

● 作者/John A.Tirpak

● 譯者/蕭光霈

● 審者/黃坤銘

Piecing Together the NGAD Puzzle

取材/2022年5月美國空軍日刊(Air Force Magazine May/2022)

「下一代制空」計畫,主張發展具有次世代匿蹤能力之載 人戰機,搭配可攜掛彈藥、監控戰場、遂行電戰且能攻擊 陸基防空系統的無人機進行伴飛。

(Source: Mike Tsukamoto/USAF/Erin Baxter

美空軍「下一代制空」計畫發展載人戰機、無人護航機及其他機型的混合機隊,因計畫內容涉及機密,外界難以一窺全貌。本文乃蒐整美空軍高層與航空產業相關消息,勾勒出「下一代制空」計畫系統家族之發展概況與未來遠景。

軍之核心能力是制空。 ┷ 當主力戰機日漸凋零, 未來是否堪負制空重任令人存 疑。美空軍預判,2030年,F-22 戰機將無法在空戰中存活,恐 讓聯合部隊蒙受空中攻擊。要 勝過中共殲-20戰機與其他敵 方戰機,以及全球各地密布的 陸基防空系統,發展空優戰機 後繼機型已成迫切要務。

2018年迄今,美空軍共計 挹注25億美元發展上述後繼 機型——「下一代制空」(Next-Generation Air Dominance)系 統家族。2025年,累積投入預 算將達90億美元。雖然目前仍 屬高度機密,但空軍已逐漸釋 出部分「下一代制空」戰機的 細節,而所謂的「系統家族」, 即指家族內各型戰機將協同作 戰,於作戰中奪取空優。「下一 代制空」家族至少包括一架載 人戰機與為數不明之無人機, 並運用其他技術,包括載人/無 人共用載臺、飛彈、筴艙與外接 能力,部分項目亦能從太空遙 控。部分護航機型攜掛感測器 或武器,其餘機型則具備電戰 或對地攻擊能力,如此可讓「下 一代制空」戰機得以突穿敵防

禦措施,使戰場上任何目標都 在劫難挑。

一年前,美空軍高層揭示 2020年代末期與2030年代戰 機的「4+1」計畫,要求階段性汰 除F-22戰機。此舉出乎眾人意 料。該項計畫之首要條件,就是 「F-22戰機換裝『下一代制空』 戰機」。

2021年5月,美空軍負責擘劃 未來發展(前身為戰略、整合暨 需求)次長希諾特(S. Clinton Hinote)中將於受訪時透露, F-22 戰機服役近20年,面臨零附件 老舊與無法性能提升的限制。

敵方先進感測器讓F-22戰機

無所遁形。1990年代,甚至早 在1980年代末期,就使用全新 塗料或採取積極作為對此「猛 禽」(Raptor)式戰機進行改良, 但也只能讓此型戰機苟延殘 喘。2023會計年度,還編列3 億4,400萬美元發展新型感測 器,協助此型戰機銜接「下一代 制空」戰機。希諾特中將表示: 「在相關領域,我方無法承擔 太多風險。」

2021年,美空軍多次提及 2023年將挹注「大量經費」於 「下一代制空」計畫。2022會計 年度,「下一代制空」計畫編列 15億2,500萬美元,而2023會計

美空軍高層捨棄當前空中兵力結構,籌措「下一代制空」計畫所需經費,空軍 部部長肯達爾(左一)出席眾議院軍事委員會,向列席委員說明年度預算支用 規書 (Source: USAF/Eric Dietrich)

年度則躍升為16億5,800萬美元。美空軍高層為 籌措經費,寧願捨棄當前兵力結構,其中包括在 2023年汰除部分機齡較高的F-22戰機。

早在2018會計年度,「下一代制空」計畫即納入預算編列,當時預算金額為2億9,500萬美元,2019會計年度列在「空優系統家族」(Air Superiority Family of Systems)項次,編列4億3,000萬美元。

美空軍編列2022會計年度預算的說法是,「下一代制空」計畫可「藉引進當前足以扭轉局勢之技術,確保我方未來持續享有空中優勢」。「下一代制空」計畫「並非單一載臺,美空軍著眼於填補現有戰力缺口,而非打造單一『次世代』戰機」。

但在「下一代制空」家族中,至少有一架載人 戰機,由無人機全程護航伴飛。2020年9月,美空 軍前採購執行官羅普(Will Roper)透露,一款「下 一代制空」的全尺寸飛行展示機已完成試飛,並 婉轉指出該型機「打破多項紀錄」。羅普事後受 訪時指稱,個人內心掙扎許久後才決定對外透 露,要讓空軍這個大家庭安心,讓大家知道目前 推動之數位工程「已有實質進展」。

羅普希望「下一代制空」計畫能夠促使傳統主要合約商與新創公司一同較勁,新型戰機不盡然要由擔綱設計之廠商建造。羅普預劃採小批量生產,每批數量為50至100架,單一機型完成後,以更先進的設計研發次款機型,每款新機型的研發週期約為五年。此種做法研發週期短,可取代

美空軍F-22戰機於1980年代完成設計,2005年成軍,但敵方感測器將於十年內突破其匿蹤能力。「下一代制空」家族的匿蹤能力必須「更上一層樓」。(Source: Betty Chevalier)

過往F-22與F-35戰機專案所採用的「贏者全拿」 模式,將美空軍技術更新週期從數十年縮短為數 年。美空軍目前尚未揚棄此做法,該做法與美空 軍參謀長布朗(Charles Q. Brown Jr.)上將對空軍 應「加速改變,以免失敗」(Accelerate Change, or Lose)的忠告緊密結合。

羅普當時表示:「我並不是説我們打造一種『電 子模擬戰機』,並在我方建構的虛擬世界完成多 次試飛。而是已經建造一架全尺寸展示機,並在 現實世界中完成試飛。」

2021年5月,希諾特於受訪時指出,個人「對於 『下一代制空』計畫進程相當驚訝」。希諾特陪 同通過安全查核的國會議員參觀該型戰機時,來 訪議員也對目前進展「印象深刻」。希諾特進一 步指出:「我們必須讓計畫付諸實現,但仍有諸多 未盡之處。」但該型機試飛員對「下一代制空」展 示機賦予高度評價。

希諾特未公開「下一代制空」戰機之研發期 程,但提及某些機型兼具載人/無人操作模式。 「下一代制空」戰機也不會以「一換一」方式汰換 F-22戰機。

美空軍現有185架F-22戰機,希諾特的説法和 羅普計畫內容相吻合——僅預劃先行採購至多 100架的首款「下一代制空」戰機,接續再研發後 續改良款。

雖然,希諾特不願「證實」第二款「下一代制 空」戰機是否已投入研發。但後續的發展快速, 讓「奠基我國工業基礎的優秀廠商,在後續機型 設計階段可以再行競標,而非在首款機型進入後 續維持階段後就將其拒於門外」。

羅普「下一代制空」計畫願景的一個重點是, 量產機型全壽期不須長達30至40年,而是要將 研發、成軍至除役的整個生命週期縮短為12至15 年。前述做法係將作業維持費(一般而言,作維 費占武器系統成本70%)調整至設計與採購階段 運用。原有作業模式下,預算大多花費在飛機維 保作業上,而非研發全新機種;羅普想要調整預 算前後支用比例。零附件老舊過時幾乎對美空 軍所有舊式武器系統帶來不良影響。希諾特表 示,「下一代制空」計畫之目的在於鬆綁「廠商 枷鎖」──此枷鎖讓原始製造商掌控戰機作業維 持,重視性能提升與裝備維保,而不是發展全新 專案。

相形之下,「下一代制空」計畫將不斷提升硬 體與軟體。每次推陳出新,都會更上一層樓。羅 普希望每五至八年就能有跨世代進展。

F-22戰機可掛彈攻擊地面目標,而「下一代制 空」戰機亦具備此項能力。2021年6月,美空軍 參謀長布朗上將於眾議院軍事委員會中指出: 「『下一代制空』戰機將具備某些空對地作戰 能力,以確保其能夠在戰場存活,並讓我軍飛行 部隊指揮官與聯合部隊有更多的作戰方案。」根 據美空軍高層評論與相關產業訊息,不難梳理出 「下一代制空」戰機的部分特性。

飛行性能

「下一代制空」戰機飛行高度與速度皆可媲美 F-22戰機,亦即巡航高度可達6萬5,000至7萬呎, 極速可達2.8馬赫。F-22戰機追求極高運動能力, 但美空軍尚未透露「下一代制空」戰機是否能遂

若美空軍決定未來空戰中,尤其針對太平洋戰區而言,空中續航力與武器酬載量比機動能力重要,那麼「下一代制空」 計畫中主要機型的外觀,就可能迥異於傳統戰機。圖中,一群無人護航機與一架外觀類似B-21轟炸機的「下一代制 空」 戰機進行編隊飛行。(Source: Mike Tsukamoto/USAF/Greg Davis)

行近距離空戰。若戰機配備先進感測器與精準飛 彈(如F-35戰機),就能對尾隨敵機發射飛彈。「下 一代制空」戰機或許會捨棄絕佳空中機動能力, 以換取更大容量油箱,以及提升武器酬載。

2017年,空戰司令部前司令卡萊爾(Herbert "Hawk" Carlisle)上將推測,「突穿型戰機」(Penetrating Combat Aircraft)發展據信會納入「下一 代制空」計畫,可能與B-21轟炸機相似,具有龐 大主翼與大容量油箱, 航程可涵蓋太平洋戰區全 境,而且掛彈量更大。

2022年3月,年度預算公開時,美空軍計畫暨 專案次長納洪(David S. Nahom)中將指出,美空 軍過去聚焦歐洲與俄羅斯,戰機研發亦以此為主 軸,但「下一代制空」戰機則全然不同。納洪在受 訪時指出:「我方過去從未發展航程遍及太平洋 全境的戰機,所以此型機應為首例。」

近期,其他軍種高層亦指出,「下一代制空」戰 機應有兩種機型,一種適合太平洋戰區長程作戰 需求,另一種可投入幅員較小的歐洲戰區遂行作 戰。

匿蹤能力

大部分軍方官員絕口不提「下一代制空」戰機 的匿蹤能力。部分官員則表示,若戰機飛行速度

夠快,即便行蹤曝露,敵方守軍 仍無法以飛彈及時攔截,這樣 就可考量用速度來換取匿蹤能 力。

另一方面,近年美軍高層官 員提出嚴重警告,中共恐具備 **偵測美方第五代戰機之能力。** 空戰司令部司令凱利(Mark D. Kelly)上將經常提到匿蹤「並非 隱形」,且匿蹤飛機進入特定距 離內就會被偵獲,因此需要具 備近迫電子干擾功能以確保安 全。

業界消息稱,與當前第五代 戰機相比,「下一代制空」 戰機 更難偵測,其雷達截面積相當 於一顆BB彈大小。「下一代制 空」戰機匿蹤能力並非針對少 數搜索雷達頻段而設計,其能 在多種不同頻寬感測器面前展 現較佳匿蹤性能。

近期數月,有人拍下F-22與 F-35戰機,甚至是出道較早的 F-117戰機,外觀有不尋常的發 亮金屬鈑件,某些甚至包覆全 機。美空軍並未説明其用途,但 或許是在測試第五代戰機可能 採用的性能提升套件,或者是 「下一代制空」戰機的某種匿 蹤材料。

2010年代中期,美空軍官員 曾公開提及,可能為次世代戰 機打造一款具備電子干擾功 能,名為「突穿型電子攻擊」 (Penetrating Electronic Attack, PEA)機的護航機。雖然後續就 沒有相關討論,但干擾型護航 機必會納入「下一代制空」系統 家族。

感測器

當前第五代戰機配備「主動 電子掃瞄陣列」(Active Electronically Scanned Array, AESA) 雷達,能夠迅速跳頻,其電子發 射可減少發現及追蹤之時間。 在「下一代制空」系統家族中, 載人機可能不會配備主動電子 掃描陣列雷達,而改由護航機 提供該項功能,讓載人機較不 易遭敵偵獲。

「下一代制空」戰機當然會 配備紅外線搜索與追蹤(Infrared Search-and-Track, IRST)系 統,用以識別敵方匿蹤戰機的 熱源。該系統是F-22戰機規劃 採用的一項感測器性能提升方 案,不久前還有人發現該型機 機翼下方掛載匿蹤纖細外形之 **筴艙。美空軍不會討論是項筴** 艙,而該筴艙前端似乎有一個 透明介電質(Dielectric Transparencv) °

發動機

「下一代制空」戰機必須在 無空中加油機支援的情況下, 深入敵境作戰。為達成上述目 標,該型機須配備大容量機身 油箱,以及具備低油耗的特性。 2007年起,美空軍挹資數十億 美元在「調適型發動機換裝專 案」(Adaptive Engine Transition Program, AETP),以發展推力更 大、燃油效率更佳的發動機。此 型發動機必須能滿足各種任務 需求,有時候需要更大「轉彎與 加速」動力,或是以低油耗來進 行巡航。其他相關技術包括零 附件積層列印(Additive Printing)、調適性密封膠與耐高溫陶 瓷,讓發動機能在比渦扇發動 機更高溫的環境下運作。

「調適型發動機換裝專案」 有兩款發動機:奇異航空(GE Aviation)公司XA100型與普惠 (Pratt & Whitney)公司XA101 型。2021年秋季,兩款發動機進 入測試階段。未來兩年,將進行 耐用性與其他項目測試。兩家

圖中未來戰機概念款顯示,無論無人或載人「下一代制空」 戰機,均不具備尾 翼,以減低雷達截面積。雖然美空軍與美海軍共享「下一代制空」技術,但其 目的並非發展如F-35之聯合戰機,並量產數千架。「下一代制空」計畫建造一 系列機型,各機型量產50至100架,每五至八年推出全新構型。空軍亦期待 吸引小型企業以數位設計參與競標。(Source: Mike Tsukamoto/staff; Boeing)

廠商皆稱已達美空軍目標──增 程25至30%且加速力增強18%。 為達前述目標,兩型發動機必 須輸出4萬5,000磅推力。兩者 也將比現今戰機發動機輸出更 大電力,以供電戰系統或導能 武器(Directed-Energy Weapon) 使用。

雖然廠商未進一步説明,但 仍表示專案發動機可提升戰機 匿蹤性,很可能是透過降低發 動機熱源來達到前述目的。

美空軍官員與業界人士表示, 「調適型發動機換裝專案」一 向是針對「下一代制空」計畫量 身訂做。經過測試與調校後,案 內發動機可望於2027年量產, 剛好可以安裝在「下一代制空」 計畫第一批量產機型。此刻,空 軍亦考慮將此型發動機技術,

運用在第四批次(Block 4)的 F-35戰機上。

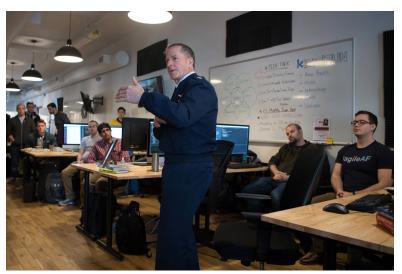
關於2023會計年度「調適型 發動機換裝專案」預算編列情 況,美空軍部部長肯達爾(Frank Kendall)受訪時指出:「空軍將 持續相關研發工作……新型發 動機研發成本相當高,空軍將 試圖與其他軍種合作,期能籌 措足夠經費推動研發進程。」 F-35戰機聯合專案辦公室主任 菲克(Eric T. Fick)中將指出,就 現行F-35戰機多國合作規定, 「若要與眾不同,就得付費」; 若美軍要在F-35A型戰機安裝 非標準型發動機,就須獨自負 擔研發費用。2023會計年度, 空軍在「調適型發動機換裝專 案 1 項下編列3億5,400萬美元 預算,為2022年度的三倍。

美海軍擁有類似「下一代制 空」計畫的專案,國防部官員早 已表示,海軍理當會使用美空 軍專案研發的發動機。

武器系統

● 空 對 空 攔 截 飛 彈(Air-Launched, Aerial-Intercept missile, AIM):「下一代制 空」戰機主要武器,很可能 是目前洛馬公司生產之AIM-260A型「聯合先 進戰術飛彈」(Joint Advanced Tactical Missile, JATM)。2019年,聯合先進戰術飛彈於美 空軍產業會議(Air Force Industry Conference) 中首度亮相,可對抗中共霹靂-15(PL-15)長程 空對空飛彈,重拾美軍在空戰中「首射即首 殺」(First Shot, First Kill)的獨霸地位。2021年 9月,空戰司令部司令凱利上將在美空軍協會 年會中表示,空軍需要「第五代武器」來武裝 第五代戰機。

凱利指出,當前武器會弱化匿蹤優勢。若匿 蹤戰機進入所有航空器皆無所遁形之區域 內,擁有匿蹤能力就毫無意義。中共霹靂-15 飛彈射程約80哩,所以AIM-260飛彈射程應該 會更遠。凱利相信「『聯合先進戰術飛彈』辦 得到」。


為維持匿蹤性能,「聯合先進戰術飛彈」勢 必要裝載於F-22戰機機腹。這就表示,其彈體 大小應與F-22戰機目前主要武器AIM-120A型 「先進中程空對空飛彈」(Advanced Medium Range Air-to-Air Missile, AMRAAM)相仿。

「聯合先進戰術飛彈」可能配備紅外線或 毫米波雷達等多模式尋標器。凱利表示:「即 使『先進中程空對空飛彈』性能優異,但我方 已物盡其用。」美空軍已在佛羅里達州埃格林 (Eglin)空軍基地測試「聯合先進戰術飛彈」, 然目前尚無航空迷目擊或拍攝到測試過程,可 顯示該型飛彈外觀與「先進中程空對空飛彈」 極為相似。此舉透露洛馬公司試圖縮小彈體零 組件,俾裝載更多推進劑。該型飛彈可能搭載 直接攻擊目標的碰炸式彈頭,而非使用破片攻 擊,此舉亦可增加推進劑之儲存空間。

- 先進模組化飛彈:依據美空軍預算書,「先 進模組化飛彈」(Modular Advanced Missile, MAM)係另一款高度機密系統,該型飛彈預 計在2023年進行「運動性能測試」(Kinematic Test)。此型飛彈似乎可替換彈頭與尋標器,作 為空對空或空對地飛彈,亦可配備「堆疊式」 與模組化推進系統,以延長飛彈射程。
- **人民程接戰武器與長程空對空飛彈**:雷神公司 「長程接戰武器」(Long-Range Engagement Weapon, LREW)與波音公司「長程空對空飛 彈」(Long-Range Air-to-Air Missile, LRAAM) 可能實際上就是「先進模組化飛彈」,因為兩 者皆具模組化特性,可加裝推進劑來延伸射 程。
- 游隼與古達:2019年,雷神公司投入經費,成 功研發「游隼」(Peregrine)飛彈,並宣稱該型飛 彈尺寸僅為「先進中程空對空飛彈」的一半, 但速度更快、射程更遠。由於其體型較小,戰 力又可媲美「先進中程空對空飛彈」, 適合搭 載於「下一代制空」系統家族護航機上,成為 「下一代制空」的機載武器。洛馬公司「古達」 (Cuda)飛彈彈體與游隼飛彈大小相仿,但擁有 獨特控制系統,亦是洛馬公司針對美空軍研究 實驗室(Air Force Research Laboratory)小型先 進戰力飛彈(Small Advanced Capabilities Missile)專案而開發的武器系統。

某些飛彈可能規劃用於「下一代制空」家 族的後續構型或後繼機種上。2021年9月,凱 利於美空軍協會舉辦的航太與網路大會(Air, Space & Cyber Conference)上表示:「我們投 入全部心力,逐一解決問題,而不瞻前顧後, 同時考慮其他面向,我們必須放眼未來。」凱 利指出,中共甚至在武器系統成軍前,就開始 發展後續構型。

- ▶極音速武器:極音速武器(Hypersonic Weapon)不侷限攻擊地面目標。過去十餘年來,美 國國防部高階官員持續推廣吸氣式極音速系 統,當作未來空對空武器之載具。凱利堅稱: 「極音速系統飛行速度快,能減少發射至擊中 目標的飛行時間。但必須確定我方武器接戰 距離,等同或超過敵方武器系統射程。」
- ▶**導能武器:**美空軍自衛高能雷射驗證器(Selfprotect High-Energy Laser Demonstrator, SHIELD)專案所研發的筴艙,可以發射150千 瓦的集中光束。雖然前述筴艙是空軍目前現

美空軍前參謀長古德芬推估「下一代制空」系統將具備 「五項關鍵技術」,但不會同時完成研發、測試與量產。

(Source: USAF/Jerry Saslav)

有雷射系統,但並非最終解決方案。業界消息 指出,空軍期望發展雷射系統,作為未來空戰 系統之標準配備,至少要能干擾或摧毀來襲 飛彈之尋標器以保護友機。

其他技術

2019年,美空軍前參謀長古德芬(David L. Goldfein)退役上將指出,「下一代制空」系統將 具備「五項關鍵技術」,但不會全數「應用於單一 載臺」,也不會同時完成研發測試、投入量產。古 德芬並未列舉前述五項技術,但事後暗指為發動 機、武器系統、感測器、人工智慧與構聯能力等。

合約廠商

2021年,洛馬公司執行長泰柯列特(James D. Taiclet)與諾格公司(Northrop Grumman)執行長沃 登(Kathy J. Warden)於財報會議受訪時表示,雙 方皆投入發展可應用於「下一代制空」計畫之相關 技術。洛馬公司航空部門執行副總裁鄔瑪(Gregory M. Ulmer)接受本刊訪問時指出,認為該公司「臭鼬 工廠」可在發展載人與無人機隊編組上扮演重要 角色。

只要美空軍未調降機密等級,「下一代制空」計 畫仍會維持高度機密。美空軍部長肯達爾援引過 去冷戰期間慣例,表示不願透露未來戰機的外型 與特徵,以免讓美方對手「搶先」發展反制手段。

版權聲明

Reprinted by permission from Air Force Magazine, published by the Air Force Association.