。
1.07	焓-濃度圖中,飽和蒸氣線以上的區域,稱之為①次冷液體區②過熱蒸氣區③過冷區④臨
167	界區。
100	高熱值(HHV)與低熱值(LHV)之差別為下列那一項?①空氣的燃燒熱②水的蒸發熱③物質的
168	溶解熱④燃燒物之量。
	40%的硫酸溶液以1.0kg/sec的速率流入一蒸發器內濃縮,部分水被加熱成水蒸氣移走,
169	水蒸氣速率為0.4kg/sec, 問離開蒸發器的硫酸濃度為多少%?①30%②45%③66.6%④
100	80% ·
	· · · · · · · · · · · · · · · · · · ·
170	一蒸餾塔用來分離含苯50%的苯與甲苯混合液100kg,若塔頂蒸餾出來的溶液含苯90%,
171	塔底蒸餾出來的溶液含甲苯90%,則塔底溶液的質量為多少kg?①25②60③50④40。
171	下列何者不是SI制的基本單位?①公斤②公尺③牛頓④秒。
170	一個糖水的200kg溶解槽,上方有兩支管子分別流入2.0kg/min的糖及20kg/min的水,流動
172	一段時間後,200kg糖水槽維持穩定水位,則糖水槽下方流出糖水濃度為多少%?①10%
	②9. 1%③6%④3%。
	化工廠操作之蒸餾塔用來提高酒的濃度,未蒸餾前酒中含酒精10%,流率2kg/s,蒸餾後
173	塔頂為40%酒精,流率0.4kg/s,問塔底的酒精溶液離開時濃度為多少%①2.5%②5%③
	$6.5\% 48\%$ $^{\circ}$

174	# \b \mu \dagger \dagger 0 \
174	某液體黏度6g/cm·sec,換算成多少kg/m·sec?①0.06②0.6③60④600。
175	若質量均衡可以右式表示:質量輸入—質量輸出—質量累積,則在恆穩狀態下何者為零? ①質量輸出②質量輸入③質量累積④質量輸入與質量輸出。
176	質量不滅定律不適用於①酸鹼中和的反應②氧化還原反應③一般的有機化學反應④核反應。
177	100公斤水果中原含水分9.2%,經壓榨後殘餘物中含水分4.2%,問榨出之水量為多少公斤 ①9.4②5.2③4.0④2.0。
178	下列製程中 $A+B\rightarrow C$,已知反應物 A 之轉化率為 40% ,若欲得 $60mo1/hr$ 之產物 C ,請問需輸入若干 $mo1/hr$ 之反應物 A ?① $100mo1/hr$ ② $150mo1/hr$ ③ $24mo1/hr$ ④ $36mo1/hr$ 。
179	不可壓縮之牛頓流體在圓管中層流時之平均速度,是等於最大速度之①1/8②1/4③1/2④ 2/3。
180	不可壓縮的流體在圓管內流動時,流速之最大處是位在①管壁處②離管中央之1/2處③離管中央之1/3處④管中央處。
181	一般自來水公司之水錶所測定之流量為①平均速度②最大速度③體積流率④質量流率。
182	流體在圓管中呈層流流動,則雷諾數(Reynoldsnumber, Re)的範圍為①Re<2100②2100< Re<4000③4000 <re<10000④re>10000。</re<10000④re>
183	下列流量計中,何者可以測定管道中斷面各點之速度①浮子流量計②文氏流量計③孔口板流量計④皮托管。
184	一般化工廠中使用最廣之圓管是為①不銹鋼管②鋼管③鑄鐵管④銅管。
185	流體在流經下列何種閥時,因流動方向改變較大,致流體的摩擦損耗通常很大?①單向閥②旋塞③球閥④閘閥。
186	最適合用於食品工業的管子是一鉛管②銅管③不銹鋼管④鋁管。
187	在流體輸送中,為防止流體回流需要安裝①安全閥②單向閥③閘閥④球閥。
188	用於封閉管端之管件為①管套節②肘管③管帽④T形管。
189	依據柏努利方程式(Bernoul Liequation)的流體系統,下列敘述何者錯誤①流體不可壓縮性②流體無黏性③流體過程無摩擦損失④流體對外界作功。
190	在一定温度下,定量之理想氣體的體積和①壓力成正比②壓力成反比③比重成正比④比重成反比。
191	依據道耳吞分壓定律(Dalton's law of partial pressure),混合氣體的總壓等於各氣體分壓之①和②差③積④商。
192	下列對於理想氣體之敘述何者錯誤?①將分子之體積視為零,分子間無作用力之氣體②符合PV=nRT方程式之氣體③高溫低壓下,真實氣體近乎理想氣體④符合勞特定律 (Raoult'slaw)之氣體。
193	在STP下11.2升的氧氣,其莫耳數為DO.120.230.541。
194	下列何者是屬於氧的化學性質?①無臭無味②在0°C,1大氣壓下密度為1.43公克/升③難 溶於水④有助燃性。
195	空氣中之最常用以沖淡氧以防止氧化過於劇烈的氣體為①氫氣②氦氣③氮氣④二氧化碳。
196	液態空氣緩緩氣化時/何者先逸出①02②N2③He④C02。
197	關於惰性氣體的敘述何者錯誤?①飛船及氣球以氦充填是為了安全②用氫氣稀釋氧氣可防止潛水夫病③氡具放射性④紅色霓虹燈充填的氣體是氖。
198	在常温常壓之下列氣體中,何者被認為最接近理想氣體①氦②氨③二氧化硫④水蒸氣。
199	某理想氣體在1atm時,其體積為4升,當溫度保持不變時,壓力增至4atm時該氣體體積為①20升②10升③1升④0.5升。
200	理想氣體的體積為零的溫度是 $\bigcirc 0^{\circ}$ 2 $\bigcirc 0^{\circ}$ 2 $\bigcirc 0^{\circ}$ 2 $\bigcirc 0^{\circ}$ 2 $\bigcirc 0^{\circ}$ 3 $\bigcirc 0^{\circ}$ 2 $\bigcirc 0^{\circ}$ 3 $\bigcirc 0^{\circ}$ 4 $\bigcirc 0^{\circ}$ 2 $\bigcirc 0^{\circ}$ 3 $\bigcirc 0^{\circ}$ 4 $\bigcirc 0^{\circ}$ 3 $\bigcirc 0^{\circ}$ 4 $\bigcirc 0^{\circ}$ 5 $\bigcirc 0^{\circ}$ 6 $\bigcirc 0^{\circ}$ 6 $\bigcirc 0^{\circ}$ 7 $\bigcirc 0^{\circ}$ 7 $\bigcirc 0^{\circ}$ 8 $\bigcirc 0^{\circ}$ 9
201	理想氣體方程式PV=nRT應用於真實氣體時,何種條件最適宜①高溫高壓②低壓低溫③低壓高溫④高壓低溫。
202	理想氣體定律與下列那一定律無關?①格銳姆擴散定律(Graham'slawofdiffusion)②亞佛加厥定律(Avogadro'slaw)③波以耳定律(Boyle'slaw)④查理定律(Charle'slaw)。
203	下列有關於氫氣的敘述中,何者錯誤?①是一種無色、無臭、無味的氣體②是氣體中分子量最小的③有助燃性④有自燃性。

204	空氣中含量最多的三種氣體,由大而小依次為?①氧>氮>甲烷②氮>氧>氫③氮>氫>
205	氧④氧>氮>氫。下列何種氧化物,其水溶液呈鹼性?①CO2②CuO③Fe3O4④MgO。
	欲去除工廠廢氣中的二氧化硫,可使廢氣通過何種物質的水溶液?①碳酸鈣②氯化鈉③硫
206	酸鈣①硫酸鈉。
207	在27℃、1atm時,2莫耳的CO2,所佔的體積為?①24.6升②2.46升③49.2升④4.096升。
208	在同温同壓時,下列何種氣體的行為較為接近理想氣體①NH3②H2③C12④C02。
209	有一10wt%的食鹽溶液10克,其內含水①10克②9克③1克④0.1克。
210	當1升的水中含有0.01克的CaCO3,則CaCO3的含量為①5ppm②10ppm③15ppm④20ppm。
011	在使河水流經內置細網、細砂、木炭和小石的水槽,以行淨化處理時其中可將水中色素、
211	氣味吸附的是?①細網②細砂③木炭④小石頭。
212	下列何種方法不能使暫時硬水軟化?①加熱②加入碳酸鈣③加入氫氧化鈉④加入氫氧化
212	鉀。
213	近年來臺灣桃園地區所發生的「痛痛病」是何種重金屬所引起的①鉛②鎘③汞④銀。
214	下列何者不是重水的用途?①可做為原子爐中的中子減速劑②是製造重氫的原料③可抑制
214	種子的發芽④可促進葡萄糖的發酵速率。
215	海水中陰離子的主要來源是?①空氣的溶解②火山活動③岩石風化④生物代謝。
216	下列何種物質在水中的溶解度會隨溫度之升高而增加?①KN03②Na2S04③Ce2(S04)3④
210	C02 ·
217	想要從工業廢水中回收純水,可利用①滲透原理②逆滲透原理③擴散原理④勞特定律。
218	下列反應何者不適用能量不滅定律①冰融化②核分裂③蠟燭燃燒④水的電解。
219	週期表中目前已知元素共有幾個週期 2 18 27 36 45。
220	週期表每族元素由上而下不改變的是①原子序②原子量③價電子數④熔點。
221	週期表中最活潑之非放射性金屬元素是①K②Na③Ca④Cs。
222	週期表中活性最大的非金屬氣體是①02②H2③He④P2。
223	目前人們已經發現的氣體元素有?①二種②一百零八種③十六種④十一種。
224	决定元素化學性質的主要因素是①原子序②原子量③原子大小④原子存在狀態。
225	週期表中鹼金族有多少種元素?①7②8③6④4。
226	道耳吞(Dalton)的原子說可用來解釋下列何種定律?①質能不滅定律②質量不滅定律③氣
	體反應體積定律④電解定律。(〇一) (1/2002×10-18 年) (1/2002×10-18 年) (1/2002×10-18 年) (1/2002×10-18 年) (1/2002×10-18 日) (1/2
227	t .
228	電子、質子和中子三種粒子的質量大小順序為①電子>質子>中子②電子>中子>質子③
220	中子>質子>電子④質子>電子>虫子。
229	下列何種儀器可精確地測定原子量?①紅外線光譜儀②核磁共振光譜儀③質譜儀④原子吸
	收光譜儀。
230	M層(n=3)電子軌域最多可容納電子數為①2個②16個③18個④32個。
231	s軌域、p軌域和d軌域中最多可容納電子數依序為?①1、2、3②1、3、5③2、4、6④2、
	6 · 10 ·
232	下列何者為碳的電子組態①1s21p4②1s22s22p2③1s22s4④1s12s12p33s1。
233	下列何者是弱電解質?①NHOH②HC1③NHC1④NaC1。
234	下列何者溶液的導電度最大?①蒸餾水②糖水③碘化鉀水溶液④糖的乙醇溶液。
235	檢驗氯化氫使用下列何者最好?①②NH③Na+④Cl-。
236	呈黃色之不純鹽酸,是因含有何種雜質之故?①FeO②FeC1③NO④2332Br。 濃度為0.001M的NaOH溶液其pH值為①12②11③3④1。
238	下列何者為單質子酸?①次磷酸②硫酸③氫硫酸④草酸。
200	作文列的有為平負丁酸: ① 大磷酸 ② 硫酸 ① 氧硫酸 ① 平 酸 。 「
239	所應有警示標誌③裝有可燃性氣體、有毒氣體及氧氣之鋼瓶可混合儲存,但應整齊排列④
200	可愿有言小保证创表有了照性制度·有毋制度及判制之判析了此首储行,但愿证有排列包容器應保持在40℃以下。
	同溫下pH=2的溶液中其〔H+〕為pH=5的溶液中〔H+〕的多少倍?①2.5②3③0.001④
240	1000。

241	強酸與弱鹼滴定,到達當量點時,溶液呈現①酸性②鹼性③中性④可能是酸性,亦可能是 鹼性。
242	弱酸與強鹼滴定時,應使用下列哪一種物質當指示劑?①甲基紅②石蕊③酚④甲基橙。
	僱主對於毒性高壓氣體之儲存,下列敘述何者有誤?①不得在腐蝕化學藥品或煙囪附近儲
243	藏②儲存場所應密閉③應預防異物之混入④儲存場所應置備吸收劑、中和劑及防毒面具。
	有關酸性溶液的敘述,下列何者正確?①pH>7②[H+]>[OH-]③H+離子數多於陰離子
244	數④ [H+] <1x107。
	強酸與強鹼發生中和反應時,每生成一莫耳水約①需要57kJ熱量②放出57kJ熱量③需要
245	570kJ熱量④放出570kJ熱量。
2.12	20mL的HC1溶液以0.20N的NaOH溶液滴定時,耗去NaOH溶液50mL,則[HC1]=?①0.50N②
246	0. 25N(3)0. 08N(4)0. 8N °
247	下列何種鹽類之水溶液呈鹼性①NaC1②NH4C1③CH3C00Na④Na2S04。
248	下列何者不屬於碳族元素?①Si②Ge③Pb④As。
0.40	下列成分之辛烷值高低,何者有誤①碳鏈長者>碳鏈短者②芳香類>正烷類③正烷類>環
249	烷類④異構物烷>正烷類。
250	玻璃容器不可用來盛裝?①硫酸②鹽酸③過氯酸④氫氟酸。
251	在矽晶中加入下列何種元素,可得到N型半導體?①鋁②磷③鍺①硼。
050	硼酸之簡易檢驗法,是將其酒精溶液點火燃燒時,可產生何種顏色之火焰?①橙色②紫色
252	③綠色④藍色。
050	下列有關碳的同素異形體中,常被用來製造潤滑劑的是①鑽石②石墨③無定形碳④碳一六
253	+ •
	輸送管之接合以何種方式較不會發生滲漏?①法蘭接合②鍛熔接合③螺旋接合④插套接
254	合。
255	下列何者含碳量最多?①鑄鐵②鋼③熟鐵④馬口鐵。
256	第三列元素中蒸發熱最大的是①鈉②鎂③矽④氫。
257	導電、導熱性居所有金屬元素之冠的是? DCu2Ag3Al4Fe。
258	砂金的製取通常使用?11氰化法②混汞法③淘洗法④還原法。
	可以輸送稍有侵蝕性之流體,裝置時多埋於地下之管路,為下列何種輸送管?①鑄鐵管②
259	熟鐵管③合金管④鉛管。
260	用來製造原子彈之鈾的同位素是?①233U②236U③238U。
261	不能達成製品的使用目的的缺點稱為①致命缺點②重缺點③中缺點④輕缺點。
262	下列何種物質之熔點最高?①金鋼石②矽③石墨④鎢。
000	管製圖之功用,下列敘述何者有誤?①判斷製程所可能達到之水準②察覺製程有無產生機
263	遇性原因③製程管制以達生產目標④生產產量統計。
264	鋁材實施陽極表面處理的主要目的是為①增強材料的硬度及強度②增加材料的延展性③增
204	進材料的耐腐蝕性能④降低材料的組織度以促進表面之光滑平整。
265	下列各金屬中何者因與酸及鹼都會發生反應產生氫氣而被腐蝕?①金②鈦③鐵④鋁。
266	下列何種氧化物可容與強酸及強鹼,但本身難溶於水?①Na202②A1203③Si02④MgO。
267	將碳鋼加熱至適當溫度後,再慢慢冷卻的熱處理操作稱為①回火(Tempering)②淬火(
201	Quenching) ③退火 (Annealing) ④硬化 (Hardening)。
	下列有關合金(Alloy)之性質的敘述中,何者錯誤?①將兩種或兩種以上的金屬適當的
268	調配及混合,即可製得合金②合金之硬度、耐蝕能力通常較純金屬為高③合金之表面一般
	較不易氧化並常保光澤④合金之熔點、延展性及導熱、導電性均較純金屬為高。
269	下列各種碳鋼(CarbonSteel)中,何者之含碳量最高且介於0.8%至1.7%之間?①軟鋼
	②半軟鋼③硬鋼④極硬鋼。
270	碳鋼中的何種雜質會使鋼鐵在加熱鍛造時容易破裂(溫脆性)?①矽②硫③磷④硼。
271	不銹鋼(StainlessSteels)中最重要的成分元素是①鉬②矽③鉻④鎳。
272	不銹鋼(StainlessSteels)中的鉻含量須在多少%以上,才具有耐腐蝕的能力?①4%②
	6%38%412% ·
273	不銹鋼(StainlessSteels)對下列何種酸的抵抗力最弱?①硫酸②鹽酸③硝酸④鉻酸。

274	在化工上用量最多的不銹鋼(StainlessSteels)是18-8系不銹鋼,其組成是①18%Cr、8%Ni②18%Ni、8%Cr③18%Mn、8%Mo④18%Ni、8%Mo。
275	工業上常用的何種黃銅(Brass),因含有30%的鋅(Zine),致韌性良好,可在常溫下以沖壓、彎曲等方式加工①八二黃銅②七三黃銅③六四黃銅④五五黃銅。
276	化工設備上使用的砲銅(GunMetal),是常在青銅(Bronze)成分中加入約2%的何種金屬以增加其鑄造性?①Cr②Mn③Zn④Mo。
277	下列何種的青銅,因其機械強度及耐蝕能力最佳並耐高溫且可直接以火加熱,故適合作煉油設備與熱交換器①磷青銅②鋁青銅③砲銅④鎳青銅。
278	含錄40~50%之何種鎳-銅合金,可作熱電偶溫度計的材料?①青銅(Bronze)②康銅(Constantan)③砲銅(GunMetal)④蒙納合金(MonelMetal)。
279	含錄67~70%及鐵1~3%之何種鎳-銅合金,對鹼液、海水、有機酸等具有很強的抵抗力, 是有名的耐蝕材料,致在化工及食品工業上應用很多①康銅(Constantan)②恆範鋼(InvarSteel)③蒙納合金(MonelMetal)④赫斯特合金(Hastelloy)。
280	下列何種塑膠的發泡物之隔熱性質佳,致可作為隔熱材料①聚乙烯(PE)②聚氯乙烯(PVC)③聚丙烯(PP)④聚苯乙烯(PS)。
281	下列何種塑膠的性質極為優異,不但可耐一切化學藥品的侵蝕,而且可在-200~250℃的溫度範圍內安全使用。目前工業用途主要作輸送管的墊圈(Gasket)、止洩帶(Tapesealer)、塔槽的防蝕裡襯;而家用品方面則可作為飯鍋、炒菜鍋及熨斗的表面塗層①聚四氟乙烯(PTFE)②聚乙烯對苯二甲酸酯(PET)③聚甲基丙烯酸甲酯(PMMA)④聚乙酸乙烯酯(PVAc)。
282	下列各種纖維強化塑膠之材料中,何者常被用於製造網球拍、滑雪板及釣魚筆?①玻璃纖維強化塑膠②碳纖維強化塑膠③硼纖維強化塑膠④玻璃纖維強化熱塑性塑膠。
283	材料的應力 (Stress) 與應變 (Strain) 呈線性關係的極限稱為①抗拉強度②彈性限度③ 耐衝擊強度④疲勞強度。
284	對材料施予一定的負荷(Load),以測定其長度隨時間而慢慢改變的試驗,是稱為①潛變試驗(CreepTest)②疲乏試驗(FatigueTest)③拉伸試驗(TensionTest)④硬度試驗(HardnessTest)
285	下列何種金屬、當在乾燥空氣中時表面會形成有保護作用的氧化膜,所以在大氣中安定;但在水中時則會和水中的起反應產生而遭受侵蝕[Mg2]Cu3Ba4Zn。
286	下列各種添加劑中,何者無法改善有機材料的劣化(Degradation)現象? ①抗氧化劑②可塑劑③強化劑④安定劑
287	水質污染指標COD或BOD、係代表水中之①有機物②無機鹽③懸浮物 ④重金屬含量。
288	利用離心力的原理,將氣流中的粉塵等微粒加以去除的裝置是為①旋風分離器②袋式集塵器③濕式洗滌器④靜電集塵器。
289	利用何種物質將有機性污染物加以分解的廢水處理法,稱為生物處理法? ①凝集劑(Coagulant)②二鉻酸鉀③石灰④活性污泥。
290	以活性污泥法處理廢水時,須加入何種氣體?①氮氣②氧氣③二氧化碳 ④硫化氫。
291	以嫌氣性微生物處理豬糞、餿水等有機物時,通常會產生何種氣體?①H2 S②C2H4③CH4④NH3。
292	何種的除塵裝置在除去廢氣中的粉塵微粒時,亦可一併將廢氣中的有毒氣體(成分)加以溶解而除去?①靜電集塵器(ElectrostaticPrecipitator) ②旋風分離器(Cyclone)③袋式集塵器(BagFilter)④濕式洗滌器(WetScrubber)。
293	烃類(Hydrocarbon)廢氣或揮發性有機物(VolatileOrganicCompound),一般都採用何種的處理法來將它們除去①燃燒法(IncinerationProcess)②觸媒法(CatalyticProcess)③吸收法(AbsorptionProcess)④吸附法(AdsorptionProcess)。

下列各種處理法中,何者是除去水中乳化之油脂的有效方法?①沉澱法(AirFloatation)①氣提法(Stripping)。		
295		下列各種處理法中,何者是除去水中乳化之油脂的有效方法?①沉澱法
295 蒙特婁城定書是管制①有家廳素物②毒性魚體③程序性名機物①氨氨酸化物。 何種的光機(OpticalFiber)過合當作長距離內岸總之用心可紊亮先級(296 QuartzOpticalFiber)過合當作長距離內岸總之用心可紊亮先級(297 學館入光纖站不適合長距離的光傳速戶。但卻具有價格低廉及操作容易的優點。下列各項中何者是塑膠光纖的材料?①聚乙烯(PE)和聚乙烯(PE)和聚乙烯(PE)和聚乙烯(PE)和聚乙烯(PE)和环烯(Acrylnitrile)、丁乙烯(Butadiene)及苯乙烯(Styrene)之共聚物(298 下列何種的提來人撥油劑、解其宣佈在舒鐵出上時、可改變紡織品的特性,而使衣物不易 受汗或易於清洗,進而提高紡織品的價值?①氨素②碳素③硼素①矽素。 約翰子的适色為黃色。是因為納雅于的何種性質便飲?①納難子可吸收黃色光②新維子可吸收黃色光②阿教社旁色光圖動程于可吸收黃色光②可吸收黃色光②可吸收黃色光。 300 向眼所見的黃色布料具有何項性質?①可吸收黃色光》和反射黃色的褐色光。 301 下列何者易進化含物缝而危色光③可發射黃色光和研發射音的納過光。 302 被整染料(IndigoidDyestuff)因不溶於水)染色時預先以因原劑及應或水溶性以刺纖維 吸收,然後在晾乾時舊至氣的氧化整定與一項經過過不溶性,此程染色法稱為①優染②媒染③ 直接來①反應發。 17列各種的質中,何種不屬於累面活性劑①配皂②砷磷酸③涂洛乳①香或水溶性以刺纖維 吸收,然後在晾乾時舊至氣的氧化能學和一環的混合。1843年後,與長線如高分件下列的阿種門後,①光髮精②食用油汤化散品。通涂。 十二烷基苯磺酸钠(局銅阳)浸膏用的流化物及分分期其性質的或液下及一种溶液。 102屬於防止等中,何種不屬於累面活性劑①配皂②砷磷酸③水洛乳①香液水生皂垢。 304 我國植館操性原面系性懷。②光髮精②食用油汤化散品。通滤 下列各種的質中,何種不屬於累面活化學工業的製品沒其分子內的烷基維苦高有支 維結構者,較易被如滴分解,稱為軟性清漆網)至其是過受冰水生皂垢。 305 我國植館發展於300萬分解,稱為軟性清漆網)至其是過受冰水生皂垢。 306 我國植館發展變更經水配面的高級軟狀、過度可以與海上是過度水生皂垢。 307 粉化分物。解素体所生自做生物或物种溶液,更是更更更多更有的原染,并更是重量的形态及型上水系、更更有的原。 11 产列各種類中,何者是蒸縮通常定及口溶液原性上面溶②上上皮固)上皮侧的原。 12 中分生是水色的原,上上部位果上的海、上上部位果上的海、 31 上海後里的在中水上等與原。一种水性、中原及及度 ②增加保及等的整件、水底的皮脂除足的一种水水、皮膏用皮脂、水层、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、皮脂、	294	(Precipitation)②過濾法(Filtration)③空氣懸浮法(AirFloatation)④氣提法(
296 何種的光纖(Optical Fiber)適合會作長距離的光傳遞之用①石英系光纖(QuartzOptical Fiber)②多成分系光纖③整形光纖④橡胶系光纖。		Stripping) ·
290 QuartzOpticalFiber)②多成分系光域③整膠系光線①棒膠系光域。 塑膠系光纖維不適合長距離的光傳速,但如具有價格低應及操作容易的優點。下列各項中何考先變形光纖的材料。①数之均(PP)和形型公均等工一段點(PTF)①聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)③聚乙烯醇(PVA)和聚四氮乙烯(PTFE)①聚丙烯(PP)和丙烯(CPV)和取四氮乙烯(PTFE)①聚丙烯(ASB树脂)。 下列何種的撥水/撥油劑,將其塗佈在約歲出上時,可改變的歲品的特性,而便衣物不易受污或為於清洗,進而提高紡織品的價值?①氨素②吸素③硼素①矽素。 到9 較新音色光③約離子可吸收黄色的補色光①約離子可吸收黄色的褐色光。 100 的褐色光。加及射音色光。200 對射音光上①可解射音色的褐色光。 101 下列何者易進入食物绘而危害人器健康?①承见到免患。如果是例及原成水溶性以利燥增的成化,然後在球的時數至,可以更有過光光。過過不多水面活性劑①配皂②卵塘酮"3%乳蛋素混成。 102 吸收,然後在球的時報至愈的乳化化染料剂。 103 建模胶④反應條。 104 高碳值的油湿治中,何種不屬於界面活性劑①配皂②卵塘酮"3%乳蛋素混水 105 海绵性的促患性,何種不屬於界面活性劑①配皂②卵塘酮"3%乳蛋素混水 106 海線性過級條。 107 月各種物質中,何種不屬於界面活性劑①配皂②卵塘酮"3%乳蛋素混水 108 海線值的油湿含作下列的种髮用途。可洗髮精含。包用油溶水乳蛋素水 108 海線值的油湿含作下列的种髮用途。可洗髮精含。包用油汤化水品面油涂水 109 中,何種中不屬於界面活性劑①配皂②卵塘酮治水乳蛋素或 100 方形形像維持性溶血活性劑②定是為石油化學工業的製品或其分子內的成基維若尚有支鍵結構者,收到被加資的持程所之 100 是獨於原律子性溶血活性劑②它是為石油化學工業的製品或其分子內的成基維若尚有支缝結構者,使到被加固的接触 100 有個素之水的過級放射、通常企及的是有多解性、一種展質可同時行生多種化分物②蜂素排作自微生物或病例的透透,有透熱功的素,相接上的水溶,有多性上层面質的毒素,一種生物便能對。 101 方形成維維度。 102 中面、水溶、水溶、水溶、水溶、水溶、水溶、水溶、水溶、水溶、水溶、水溶、水溶、水溶、	295	蒙特婁議定書是管制①有害廢棄物②毒性氣體③揮發性有機物④氟氣碳化物。
297	296	何種的光纖(OpticalFiber)適合當作長距離的光傳遞之用①石英系光纖(
997	200	QuartzOpticalFiber)②多成分系光纖③塑膠系光纖④橡膠系光纖。
甲島(PMMA)和聚苯乙烯(PS)③聚乙烯醇(PVA)和聚四氨乙烯(PTFE)④聚丙烯(PP)和丙烯(AcryInitrile)、丁乙烯(Butadiene)及苯乙烯(Styrene)之共聚物(ABS树脂)。 下列何種的撥水/撥油劑,將其塗佈在釣機品上時,可改變紡織品的特性,而使农物不易受汙或易於清洗,追而提高紡機品的價值?①無素②碳素③硼素①砂素。 網維子的始色為黃色,是因為網維子的何種性質使蒸?①納維子可吸收黃色光②納維子可發射黃色的補色光。 和眼所見的黃色布料具有何項性質?①可吸收黃色光。而反射黃色的補色光。 有眼所見的黃色布料具有何項性質?①可吸收黃色的結色光。 下列何者易也入食物缝而危害人體健康?①汞②氮③酚①氮。		塑膠系光纖雖不適合長距離的光傳遞,但卻具有價格低廉及操作容易的優點。下列各項中
298		何者是塑膠光纖的材料?①聚乙烯(PE)和聚乙烯對苯二甲酸酯(PET)②聚甲基丙烯酸
298	297	甲酯(PMMA)和聚苯乙烯(PS)③聚乙烯醇(PVA)和聚四氟乙烯(PTFE)④聚丙烯(
298 下列何種的撥水/撥油劑、將其塗佈在紡織品上時,可改變紡織品的特性,而使农物不易受污或易於清洗,進而提高紡織品的價值?①氟素②碳素③烟素①矽素。 約離子的始色為黃色,是因為納離子可吸收黃色光(例納離子可發收黃色光(例納離子可吸收黃色光(例如離子可發收黃色的補色光(例如離子可吸收黃色的相色光)的與所見的黃色市料具有何項性質?①可吸收黃色光(例的養色光(例如養色光)可吸收黃色的補色光。可吸收黃色的相色光。可吸收黃色光(例可發射黃色的相色光。 300 內眼所見的黃色九(3)可發射黃色光(4)可發射黃色的補色光。可吸收黃色的補色光。可吸射黃色光(3)可發射黃色光(4)如素(3)。 於藍崇料(Indigoidlyostuff)因不溶於水,染色時項先以湿原劑反應成水溶性以利鐵維吸收,然後在晾乾時藉空氣的氧化後崇料可復成不溶性,此種染色法稱為①養染②歧染③直接染①反應染。 303 下列各種物質中,何種不屬於界面活性劑(1)配皂②卵磷脂(3)水冷乳(1)香蕉水。 304 高磷值的油脂適合作下列的阿種用途?①洗髮精②食用油(3)化妆品(1)油漆。 十二烷基苯磺酸钠(商稱IBN)是常用的洗化粉成分/有簡其性質的微速下列何項不正確? ①是屬於跨擊子性專面於推劑(2)定養局方油化學工業的製品製作分一种的洗金統治毒有支鏈結構者,較易緩知菌分解,稱為軟性清潔劑(1)其洗净力強且過硬水不生皂垢。 305 ①是屬於整學生排來而洗性劑(2)它是多石油化學生素的製品製作分一种的洗金統若為有支鏈結構者,較易緩如菌分解,稱為軟性清潔劑(1)其洗净力強且過硬水不生皂垢。 306 (1)是屬於整定性原心於土壤劑(1)(1)。數據大戶內放建鍵若為有支鏈結構者,較易緩和菌分解,稱為軟性清潔劑(1)(1)。其次分中的面類發展,有者經濟(1)。對海衛養性自衛出動動酒。 308 下列各種源中,何者是藻細酒(2)(1)。如果多數是與整質(2)(1)。如果多數是與整質(2)域少鐵索的透明度。 311 紡織業用來量度纖維的和如,大都以何者為單類(2)(3)。第2)人未必數是用來是成鄉接入(5)。數是的是在於(1)所止墨水涂數(2)增加纖維間的膠結 力(3)防止纖維變質(2)減少經濟的透明度。 這紙過程常須添加的表別(2)以供養為原料(2)(1)高速(2)以外域,對新面。 312 丹尼(1)的面,是上衛與對於原係(1)的是人(2)以對於原因(1)以對於原因(1)以對於原格(1)與兩時與形態,與中所 數量性所來是所養或用數。與一种不性,致常用作汽車高壓電線包覆、墊間、人 透衛星可來及耐熱設備的機應是為「SBR模學(2)中模學(3)丁模學(如用表別上類 「2)物种長率(3)增強其溶解度(4)使複學型(2)內球學(3)可持與形態。其中所 類學性的優點,是來自其成分中的何種單體(1)丙烯腈(2)丁二烯(3)苯乙烯(1)异戊二烯。 316 內醫及一類與其溶解度(4)使複學與其物性學上,所有學是應經條性的特點。其中可 類學性的優點,是來自其成分中的何種單體(1)丙烯腈(2)丁二烯(3)苯乙烯(1)其戊二烯。 317 不同時語(2)工作成的複形的一种於性,如果的性質療養的轉類,與用於化物的透明度、如果的性質療養的變形。其中的一种、化物的透明度、如果的、化物的、水質、化物的、水質、化物、水質、化物、水質、水質、水質、水質、水質、水質、水質、水質、水質、水質、水質、水質、水質、		PP)和丙烯(Acrylnitrile)、丁乙烯(Butadiene)及苯乙烯(Styrene)之共聚物(
299 受汗或易於清洗,進而提高紡織品的價值?①氟素②碳素③硼素①矽素。 309 納離子的站色為黄色,是因為納離子的何種性質使然?①納離子可吸收黄色光②納離子可吸收黄色光③納離子可吸收黄色光④納離子可吸收黄色光④的赭色光。 300 内眼所見的黄色布料具有何項性質?①可吸收黄色光)而及射黄色的赭色光。 301 下列何者易進入食物變而危害人體健康?①京穀對黄色的赭色光。 302 按於素料。(而反射黄色光③可發射黄色光①可發射黄色的赭色光。 303 下列令者易進入食物變而危害人體健康?①京穀對黄色的赭色光。 304 高碳化的过度的以下红质)因不完於水、染色時須先以退原劑反應成水溶性以利鐵鄉 吸收,然後在晾乾時藉空氣的氧化使染料回復成不溶性,此種染色法稱為①變染②媒染③直接第②反應染。 305 下列各種物質中,何種不屬於茶面活性劑①配皂②卵磷脂③水溶乳④香蕉水。 306 病碘值的治脂適合作下列的何種用途?①洗髮精②食用汤圖①化妝品④油涂。 十二烷基苯磺酸鈉(簡稱DBN)是常用的洗衣粉成分/有關其性質的敘進下列何項不正確? ①是屬於陰離子性寮面活性劑②它是為石油化學工業的製品③其实子內的烷基鏈若為有支鏈結構者,較易被如菌分解,稱為軟性清潔劑④其洗净力強且過硬水不生皂垢。 306 我國核能與料度理採用①水泥固化法②傾倒洗過費化法②排泄法。 下列關於酵素(Enzyme)的敘道,何者錯誤①酵素反應具有多精性,一種基質可同時衍生多種化合物②酵素(養的生自微生物或動植物體的活動肺過)。 307 下列為整治中,何者是蒸餾酒?①彩與酒②率酒③减土忌酒①葡萄酒。 308 下列各種物質中,何者是蒸餾酒?①彩與酒②率酒③减量是酒(葡萄酒。 309 啤酒為大眾化的酒類飲料,通常它是以何者為原料②①商梁②大麥或黑麥③蕎麥①結果。 300 垃圾過程常須添加白土、黏土等填料(读目的是各於①防止墨水溶散②增加纖維問的膠結 力汤防止纖維變質①減少級樣的透明後。) 311 紡織業用來量度鐵維和如人土、黏土等填料(读目的是全型人之表③1仟克①1磅。 312 丹尼(Denier)的意義是9000公尺的核、其重量為①1毫克②1公克31任克①1磅。 313 經過水形,在常數學質①減少級核的透明性。 314 具有優異的就形影。工作於熱性、研來性、研來性、致常用作汽車高壓電線色覆、整圖、人透衡星耐寒及耐熱致傷的療療是為①5BR性療學②均養膠過了複膠①和解釋和於法③播壓成形法③ 315 經過一學及發度 20增加性是電。增強其溶解度①使食膠與熱型性以利加工。 316 格器是一種性質優異的電膠,兼性、耐水性、致常用條形如形條性、硬度及強度 ②增加學是電。增強其溶解度①使食膠型②的有機性、硬度及強度 ②增加學是電。增強其溶解度①转線膠②均均物析條性、硬度及強度 ②增加學是電。增養其溶解度①食物學。2018點變學PV(型膠③可給(排膠。 22個方衛生質優異的如果性、耐水性、动常用作用於在心性質及外水上透射等度、水质的形成,上水质的水质的、水质的、水质的、水质的、水质的、水质的、水质的、水质的、水质的、水		ABS樹脂)。
受汙或為於清洗,進而提高紡織品的價值?①觀素②碳素③绷素①矽素。 納離子的始色為黃色,是因為納離子的何種性質使然?①納離子可吸收黃色光②納離子可吸收黃色光②納離子可吸收黃色光①納離子可吸收黃色光①納離子可吸收黃色光和離子可吸收黃色的補色光。 1300	000	下列何種的撥水/撥油劑,將其塗佈在紡織品上時,可改變紡織品的特性,而使衣物不易
299	298	
299	200	
300 内眼所見的黃色布料具有何項性質?①可吸收黃色光》而反射黃色的補色光②可吸收黃色的補色光。而反射黃色光③可發射黃色光①可發射黃色光。301 下列何者易速入食物鏈而危害人體健康?①承②氮③酚①氯。	299	
900 的補色光,而反射黄色光③可發射黄色光④可發射黄色的補色光。 301 下列何者易進入食物鏈而危害人體健康?①表②氦③酚①氣。 款藍染料(IndigoidDyestuff)因不溶外水)染色時須先以還原制反應成水溶性以利纖維 吸收、然後在晾乾時轉空氣的氧化使染料回復成不溶性、此種染色法稱為①養染②媒染③ 直接染①反應染。 303 下列各種物質中,何種不屬於界面活性劑①配皂②卵磷脂③沐浴乳①香蕉水。 1 一定基苯磺酸鈉(簡稱DBN)是常用的洗衣物成分/有關其性質的故遊下列何項不正確? ①是屬於陰離子性界面活性劑②它是為石油化學工業的製品③其分子內的烷基鏈若為有支鏈結構者,較易緩細菌分解,稱為軟性清潔劑④其洗浄力強且過硬水不生皂垢。 306 权國核能廢料選理採用①水泥固化法②預例法③货化法④排肥法。 下列關於酵素(Enzyme)的飲並,何者轉跌①酵素反應具有多樣性,一種基質可同時衍生多種化合物②酵素係衍生自微生物或動植物體的活細胞③酵素係一種蛋白質①酵素為一種生物催化劑。 308 下列各種酒中,何者是蒸餾酒?①紹與酒②啤酒③威士忌酒①葡萄酒。 309 啤酒為大眾化的酒類飲料、通常它是以何者為原料②①高染企火麥或黑麥③蕎麥①糯米。 310 方形土纖維變質①減少無張的透明度。 311 紡織業用來量度纖維的粗細,大都以何者為厚性②①丹尼(Denier,D)②磅③克性)函。 312 丹尼(Denier)的意義是9000公尺的蘇、其重量為①1毫完②1公克③1仟克④1磅。 製造酚甲醛樹脂的成形品,一般太都採用下列何種加工法?①射出成形法②槽壓成形法③壓縮成形法①壓延成形法。 現有優異的型解,大都以何者為單位、①丹尼(Denier,D)②磅③克是000公尺的蘇、其重量為①1毫完②1公克③1仟克④1磅。 製造酚甲醛樹脂的成形品,一般太都採用下列何種加工法?①射出成形法②槽壓成形法③壓縮成形法①壓延成形法。 基瘤成形法①壓延成形法。 「與有便異的型解,兼具有耐熱、耐化學品、可解閉①血普勒橡膠。 485是一種性質優異的型膠,兼具有耐熱、耐化學品、耐衡學及電應使應、集團、人造衛星研集及可輸換其溶解度④使橡膠具熱塑性以利加工。 485是一種性質優異的型膠,兼具有耐熱、耐化學品、耐衡學及電總條性的特點。其中耐衡學性的優點,是來自其成分中的何種單豐?①丙烯腈②丁二烯③苯乙烯①異戊二烯。 「列哪一種聚合物具有最低的玻璃轉移溫度。①私防衛型能應一下外隨與及電流等。其前與於原心下水循環與,其於原心下水循環及下水循環及下水循環及下水循環及下分、所端的標準狀況(StandardCondition),其所定的壓力為自紅板而温度為①0 で②200で③25℃①100℃。 在標準狀況下,16.0g的氧氣其體積為①22.4位②11.2L(圆32.0L(44.8L)	200	
301 下列何者易進入食物鏈而危害人體健康?①表②氣③酚①氣。 教藍染料(IndigoidDyestuff)因不溶水水,染色時須先以還原劑反應成水溶性以利纖維 安收,然後在晾乾時藉空氣的氧化使染料回復成不溶性,此種染色法稱為①發染②媒染③ 直接染①反應染。 303 下列各種物質中,何種不屬於界面活性劑①肥皂②卵磷脂③沐浴乳①香蕉水。 高碘值的油脂適合作下列的何種用途?①洗髮精②食用油③化妝品①油漆。 十二烷基苯磺酸鈉(簡稱DBN)是常用的洗衣粉成分/有關其性質的敬遠下列何項不正確? ①是屬於陰離子性界面活性劑②它是為石油化學工業的製品③其分子內的烷基鏈若為有支鏈結構者,較易被細菌分解,稱為軟性清潔劑④其洗净力強且通硬水不生皂垢。 我國核能廢料處理採用①水泥固化法②傾倒法③焚化法①堆肥法。 下列間於酵素佢nzyme)的敬遠,何者錯誤①酵素及應具有多樣性,一種基質可同時衍生多種化合物②酵素條衍生自微生物或動植物體的活細胞③酵素係一種蛋白質④酵素為一種生物催化劑。 和他化劑。 不列各種酒中,何者是蒸餾酒?①彩與酒②啤酒③咸土忌酒④葡萄酒。 中酒為大眾化的酒類飲料、通常它是以何者為原料?①高梁②大麥或黑麥③蕎麥①糯米。	300	
一次	301	
302		
直接染①反應染。 T列各種物質中,何種不屬於界面活性劑①肥皂②卵磷脂③沐浴乳①香蕉水 高碘值的油脂適合作下列的何種用途?①洗髮精②食用油③化妝品①油漆。 十二烷基苯磺酸鈉(簡稱DBN)是常用的洗衣粉成分 有關其性質的敬述下列何項不正確? ①是屬於陰離子性界面活性劑②它是為石地學工業的製品③其分子內的烷基鏈若為有支鏈結構者,較易被細菌分解,稱為軟性清潔劑④其洗淨力強且過硬水不生皂垢。 306 我國核能廢料處理採用①水泥固化法②傾倒法③焚化法④堆肥法。 下列關於酵素(Enzyme)的敘述,何者錯誤①酵素反應具有多樣性,一種基質可同時衍生多種化合物②酵素條衍生自微生物或動植物體的活細胞③酵素係一種蛋白質④酵素為一種生物低化劑。 下列各種酒中,何者是蒸餾酒?①約與酒②啤酒③或于忌酒④葡萄酒。 308 下列各種酒中,何者是蒸餾酒?①約與酒②啤酒③或于忌酒④葡萄酒。 309 啤酒為大眾化的酒類飲料、通常它是以何者為原料②①高梁②大麥或黑麥③蕎麥①糯米。 310 坊鹹業用來量度鐵維的租細,大都以何者為單位?①丹尼(Denier, D)②烤③克拉④盎司。 311 対域業用來量度鐵維的租細,大都以何者為單位?①丹尼(Denier, D)②烤③克拉④盎司。 312 丹尼(Denier)的意義是9000公尺的絲、其重量為①1毫克②1公克③1仟克④1磅。 313 製造酚甲醛樹脂的成形品~般大都採用下列何種加工法?①射出成形法②擠壓成形法③壓縮成形法④壓延成形法。 4 具有優異的抗化學性、耐熱性、耐寒性、耐水性、致常用作汽車高壓電線包覆、垫圈、人造衛星耐寒及耐熱設構的機膠是為①SBR橡膠②矽橡膠。丁年房便與企業。對後其溶解度不受橡膠,對中所候性、硬度及強度 ②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 4 格BS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 不列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 316 不可用一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 2 範中氧氯所佔的體積百分比約為①10%②21%352%479%。 所謂的標準狀況(StandardCondition),其所定的壓力為自和m而温度為①0 它②20℃③25℃④100℃。	302	
303 下列各種物質中,何種不屬於界面活性劑①肥皂②卵磷脂③沐浴乳①香蕉水。 304 高碘值的油脂適合作下列的何種用途?①洗髮精②食用油③化妝品④油漆。		
304 高嶼值的油脂適合作下列的何種用途?①洗髮精②食用油③化妝品①油漆。	303	
一十二烷基苯磺酸鈉(簡稱DBN)是常用的洗衣粉成分,有關其性質的敘達下列何項不正確? ①是屬於陰離子性界面活性制②它是為石油化學工業的製品③其分子內的烷基鏈若為有支鏈結構者,較易被細菌分解,稱為軟性清潔劑①其洗淨力強且過硬水不生皂垢。 306 我國核能廢料處理採用①水泥固化法②傾倒法③焚化法④堆肥法。 下列關於酵素(Enzyne)的敘述,何者錯誤①酸素及應具有多樣性,一種基質可同時衍生多種化合物②酵素條衍生自微生物或動植物體的活細胞③酵素係一種蛋白質①酵素為一種生物催化劑。 可列各種酒中,何者是蒸餾酒?①彩與酒②啤酒③威士忌酒④葡萄酒。 309 啤酒為大眾化的酒類飲料、通常它是以何者為原料②①高梁②大麥或黑麥③蕎麥①糯米。 310 幼織業用來量度纖維的租細,大都以何者為原料③①高梁②大麥或黑麥③蕎麥①糯米。 311 幼織業用來量度纖維的租細,大都以何者為原料③①高梁②大麥或黑麥③蕎麥①糯米。 312 丹尼(Denier)的意義是9000公尺的緣、其重量為①1毫克②1公克③1仟克④1磅。 313 製造酚甲醛樹脂的成形品一般太都採用下列何種加工法?①射出成形法②擠壓成形法①壓縮成形法①壓延成形法 壓縮成形法①壓延成形法 具有優異的抗化學性、耐熱性、耐寒性、耐水性、致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱設備的棲膠是為①SBR橡膠②矽橡膠③丁橡膠④維普勒橡膠。 314 具有優異的塑膠,兼具有耐熱、耐化學品、耐衡擊及電絕線性的特點。其中耐衡學性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 316 不列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐給①橡膠。 318 空氣中含量最多的元素是①氧氣②氮氯、③氢氧、①、 20 空氣中氧氣所佔的體積百分比約為①10%②21%352%①79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0 (220℃325℃④100℃。 在標準狀况下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L		
305 ①是屬於陰離子性界面活性劑②它是為石油化學工業的製品③其分子內的烷基鏈若為有支鏈結構者,較易被細菌分解,稱為軟性清潔劑①其洗淨力強且遇硬水不生皂垢。 306 我國核能廢料處理採用①水泥固化法③傾倒法③變化法④堆肥法。 下列關於酵素(Enzyme)的敘遠,何者錯誤①酵素及應具有多樣性,一種基質可同時衍生多種化合物②酵素係衍生自微生物或動植物體的活細胞③酵素係一種蛋白質④酵素為一種生物催化劑。 308 下列各種酒中,何者是蒸鰡酒?①络與酒②啤酒③威士忌酒④葡萄酒。 309 啤酒為大眾化的酒類飲料、通常它是以何者為原料②①高梁②大麥或黑麥③蕎麥④糯米。 造紙過程常須添加白土、黏土等填料(其目的是在於①防止墨水滲散②增加纖維間的膠結力③防止纖維變質①減少纸張的透明度。 311 紡織業用來量度纖維的粗細,大都以何者為單位?①丹尼(Denier,D)②磅③克拉④盎司。312 丹尼(Denier)的意義是9000公尺的緣、其重量為①】毫克②1公克③1仟克④1磅。 313 製造酚甲醛樹脂的成形品) 般太都採用下列何種加工法?①射出成形法②擠壓成形法③壓縮成形法④壓延成形法。 314 具有侵異的抗化學性、耐熱性、耐寒性、耐水性、致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱致備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 315 橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 316 格BS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐給④橡膠。 318 空氣中含量最多的元素是①氧氮②氮氯④氮氮。 2至氟中含量最多的元素是①氧氮②氮氯④氮氮。 9至氟中含量最多的元素是①氧氮②氮氯④氮氮。 2至氟中含量最多的元素是①氧②氮氮氮氮氧④氮氮。 9至氟中含量最多的元素是①氧②氮氮氮氮氧④氮氮。 9至氟中含量成价化的體積百分比约為①10%②21%③52%4079%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而温度為①0 C(20℃ ③25℃ ④100℃。 4程準果洗况下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L		
### ### ### ### ### ### ### ### ### ##	305	
306		
307 種化合物②酵素係衍生自微生物或動植物體的活細胞③酵素係一種蛋白質④酵素為一種生物催化劑。 下列各種酒中,何者是蒸餾酒?①紹興酒②啤酒③威士忌酒④葡萄酒。 309 啤酒為大眾化的酒類飲料、通常它是以何者為原料②①高粱②大麥或黑麥③蕎麥①糯米。 310 造紙過程常須添加白土、黏土等填料、其自的是在於①防止墨水滲散②增加纖維間的膠結力③防止纖維變質④減少纸張的透明度。 311 紡織業用來量度纖維的粗細,大都以何者為單位?①丹尼(Denier, D)②磅③克拉④盎司。 312 丹尼(Denier)的意義是9000公尺的絲、其重量為①1毫克②1公克③1仟克④1磅。 313 製造酚甲醛樹脂的成形品,般大都採用下列何種加工法?①射出成形法②擠壓成形法③壓縮成形法④壓延成形法。 314 具有優異的抗化學性、耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁烯腺④紐普勒橡膠。 315 橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 316 格B是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 317 下列哪一種聚合物具有最低的玻璃轉移運體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 318 空氣中含量最多的元素是①氧氣②氦氣氣④氦氣。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 421 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	306	
307 種化合物②酵素係衍生自微生物或動植物體的活細胞③酵素係一種蛋白質④酵素為一種生物催化劑。 下列各種酒中,何者是蒸餾酒?①紹興酒②啤酒③威士忌酒④葡萄酒。 309 啤酒為大眾化的酒類飲料、通常它是以何者為原料②①高粱②大麥或黑麥③蕎麥①糯米。 310 造紙過程常須添加白土、黏土等填料、其自的是在於①防止墨水滲散②增加纖維間的膠結力③防止纖維變質④減少纸張的透明度。 311 紡織業用來量度纖維的粗細,大都以何者為單位?①丹尼(Denier, D)②磅③克拉④盎司。 312 丹尼(Denier)的意義是9000公尺的絲、其重量為①1毫克②1公克③1仟克④1磅。 313 製造酚甲醛樹脂的成形品,般大都採用下列何種加工法?①射出成形法②擠壓成形法③壓縮成形法④壓延成形法。 314 具有優異的抗化學性、耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁烯腺④紐普勒橡膠。 315 橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 316 格B是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 317 下列哪一種聚合物具有最低的玻璃轉移運體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 318 空氣中含量最多的元素是①氧氣②氦氣氣④氦氣。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 421 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L		下列關於酵素(Enzyme)的敘述,何者錯誤①酵素反應具有多樣性,一種基質可同時衍生多
物催化劑	307	種化合物②酵素係衍生自微生物或動植物體的活細胞③酵素係一種蛋白質④酵素為一種生
309 啤酒為大眾化的酒類飲料、通常它是以何者為原料。①高粱②大麥或黑麥③蕎麥④糯米。 310 造紙過程常須添加白土、黏土等填料、其自的是在於①防止墨水滲散②增加纖維間的膠結 力③防止纖維變質④減少紙張的透明度。 311 紡織業用來量度纖維的粗細,大都以何者為單位?①丹尼(Denier, D)②磅③克拉④盎司。 312 丹尼(Denier)的意義是9000公尺的絲、其重量為①1毫克②1公克③1仟克④1磅。 313 製造酚甲醛樹脂的成形品,般太都採用下列何種加工法?①射出成形法②擠壓成形法③壓縮成形法④壓延成形法。 歷縮成形法④壓延成形法。 314 具有優異的抗化學性、耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 315 橡膠進行硫化(Vulcani/2ation)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 316 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 317 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐給④橡膠。 318 空氣中含量最多的元素是①氧氟②氮氟③氢氟④氦氟。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 4在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L		
310 造紙過程常須添加白土、黏土等填料,其目的是在於①防止墨水滲散②增加纖維間的膠結 力③防止纖維變質④減少紙張的透明度。 311 紡織業用來量度纖維的粗細,大都以何者為單位?①丹尼(Denier, D)②磅③克拉④盎司。 312 丹尼(Denier)的意義是9000公尺的絲、其重量為①1毫克②1公克③1仟克④1磅。 313 製造酚甲醛樹脂的成形品 般太都採用下列何種加工法?①射出成形法②擠壓成形法③壓縮成形法④壓延成形法。 壓縮成形法④壓延成形法。 具有優異的抗化學性 耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 315 橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 316 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 317 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 318 空氣中含量最多的元素是①氧氣②氮氣③氫氣④氦氣。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 320 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	308	下列各種酒中,何者是蒸餾酒?①紹興酒②啤酒③威士忌酒④葡萄酒。
□ 力③防止纖維變質④減少紙張的透明度。 □ 311	309	啤酒為大眾化的酒類飲料,通常它是以何者為原料?①高梁②大麥或黑麥③蕎麥④糯米。
力③防止纖維變質①減少紙張的透明度。 分纖業用來量度纖維的粗細,大都以何者為單位?①丹尼(Denier, D)②磅③克拉④盎司。 312	210	造紙過程常須添加白土、黏土等填料,其目的是在於①防止墨水滲散②增加纖維間的膠結
312	310	力③防止纖維變質④減少紙張的透明度。
製造酚甲醛樹脂的成形品,般大都採用下列何種加工法?①射出成形法②擠壓成形法③ 壓縮成形法④壓延成形法。 具有優異的抗化學性 耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人 造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 樣膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度 ②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 316 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐 衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 318 空氣中含量最多的元素是①氧氣②氮氣③氫氣④氦氣。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 320 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0 ℃②20℃③25℃④100℃。 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	311	紡織業用來量度纖維的粗細,大都以何者為單位?①丹尼(Denier, D)②磅③克拉④盎司。
 壓縮成形法④壓延成形法。 具有優異的抗化學性、耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 315 橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 316 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 317 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 318 空氣中含量最多的元素是①氧氟②氮氟③氫氟④氦氟。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 320 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 321 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L 	312	丹尼(Denier)的意義是9000公尺的絲/其重量為①1毫克②1公克③1仟克④1磅。
歷縮成形法①壓延成形法。 具有優異的抗化學性、耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 空氣中含量最多的元素是①氧氣②氮氣③氫氣④氮氣。 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 在標準狀况下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	212	製造酚甲醛樹脂的成形品,一般太都採用下列何種加工法?①射出成形法②擠壓成形法③
□ 造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 □ 操膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 □ ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 □ 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 □ 空氣中含量最多的元素是①氧氣②氮氣③氫氣④氮氣。 □ 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 □ 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 □ 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	010	壓縮成形法④壓延成形法。
造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。 橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度 ②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 空氣中含量最多的元素是①氧氣②氮氣④氦氣④氦。 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	211	具有優異的抗化學性、耐熱性、耐寒性、耐水性,致常用作汽車高壓電線包覆、墊圈、人
②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 空氣中含量最多的元素是①氧氣②氮氣③氫氣④氦氣。 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	314	造衛星耐寒及耐熱設備的橡膠是為①SBR橡膠②矽橡膠③丁橡膠④紐普勒橡膠。
(2)增加伸長率(3)增強其溶解度(4)使橡膠其熱塑性以利加工。 ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 空氣中含量最多的元素是①氧氣②氮氣④氦氣④氦氣。 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	915	橡膠進行硫化(Vulcanization)的主要目的是為①增加耐候性、硬度及強度
 衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。 317 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 318 空氣中含量最多的元素是①氧氣②氮氣④氦氣④氦氣。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 320 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 321 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L 	010	②增加伸長率③增強其溶解度④使橡膠具熱塑性以利加工。
衝擊性的優點,是來自其成分中的何種單體?①內烯腈②丁二烯③苯乙烯④異戊二烯。 117 下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。 118 空氣中含量最多的元素是①氧氣②氮氣③氫氣④氦氣。 119 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 120 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0 ○○②20○③25○○④100○。 121 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	316	ABS是一種性質優異的塑膠,兼具有耐熱、耐化學品、耐衝擊及電絕緣性的特點。其中耐
318 空氣中含量最多的元素是①氧氣②氮氣③氫氣④氦氣。 319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 320 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 4 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	310	衝擊性的優點,是來自其成分中的何種單體?①丙烯腈②丁二烯③苯乙烯④異戊二烯。
319 空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。 320 所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0℃②20℃③25℃④100℃。 321 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	317	下列哪一種聚合物具有最低的玻璃轉移溫度?①ABS塑膠②PVC塑膠③耐綸④橡膠。
所謂的標準狀況(StandardCondition),其所定的壓力為1atm而溫度為①0 C②20℃③25℃④100℃。 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	318	空氣中含量最多的元素是①氧氣②氮氣③氫氣④氦氣。
320 ℃②20℃③25℃④100℃。 321 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	319	空氣中氧氣所佔的體積百分比約為①10%②21%③52%④79%。
321 C(2)20 C(3)25 C(4)100 C。 4 在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L	320	所謂的標準狀況(StandardCondition),其所定的壓力為latm而溫度為①0
3/11	040	
∘ (0=16.0g/mol)	391	在標準狀況下,16.0g的氧氣其體積為①22.4L②11.2L③32.0L④44.8L
	041	∘ (0=16.0g/mol)

322	地殼中的元素含量佔第一位者(1)氧(2)矽(3)鋁(4)鐵。
	工業上大量製氧是利用下列何種製程①KC103加熱分解②H202加熱分解③Hg0加熱分解④液
323	態空氣分離。
324	重水()可作為中子減速劑,請問重水中之氘(D)為下列何者之同位素①氧②矽③氫④氦。
205	下列有關理想氣體之敘述,何者是錯的?①假設氣體間無吸引力②假設氣體為完全彈性體
325	③一般氣體在高溫低壓下可視為理想氣體④假設氣體分子所佔體積不可忽略。
326	波以耳定律(Boyle'slaw)描述氣體的體積(V)與壓力(P)的關係,下列敘述何者是對的?①P
320	對V作圖得一直線關係②P與PV成正比③P與V作圖得一平行於V之直線④P與V成反比。
327	理想氣體方程式為PV=nRT,若P=1.0atm,V=22.4L,n=1.0mol,T=273K,則R=?L-atm/K-
	mol①0.082②8.314③1.987④10.73。
328	檢驗臭氧存在可用下列何種試紙?①pH試紙②碘化鉀澱粉試紙③石蕊試紙④廣用試紙。
329	液態空氣是在何種情況下製取的①低壓高溫②高壓高溫③高壓低溫④低壓低溫。
330	下列何種氣體不適於用作填充燈泡?①氫氣②氮氣③氧氣④氙氣。
331	下列何者氣體最難被液化?①氫②氮③氧④氦。
332	造成大氣臭氧層之破洞,而使人類直接遭受紫外線光害者為下列何種化合物?①二氧化碳
	②氟氯碳化物③碳氫化合物④硫化物。
333	由於人類濫用能源揮霍資源造成大氣中二氧化碳累積過量,形成所謂的何種效應①蝴蝶效
	應②瓶頸效應③溫室效應④寒蟬效應。
334	通常將水之密度定為1.00g/cm3作為參考密度時,所採用之水溫為幾度(℃)?①0.0②4.0③ 25④20。
335	黄銅合金之主要成分為①Cu, Zn②Cu, Sn、Pb③Cu, Au④Cu, W。
	用同種測定方法測定同一樣本,並反覆做無限次的測定,數據分配的平均值與真值之間一
336	定有差異,這種差異的大小稱為①可靠度②精密度③測定度④準確度。○
	欲以100%雙氧水加入純水,配製濃度為30%的過氧化氫水溶液,用作傷口殺菌劑時,此溶
337	液中雙氧水與純水之比例為何?[100g:30g(230g:70g(350g)50g(70g:70g。
000	下列有關合金之敘述、何者是錯的?①18K金為合金②24K金表示為純金③18K金表示金含量
338	為18%①K金具有質硬、光亮、多彩之特性。
339	下列何者不是碳的同素異形體?①奈米碳管②金剛石③石墨④木炭。
340	下列所示愛因斯坦之質能互變公式人請問何者是對的?DE=mc2②E=mc-2③E=m2c4E=mc(E:
040	能量、m:質量、c:光速)。
341	下列有關原子質量數的計算,何者是對的?原子內①質子數+中子數②質子數+電子數③電
	子數十中子數④電荷數+質子數+中子數。
342	物質發生化學變化時,下列現象何者不存在?卫原子產生新鍵結②產生熱的變化③總體積
	增加或減少④密閉容器中總質量增加或減少。
343	碳原子的莫耳質量為12g/mo1,則1個碳原子之質量約為①1×1023g②0.5×1023g③2×10-23g
	④2×1023g。 下列有關於02的敘述,何者是錯的?①氧氣之分子量為32g/mo1②氧分子之莫耳質量為
344	(molarmass)32g/mol3氧原子之莫耳質量為16g/mol4氧氣之克分子量為32g。
345	氫氟酸溶液應用何種容器盛裝?①玻璃容器②鋼瓶③陶瓷容器④聚四氟乙烯塑膠密閉容
	王水具有硝酸之強氧化性與氣離子之強配位能力,可以溶解金、鉑。其中濃鹽酸與濃硝酸
346	組成比例為何?[12]: 1(2)[1:3(3)3:2(4)3:1。
347	所謂肥料之三要素為下列何者?①Fe, Ca, Na②P, Mg, Ca③N, P, K④O, N, C。
	對於酸、鹼、鹽溶液性質之敘述,下列何者是錯的?①可以導電②大部分溶於水③分子中
348	皆含有金屬元素④大多能產生水解反應。
349	馬口鐵(Tinplate)是於鐵片表面上鍍上下列何種金屬①鍍銅②鍍鋅③鍍鋁④鍍錫。
350	氯酸鉀加熱分解製造氧氣的反應中,常加入二氧化錳是為了什麼原因?①參與鍵結反應②
990	當作氧化劑③當作還原劑④當作觸媒。
	下列關於凝相之敘述中,何者正確?①莫耳蒸發熱較大之液體,沸點較高②熔點較高者,
351	莫耳蒸發熱必較大③定溫下液體之飽和蒸氣壓會隨容器體積之變小而增大④純物質與溶液
	之沸點在一大氣壓時均維持一定。
352	下列各溶液之濃度皆為0.5%,則何者之凝固點最低?①酚②甘油③葡萄糖④乙酸甲酯。

353	濃度均為0.1M的下列四種溶液,何者之蒸氣壓最高?①食鹽溶液②蔗糖溶液③硫酸鈉溶液 ④醋酸溶液。
354	將 $15.95g$ 之無水硫酸銅溶於 $200g$ 的水中以形成溶液,該水溶液的凝固點經測得為 -1.674 °C,則硫酸銅的解離度為多少? 1.60% ② 70% ③ 80% ④ 90% 。
355	通電入下列各金屬離子水溶液中,若欲析出相同的重量,則何者所耗的電量最大 $(Sn=119, Pb=207, Cr=52, Cu=64)$? $(DSn2+2)Pb2+3(Cr3+4)Cu2+6$ 。
356	有核的原子模型是(Rutherford)首先提出,他所根據的事實是為下列何者①陰極射線的發現②α—粒子的散射實驗③密滴根(Millikan)的油滴實驗④同位素的發現。
357	某元素在週期表的ⅢA族,形成離子時含有電子28個,若其質量數為70,則此元素之原子 核內含有中子幾個?①45②42③41④39。
358	氫原子中,當電子由激發狀態回到基態時,可得到何種光譜?①紫外光譜②吸收光譜③巴爾曼線系④可見光譜。
359	當氫的電子由n=3移至n=1時,所放出的頻率為下列何者(h=9.52×10-14kcal-sec/mole 光子)?①2.95×1015②3.65×1014③2.72×1012④3.72×1011。
360	下列關於多電子原子能階的敘述中,何項正確?①與單電子原子的能階相同②有1p,2d,
361	3f的軌域34s的能量一定比3d高④位能:4f>6s>3d。 下列關於週期表的游離能變化之敘述中,何項正確?①氧的游離能大於氟②同週期元素由
362	左向右遞增,Be>B,N>0③鹵素的游離能以碘最大④鈍氣的游離能以氡(Rn)最大。 某元素之各游離能數據分別為:E1=138,E2=408,E3=718,E4=2810kcal/mole,則該
	元素的價電子數有多少個?①1個②2個③3個④4個。 下列關於共價鍵的敘述中,何項錯誤?①兩原子各具半滿軌域,生成鍵時能量降低②兩原
363	子接近時,排斥力大於吸引力③有可利用之價電子④有空軌域的原子可和價軌域完全填滿的原子形成配位共價鍵。
364	下列各選項中,何者是兩原子形成化學鍵時的必要條件?①接近時能量降低②皆有空的價軌域③皆有全滿的軌域④一個有半滿軌域,另一個有全滿軌域。
365	下列有關碳原子形成化合物之可能混成軌域中,何項錯誤?①石墨為sp3軌域②CH4為sp3 軌域③CO2為sp軌域④乙烯為sp2軌域及π軌域。
366	在水分子中,氧的未共用電子對有多少對?①一對②二對③三對④四對。
367	一組數據,共有6個,為2,9,8,6,4,10,則其中位數為了6②7③5④8。
368	將所有資料由小到大排序後,排在最中間的數,稱為①眾數②算術平均數③幾何平均數④中位數。
369	乾冰中分子的吸引力是為下列何者?①共價鍵②離子鍵③凡得瓦力④離子性共價鍵。
370	依國家標準規定,表示安全、衛生、救護之安全顏色為①白色②黑色③紅色④綠色。
371	管製圖中, σ 代表標準差/把中心值加減幾個標準差,即得管製圖的管制上下限? 13σ 25σ 32σ 44σ
372	○ AHFBHC1 ©HBr ©HI 等鹵化氫之沸點由高而低的順序,正確的是為① (A) > (C) > (C) > (A) > (C) > (C)
373	CH4(g)+202(g)→C02(g)+2H20(g)+210Kcal, 在S. T. P. 下2. 24L之甲烷燃烧時會放出多少 Kcal的熱量?①16.8②21.0③42.0④105。
374	算術平均、中位數、眾數及幾何平均數是常見的四種平均值,其中何者易受組中極端的數據影響?①算術平均②中位數③眾數④幾何平均數。
375	安裝閥於管線上時:①需考慮流體方向②不必考慮流體方向③不必考慮操作時之方便④不必考慮維修時之方便。
376	在15℃下450g之A氣體,經10min後剩下410g,若溫度升至45℃時,則450g之A氣體,經 10min後將剩下多少g?①420②130③280④320。
377	下列有關催化劑對反應之影響的選項中,何者正確?①僅增加正反應之速率②降低該反應之反應熱③改變反應的平衡狀態④提供新的反應途徑以改變能量障壁。
378	下列各條件中,何者不會影響反應的速率?①催化劑②活化能③反應熱④反應物濃度。
379	有關反應熱的大小與活化複體之位能的關係,下列何者正確?①成正比②平方成正比③平
510	方根成反比④無關。

380	溫度升高時,一般化學反應之速率均會加快,其主要原因為下列何者?①物系中具高能量之粒子增加②反應粒子之碰撞機率增加③參與瓶頸反應之粒子數增加④反應之活化能漸趨
 	有關影響反應之速率的下列敘述中,何者錯誤?①溫度愈高,反應速率愈快②液相反應中
381	
	, 壓力愈高, 反應速率愈快③活化能愈高, 反應速率愈慢④濃度愈高碰撞機會愈多, 反應
	速率愈快。 下列關於催化劑的敘述中,何者錯誤?①催化劑可參與化學反應,而且本身不變②催化劑
382	
	可改變物系之平衡狀態③催化劑可同時改變正、逆之反應的速率④催化劑可提供一條活化
	能較低之反應途徑。
383	下列各選項中,何者對正反應之反應速率沒有影響?①催化劑②溫度③生成物之濃度④反
20.4	應物的表面積。
384	正催化劑具有改變下列何項的功能?①反應熱②平衡常數③反應機構④動能分佈曲線。
385	下列關於化學反應的敘述中,何者錯誤?①吸熱反應時,增高溫度有利於反應之完成②放
	熱反應時,降低溫度可使反應速率增大③催化劑可同時促進正、逆反應的反應速率④正、
	逆反應均須有足夠的活化能才能反應。
386	下列關於催化劑的敘述中,何者正確?①催化劑可改變化學反應的活化能②催化劑可改變
	化學反應的反應熱③同一催化劑對不同化學反應的催化效果大致相同④任何化學反應均需
	依賴催化劑的參與才能發生。
	在室溫下,某一化學反應已達平衡,則不列各項的敘述中,何者正確?①反應物已完全變
387	成生成物②正逆雙方的反應均已停止③反應物與生成物之濃度相同④正逆雙方的反應速率
	相同。
388	化學反應之平衡常數(K),會受下列何種因素之影響而發生改變?①催化劑②濃度③壓力
	(4)温度。 与如此多压度为亚族类数似),A立下到行任田主为以鄉大政山北域 (2) (2) 即传统从(2) 原为
389	氣相物系反應之平衡常數(水),會受下列何種因素之影響而發生改變?①體積變化②壓力
\vdash	變化③濃度變化④温度變化。
390	下列各選項中,何者是氧化劑的特性?①常放出電子②其自身的氧化數會增加③在氧化還
	原反應中常被還原 (E°值)的敘述,何者正確 ?(1)E°值越大是越強的氧化劑 ②可由E°值推測
391	
392	反應之快慢③E°值太的較易獲得電子④△E°>0時,代表該反應可自然發生。 下列之化合物,何者的分子內不含有輕基的官能基?①乳酸②甘油③苯二甲酸④酚。
393	下列之化合物,何者可和硝酸銀的氨水溶液反應而析出銀?①甲苯②乙二醇③丙醛④丁
394 395	下列之選項,何者可用來表示油脂之新鮮程度?①酸價②碘價③皂化價④醯化價。
	油脂乃脂肪酸與何種醇類反應後所生成之酯類?①甲醇②乙二醇③丙三醇④己六醇。
396	油脂之分子量愈大,則①酸價愈大②皂化價愈小③碘價愈大④酸價愈小。
397	一般為加速溶液中之微細粒子的沉澱,以使溶液澄清而常用①攪拌器②離心機③篩析④過
	濾。
398	市售比重為1.18,濃度為12M的濃鹽酸約含HC1(HC1=36.5)①25~27%②35~37%③55~57%
	$495\sim97\%$ \sim
399	可直接配製標準溶液以供作標定的酸是①鹽酸②草酸③硫酸④磷酸。
400	使用移液管釋出試液時,下列操作何者錯誤?①取下吸球②移液管保持垂直③尖端貼於燒
	杯玻壁①握住移液管釋出最後一滴。