● 作者/Rick Joe

● 譯者/周敦彥

● 審者/馬浩翔

What a19-Year-Old Study Tells Us About China's J-20

取材/2022年2月外交家雜誌(The Diplomat, February/2022)

近20年前出版的《我國戰鬥機發展戰略研究》是由中 國大陸顧誦芬院士執筆,是中共殲-20戰機最可靠的早 期公開文件,可從中瞭解中共對未來地緣政治、軍事技 術與空戰趨勢的評估。

2022年11月8日,殲-20戰機在珠海國際航空航太博 覽會(China International Aviation & Aerospace Exhibition)上進行衝場表演。(Source: AP/達志)

月 便在完成首飛11年後,並且 在中共空軍服役約六年,中 共的第五代殲-20戰機仍然是世界 上最神秘、最不為人所知的現代戰 機之一。共軍刻意維持低調以及作 業保密,可説是造成這種情況的主 人。

然而在2016年,某份中文報告的 照片張貼在中文軍事論壇。該研究 日期為2003年,標題為《我國戰鬥 機發展戰略研究》(以下簡稱《戰 略研究》)。該篇文章短暫出現在若 干英語共軍觀察社群,然後逐漸隱 沒,僅是曇花一現。

該《戰略研究》是軍事和航空工 業所投入之產物。描述第五代隱 形重型戰鬥機的基本原理、需求、 功能以及設計。該研究於2003年 出版,參考1991至1995年第八個五 年計畫的成果為基礎,最初可能是 在1996至2003年間某時期所撰寫 及發表。該研究是由顧誦芬院士執 筆,他曾在中共航太工業領域中擔 任過各種高階職務,包括瀋陽飛機 設計研究所(601所)副所長和首席 設計師。顧誦芬於20世紀期間在 許多瀋陽飛機的建造中發揮主導 作用,包括殲教-1、殲-8和殲-811等 等,之後擔任「中國科學院」和「中 國工程院」的首席航太院士。

因此,《戰略研究》可說是中共第五代戰鬥機 計畫(後來成為殲-20)最可靠的早期公開文件。讓 人一窺中共在1990年代末到21世紀初有關未來 地緣政治、軍事技術和空戰趨勢的評估,以及中 共自身航太工業的遠景,以及當時針對第五代戰 鬥機性能與任務需求等考量因素。

在過去幾個月裡,筆者在同事協助下,將中文 資料譯為英文,其中包括圖表,使形式和精神等 儘可能貼近原文。(註:該研究幾乎確定並不具機 密性,其中敏感技術資訊多半被省略,或僅出於 代表目的。此外,為閱讀方便,中共戰鬥機的世 代分類已轉換為國際的世代分類,例如:F-16、 F-15、米格-29、蘇愷-27和殲-10被歸為「第四 代」, 而非中文表述相當「第三代」, F-22、F-35和 中共的未來戰鬥機/殲-20被歸為「第五代」,而不 是中文所述的相當於「第四代」等)。

本文將總結《戰略研究》中最有趣且最重要的 觀點,不僅是對殲-20本身的瞭解,也論及其他大

> 型共軍計畫可能發展方向(特別 是共軍的第六代戰鬥機計畫)。

顧誦芬執筆《我國戰鬥機發展戰略研究》,擘劃第五代戰鬥機性能需求與 中共航太工業發展願景。(Source: China Aerospace Science and Technology Corporation)

角色和步步進逼的威脅

該篇《戰略研究》清楚闡明 第五代戰鬥機在匿蹤、火力、機 動、資訊以及通信等方面,相較 舊型第四代戰鬥機所具備之優 勢。針對現代戰爭中空中武力 在奪取空優、達成制海和遂行 電子戰等方面具備之主導和決 定性作用,均以符合國際上理解 空中武力角色之方式清楚加以 表述。

中共國產第五代戰鬥機研製 被描述為可讓其空軍同時執行 進攻與防禦任務,同時推進國 內航空工業。第五代戰鬥機的 發展,也將有助於進一步改善 並且優化第四代戰鬥機技術。 還有一個實現跨越式發展的目

標,也就是將國外第四代戰鬥 機和中共第四代戰鬥機問世的 20至25年時間差距,縮短至國 外第五代戰鬥機和中共第五代 戰鬥機的10至15年差距。

第五代戰鬥機的主要任務明 確為奪取空優,並且遂行遠程 空中接戰。其他次要任務包括 進行空對地打擊、海上打擊以 及壓制敵方的預警、導引和射 控系統;執行資訊作戰任務;擔 任輔助預警機、執行電子戰任 務;提供友軍目標資訊;並且在 任務期間為其他飛機提供全面 領導和防護。

該研究中有許多部分均明 確指出,中共第五代戰鬥機能 夠與美國的F-22抗衡,並目比 F-35更具有關鍵優勢。這兩型 美製飛機都經過詳細描述,並 被視為最直接威脅,而目認為 中華民國空軍有可能在2015年 後籌購F-35。中共第五代戰鬥 機的基本需求包括與F-22不相 上下之匿蹤能力、超音速巡航 能力、卓越的次音速和超音速 機動能力、較大的作戰半徑、 高度整合的航空電子設備和武 器套件,還有優異可靠性、容易 維護和成本低廉。這些內容在

翻譯文件中的相應章節會充分 加以闡述,為避免本文過長,就 不在此複述。本文尚有特定章 節環權衡重型雙發動機戰鬥機 與輕型單發動機戰鬥機的適用 性,並且根據其酬載量、航程、 運動特性以及針對這種配置等 先期研究來選擇重型雙發動機 構型。

經驗豐富的共軍觀察人士看 得出來,該《戰略研究》中所描 述第五代戰鬥機的空優作用, 與2000年代後期有關殲-20的 長期謠言,以及後續有關該型 機近年來任務的官方聲明完全 一致。特別是關於要求殲-20 能與F-22抗衡,並且相較F-35 擁有更多優勢的傳言亦廣為人 知, 並目在2000年代後期廣泛 流傳,但部分外國觀察人士仍 不甚瞭解該型飛機歷史,或對 這型飛機的成熟度與產業基礎 依然抱持懷疑態度。

值得注意的是,中共第五代 戰鬥機「與F-22抗衡」和「比 F-35擁有一些優勢」等要求,並 未伴隨這些飛機可能出現對抗 的具體作戰場景或軍力平衡。 在撰寫本文當下, F-22可能被 認為是更嚴重目更成熟的威

脅,並預期會將優異運動特性 與同等或更佳之屠蹤性、航空 電子設備/感測器以及武器,運 用在當時研製中的F-35,而目 F-22的採購規模也很可能會比 最終製造出來的187架要大得 多。事實上,隨著對F-22和F-35 各自實力與機隊規模有著更深 入瞭解,中共第万代戰鬥機的 相關需求很有可能在2000年代 間發生類似變化。

然而這些警告應銘記於心, 在《戰略研究》中所描述的第 五代戰鬥機則具有明確意圖, 旨在根據其自身優點與當時領 先的第五代機型相抗衡以及接 戰。第五代戰鬥機並未被描述 為用來攔截速度緩慢的多功能 戰機,而遭遇敵方第五代戰鬥 機時只能逃之夭夭,也並非以 犧牲空對空任務能力為代價, 而專門負責空對地打擊任務。

時間表、風險和風險緩解

上述中共第五代戰鬥機的需 求和能力似乎是大膽且幾乎 難以企及,考量這些方案是在 1990年代末和2000年代初期所 提出,當時中共的航太產業甫 完成國產殲-10戰鬥機首飛(距

在《戰略研究》中指出,中共第五代戰鬥機必須在匿蹤、超音速巡航、機動能力與作戰半徑等面向,與F-22分庭抗 禮。圖為美軍F-22戰機。(Source: USAF/Vernon Young Jr.)

離服役還有五年),而且才開始組裝從俄羅斯進口 的殲-11A(蘇愷-27SK)戰鬥機套件。

然而,在1990年代初的第八個五年計畫期間, 第五代戰鬥機項目的先期研究備受重視。《戰 略研究》還強調風險較低的產業領域(諸如機身 設計技術、飛行控制系統、機電系統和空對空飛 彈),並且釐清風險較高領域(諸如發動機技術和 航空電子系統),同時考慮在適當情況下使用過 渡系統的必要性。最值得注意的是,《戰略研究》 明確指出推重比10(TWR10)發動機(殲-20能夠輕 易達到超音速巡航)的國內研發可能會延誤;因 此,至少在最初構型飛機測試中可能會需要WS-10/太行發動機。事實上,根據後續研發和生產 顯示,最初的測試和第一批生產使用的是俄羅斯

AI-31發動機,而後來批量生產 所使用的是WS-10發動機,而 TWR 10發動機(WS-15)截至本 文撰寫時刻正進行進階測試。

該《戰略研究》提供預期 研發時間表,並指出該型機在 2006至2007年開始進行全面 研發、2013年左右開始飛行測 試,並且於2019至2020年投入 使用,2020年交付首批六架飛 機。同時,TWR10發動機將在 2017年左右開始試驗性生產及 交貨,並且於2021年開始小批 量交貨。回顧過去,WS-15的研 發和交付進度已經落後,而整 體殲-20飛機(使用過渡的AI-31 和WS-10發動機)著手研發及生 產則早於此預期,在2010年初 進行飛行測試,2016年開始交 付第一批共六架飛機,2018年 左右推行小批量交貨,比如此

預期提前三到四年。儘管如此,事後看來預期時 程表似乎相當準確且合理。

研究中也提及第五代戰鬥機的初步單位成本, 估計為人民幣4.5億至5億元, 這大概是按照2000 年代初的匯率來計算,然而並未列出量產規模, 可能呈現的是早期批量生產的單位成本。此型飛 機的全壽期為40至50年,發動機、航空電子設備 和武器系統則被列為未來可能升級之範疇,但考 慮第五代戰鬥機機體的固有特性,機身升級將受

到更多限制。

技術特性和次系統

研究中也介紹各種初始技術諸元、描述先進空 氣動力學配置,具有高升力、低阻力和高匿蹤性, 升力係數為2,雷達橫截面小於0.3平方公尺,至 少就前項而言如此。動力由兩具TWR10發動機提 供,全加力後燃推力為15噸,並且採用輕質結構 材料,包括但不限於鈦合金與複合材料。

航空電子設備將包括一具追蹤距離為200公里 的主動式相位陣列雷達,能夠同時追蹤20個目標 並進行多目標接戰,並且結合具有廣泛偵測融合 (Extensive Sensor Fusion)功能的開放式航空電 子設備套件、匿蹤通信能力以及整合式電子戰套 件。該型機採用輕量、體積小的機電系統,以及 綜合電力與環境管理系統。主武器將包括視距外 空對空飛彈,以及主要安裝在艙內的視距內高離 軸空對空飛彈,並能採用外掛武器,包括空對地 武器。

該型機的空氣動力學設計與動力裝置,可輕易 達成超音速巡航目的。雖然並未列出超音速巡 航的基本要求,但是出於説明目的,提及1.7馬赫 的速度。飛機的作戰半徑在圖表中的描繪為超過 1,000公里和低於2,000公里。由於原始照片的畫 素難以辨別確切數字,但根據地理位置,可以估 計是在1,300到1,800公里之間。研究指出,從中 國大陸境內機場起飛的第五代戰鬥機,應該能在 不進行空中加油的情況下,在該地區其他國家首 都上空執行任務,並且應能在一次空中加油情況 下飛越整個日本列島。

注意事項

《戰略研究》揭櫫許多專案 細節,可能就是意指殲-20戰 機;然而,該研究中有關殲-20 本身的影響,則須考量某些警 告訊息。鑑於本文未列有機密 等級,而且是在1990年代末到 2000年代初撰寫,因此從當時 到2000年代中後期全面開始研 發殲-20期間,各種需求、技術 領域和風險評估都可能會發生 變化。因此,《戰略研究》想當 然爾並非是對現今殲-20戰機諸 元的詳盡紀錄。

上述飛機及其發動機研發以 及量產的預劃時間表,是現實 結果與研究報告大相逕庭的例 子。也可能存在其他偏差。

例如,飛機的主動電子掃描 陣列雷達追蹤距離200公里和 追蹤20個目標的能力可能會在 幾年內進行修正。事實上,在 針對出口市場提供的當代中共 戰鬥機主動電子掃描陣列雷達 上,也看過類似或更好參數,如 LKF601E雷達系統,並且被認為 是傳統戰鬥機經濟實惠的升級 解決方案。

同樣地,TWR10發動機被形 容為可產生15噸推力, 而WS-15

發動機的推力可達到16至17噸 的範圍,而且在研究中並未提 及推力向量噴嘴,儘管有許多 謠言暗示WS-15就有配備一具。 飛機對雷達橫截面的要求也需 要一些詳盡詮釋,因為僅提供 前部區域的最低需求,而未能 指出針對飛機其他部分的雷達 橫截面要求。考慮到雷達橫截 面對五代機的敏感性,這類資 訊的實際細節很可能是在非機 密文件中遭刻意省略。

F-35戰機的出現以及F-22戰 機產量在2000年代中後期的削 減,也可能大幅影響航空電子 設備、資料鏈路和偵測器融合 等為了因應進逼威脅而產生的 需求,同時影響殲-20和第万代 戰鬥機的總體採購規模所需。

《戰略研究》描述2010年代 後出現的無人飛行載具與第五 代戰鬥機可能進行混合編隊, 但卻僅一筆帶過。鑑於最近全 世界與中共都致力於追求運用 「載人/無人組合」,有關殲-20 與無人飛行載具共同作戰的説 法,以及殲-20AS雙座機的出現 (這很可能會提升指揮能力),隨 著計畫發展,未來可能會更強 調並且運用與無人飛行載具的

合作行動。

對其他計畫的影響

從內容來看,《戰略研究》並 非是一份偏技術性的文件。根 據其開宗明義的段落來看,這 似乎是針對文人政府、軍方和 企業人士的論文,作為其進一 步研究與發展的指南。

然而,本文所描述的先期研 究、應用開發、系統性去風險和 計畫期程時間表,則是此類計 畫在構思期間所能參考之有用 範例,因此或許能為共軍目前 可能正進行之其他類似計畫提 供可供參考的整體看法。最直 接適用的專案,是共軍的第六 代戰鬥機項目,該專案已經有 多家企業提出影射和研究,還 有一些猜測描述。正如筆者先 前所撰,外界對共軍的第六代 戰鬥機專案知之甚少;然而,該 型機曾被點出將會在2035年之 前服役。

快速原型和數位設計技術可 能會縮短新型飛機的研發週 期,其中包括第六代戰鬥機。然 而,在過去幾年中類似《戰略 研究》的論文,很可能已經針對 第六代戰鬥機專案進行撰寫並

中共第六代戰鬥機必定是長期學術研究、性能評估與研發製造的心血結晶,亦可能採用整合「載人/無人」的混合操 作模式,圖為珠海國際航空航太博覽會飛行秀場景。(Source: AP/建志)

發布資訊。先期研究和研發可能迄今已進行一段 時間,而業界人士也説明這一點。有證據顯示,近 年來研究可能應用於第六代戰鬥機的平面模型, 並且已經確定有針對多種高速無尾飛翼構型的 研究,同時在成都的飛機公司,被目擊到一架神 秘的全尺寸無尾飛翼機身。這些可能只是與共軍 第六代戰鬥機有關的極少公開資訊,但是《戰略

研究》的經驗應該會證明,當第六代戰鬥機出現 時,必定是結合長期學術評估、先期研究與研發 工作的成果。

版權聲明

Reprint from *The Diplomat* with permission.