模擬機台運用於工兵機械操作訓練探討-以挖土機為例

王姿文少校

提要

- 一、探討現行挖土機操作上,所面臨到的種種訓練窒礙問題, 若運用模擬機台是否可達到訓練成效。
- 二、針對國軍現行挖土機形式,瞭解其裝備諸元、性能及影響 訓練之因素。
- 三、挖土機訓練限制因素及模擬機台各因素進行分析,提供採購之建議。

關鍵字:工兵機械、挖土機、模擬機台、操作訓練

前言

工兵具有逢山開路、遇水 架橋之兵種特性,其工兵機械 乃我工兵最具代表性的裝備, 戰時可執行工事構築、便引道 開設、各式作業地區整地等作 業 , 平 時 可 投 入 災 害 防 救 任 務,在戰時工兵支援任務時, 可開創最有利於作戰之優勢, 但裝備戰力的發揮,需仰賴人 員的專業操作,也就是說,除 了兵種裝備的特殊性外,其專 長人員的訓練培育才是根本戰 力的來源,故運用模擬器(機台) 結合訓練以提高訓練成效的概 念因此而出現。本研究將透過 模擬機台實施訓練分析,以提 供未來採購參考。因無法實際 進 行 研 析 驗 證 並

裝備效能,故本研究內容資料 僅以目前可蒐集資料及文獻 探討之。

模擬機台與實機操作訓練 模式與窒礙分析

一、模擬機台與實機操作訓練 模式簡介

表1 模擬機台與實機各項諸元比較

DAWAL ASSAUL ABBAGOOM					
諸元	實機(以320DL挖土機為例)	模擬機台(如圖2) 舉升 高度 最大工作半徑 下挖深度			
長(M)	9.5	3.5			
寬(M)	3.2	1.05			
高(M)	3.1	2.1			
最大作業半徑(M)	9.8	3			
最大舉升高度(M)	9.5	2.3			
下挖最大深度(M)	6.6	0.6			
挖斗容量(M³)	1.04	0.001			
整機重量(KG)	21,090	350			
運行速度(KM/HR)	2.7~5.5	1.1			

資料來源:作者自行彙整。

表2 模擬機台與實機各項性能比較

資料來源:作者自行彙整。

(一)挖土機

運用在土木工程相當廣 泛,包括戰時聯合機械作業任 務及平時建築工程基礎開挖、 河川疏濬工程均大量採用。挖 土機因搭配不同的附屬工具而 有其用途,一般作業以附屬工 具「挖土斗」為主,用於挖掘、 清除、裝載、挖溝、整坡及整 平作業;遇有特殊作業需求, 亦可更換附屬工具「油壓破壞 剪」或「油壓破碎機」,用於拆 除、夾取、剪斷及破碎作業, 其用途相當多樣化¹。

(二)模擬機台

目前普遍運用於娛樂場 所供親子娛樂所用,除動力來 源為電力供給及無配置液壓 行走馬達可進行位移動作 外,其操作方式與動力機械挖 土機大致無異,可進行挖掘、 裝載、回填、壓實及運動體迴 轉等動作。

(三)操作桿操作模式

實機及模擬機台之操縱桿均區分左、右操縱桿,用途為控制挖土機挖臂動作,(如區 1),實機操從桿依出廠廠等 4 種操作模式, H、 K 及 M 模式,可區分 H、 K 及 M 模式分別為廠牌日立、神戶及式則為廠牌日立, Y 模式更为 其 2 回際標準怪手操縱模式(如

表3 操作桿Y模式控制動作

右操作桿動作	右操作桿動作
向前推:大臂上升 向後推:大臂下降 向左推:土斗內收 向右推:土斗外翻	向前推:二臂向前 向後推:二臂向後 向左推:機身向左旋轉 向右推:機身向右旋轉

資料來源:作者自行彙整。

圖 2),而模擬機台與目前國軍 通用操作模式-Y模式相同,可 分別控制 8 個動作如表 3。

模擬機台操作桿

圖1 實機及模擬機台操縱桿位置圖 資料來源: 1.陸軍司令部,《陸軍挖土機操作手冊(第二版)》(桃園:陸軍司令部,西元2015年9 月)。2.作者自行拍攝。

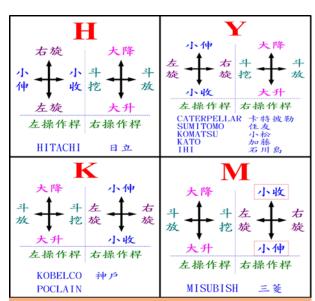


圖2 各項挖土機大廠操縱桿控制說明圖 資料來源:陸軍司令部,《陸軍挖土機操作手冊 (第二版)》(桃園:陸軍司令部,西元2015年9 月)。

 $^{^1}$ 陸軍司令部,《陸軍挖土機操作手冊(第二版)》(桃園:陸軍司令部,西元 2015 年 9 月),頁 1-6~1-16。

(四)作業方式比較

挖土機與模擬機操作雖 有部分相同地方,但作業方式 依截然不同,本次探討以基礎

操作基礎訓練為主,以下針對 挖土機與模擬機作業方式實施 比較及分析如表 4。

表4 作業方式比較					
作業項目	挖土機	模擬機台	分析		
挖掘作業	可執行	可執行	1.運用挖臂及挖土斗,反覆做出挖開、掘起連續動作訓練。 2.模擬機台可執行基礎挖掘作業訓練。		
装載作業	可執行	無法執行	1.運用挖土斗將鬆散物料掘 起,裝卸至運輸車輛上之訓 練。 2.模擬機台為單一機台作業, 無配合運輸車輛上之訓練。		
技 溝作業	可執行	可執行	1.運用挖掘成寬溝及窄溝之 訓練。 2.模擬機台可執行基礎挖溝 作業訓練。		

作業項目	挖土機	模擬機台	分析
整坡作業	可執行	可執行	1.挖土機作業區域常遇坡面 地形,可將坡面壓實並做出 斜面坡度,具有防止土石流 失及工程美觀的功用。 2.模擬機台可執行基礎整坡 作業訓練。
折除作業	可執行	可執行	1.實施建築物拆除作業時, 破壞牆面或樓板結構。 2.模擬機台可將原挖斗部分 改裝成槌球,可模擬執行拆 除作業。
地面整平作業	可執行	可執行	1.在作業區域內實施挖掘移 土、填土整平作業。 2.模擬機台可執行基礎地面 整平作業訓練。
破壊剪斷作業 である。 である。	可執行	無法執行	1.將牆面混凝土夾碎、剪斷 樑柱鋼筋等作業方式。 2.模擬機台目前尚無破壞剪 式,且作業能量較無法負荷。
破碎作業	可執行	無法執行	1.實施碎裂或拆除建築物鋼筋混凝土牆,反覆捶擊物體使目標物產生碎裂效果。 2.模擬機台目前尚無破碎機式,且作業能量較無法負荷

資料來源:作者自行彙整。

二、訓練作業中常見之窒礙問題

目前在工兵機械操作訓練上,還是以實體機械操作訓練為主,且供練習之機具有限並無法一次滿足所有參訓員進行操作,導致影響教學品質、進度之因素,從天候、場地、人為等方面實施分析。

(一)天候因素

1.雨季

機械作業 80%,量 80%,量 80%,量 80%,量 80%,量 70%,量 70%,是 7

2. 熱浪

連續高溫對戶外授課可 能會造成健康或生命威脅,尤 其對患有心血管疾病等高危 險群人員影響甚鉅,目前台灣 對氣溫超過攝氏 36 度時,即 發布高溫訊息,提醒民眾避免 長時間曝曬於陽光下,本軍對 高溫訓練是運用危險係數來調整課程進度,當危險係數大於 40以上時,人員即調整至陰涼處授課。

3. 乾旱

機械作業場乾旱所造成 影響,主要有土地乾裂、土壤 凝結性及含水性降低,土壤體 積變小(粉狀),懸浮在空氣中, 易造成人員呼吸系統影響,粉 塵重量輕,被風吹起,造成大 面積沙塵,裝備進氣系統容易 過髒,要加強清潔次數。

(二)場地因素

1.鬆軟場地

操作訓練若遇大雨導致 場地泥濘、鬆軟時,勢必影響 人員行走安全、機具重心不穩 傾倒及機具部分零件生鏽損壞 之風險因子存在,訓練期程也 因此受到影響,後續也將花費 更多時間實施保養。

2.堅硬場地

挖土機堅硬履帶於水泥地 或柏油路面上移動時,除應先申 請道路許可證,可於履帶上加裝 防護橡膠塊,否則將會磨損刮刨 地面,易造成場地凹陷、龜裂, 影響路基及履帶壽命。

(三)人為因素

訓練班隊多以生手為主,因未具基礎操作能力、指揮手勢識別能力,故於訓練初

期,較常出現因操作生疏不熟練而衍生的風險問題,舉凡藉由操作桿可控制的8項動作,在操作不熟悉的情況之下,會出現撞擊、夾傷、翻覆、感電及落石等意外風險。

(四)維保因素

挖土機若遇定期、不定 期保養或損壞維修時,除授課 裝備減少,或以其他機型取 代,訓員都需重新適應及熟 悉,勢必將會壓縮練習操作時 間,進而影響授課進度及學習 成效。

三、模擬機台使用效益評估

(一)天候因素

1.實機

挖土機訓練採實機操作 為主,針對開挖作業、裝載作 業、回填作業及壓實作業等訓練重點,但若遇雷兩天候, 量訓練危安因素,立即停止作 業,導致無法進行授課練習 無法有效發揮訓練成效,達到 預期訓練效益。

2.模擬機台

不受天候因素影響,可 於室內、鋼棚或專案教室予以 施訓,既可維護訓練安全,亦 可確保訓練時數不受影響。

(二)訓練因素

1.實機

在操作方面,挖土機不

論在執行開挖、裝載、回填或 壓實作業,均較模擬機台符合 實際作業需求。

2.模擬機台

(三)環境因素

1.實機

近年環保意識逐漸抬頭,對空氣及噪音汙染尤為重視,挖土機作動時所產生的資氣汙染(如表 5)及噪音可達 102dB 至 109dB 不等(如表 6),不僅對環境會造成一定程度的影響,操作人員長期處於高壓環境下工作,亦會造成身體傷害。

2.模擬機台

模擬機台動力來源採電力驅動,可杜絕內燃機引擎燃 燒燃料所產生的廢氣及噪音, 可有效降低空氣及噪音汙染。

(四)維保因素

1.實機

表5	施	工機具空氣汙染物排放量推估表

		機具數量	空氣汙染物排放係數(公斤/日/部)				
施工 階段	施工機具	(部)	一氧化碳	碳氫 化合物	氮氫化物	硫氧化物	懸浮微粒
	推土機	3	0.94	0.33	3.43	0.022	0.45
	挖土機	3	0.94	0.33	3.43	0.008	0.31
	壓路機	2	0.83	0.18	2.36	0.004	0.14
	平路機	1	0.41	0.11	1.95	0.005	0.17
整地	傾卸卡車	15	4.9	0.52	11.33	0.028	0.7
工程	雜項	12	1.84	0.42	4.6	0.009	0.38
	排放量合計 (公斤/日)		103.29	15.29	252.4	0.63	17.79
	排放強度 (公克/秒/平方公尺)		1.0X10 ^{-0.5}	1.5X10 ^{-0.6}	2.4X10 ^{-0.5}	6.1X10 ^{-0.8}	1.7X10 ^{-0.6}

資料來源:空氣汙染物擴散模擬成果,https://www.most.gov.tw/most/attachments/1b2b38c9-743f-4d34-b77e-58558e59d794,檢索日期:西元2022年5月10日。

表6 施工機具空氣汗染物排放量推估表

农 加工饭桌上 無力 未初					
營建工程類別	施工機具	額定輸出(kW)或規格	聲功率位準dB(A)		
		未滿55Kw	102		
	挖土機(標準型)	55kW以上,未滿103kW	107		
土方工程		103kW以上,未滿206kW	107		
		206kW以上	109		
	挖土機(低噪音型)	未滿55Kw	99		
		55kW以上,未滿103kW	104		
		103kW以上,未滿206kW	106		
		206kW以上	106		

資料來源:機具聲功率音量位準,

https://law.moj.gov.tw/LawClass/LawGetFile.ashx?FileId=0000081971&lan=C,檢索日期:西元 2022年5月10日。

依國軍現行補保作業程序,以軍(一、二級)、商(三級以上)維雙向併行,若損壞項目屬三級以上商維權限,則需運用經費予以修復,故於短時間內欲完成檢修較為無法掌握,內欲完成檢修較為無法掌握,且相關保修經費均屬高單價,在年度修繕經費有限的情況

下,則會對訓員施訓品質造成直接影響。

2.模擬機台

模擬機台裝備成本較低,可大量引進提供統一或個別施訓,保養及維修容易且可於短時間內完成,對訓練品質影響較小。

四、小結

國內外機台應用之比較

一、他國機台之介紹

(一)中國大陸

當今世界工業產值最高 國家,許多機械製造、遊樂設 備公司,針對各式模擬機台實 施開發、設計、生產到銷售, 出產相當多元化之產品,如挖 土機、推土機、裝土機等機台 (如圖3),並且遠銷至東南亞、 中東及歐美國家;該國挖土機 模擬器為全液壓電動,具有旋 轉、伸縮液壓臂等實機全部功 能,可調節設備速度、可設定 旋轉或靜止等模式,目前除一 般挖斗機台較普遍外,另有出 產抓夾式、吊車式等機台(如圖 4) , 將原挖斗部分改裝成爪 子、槌球及磁鐵吸盤,可訓練

索日期: 西元2022年6月5日。

(二)日本 Komatsu

小松集團(Komatsu)是世界上知名的工程機械製造廠,該公司雖無量產模擬機台,卻在日本當地小松觀光工廠裡,擺設兩類型小型挖土機

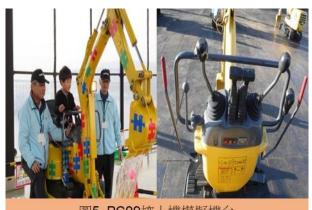


圖5 PC09挖土機模擬機台 資料來源:http://tokuworld.com/cn/stock/mini_excavator/1039,檢索 日期:西元2022年4月20日。

圖6 PC01挖土機模擬機台 資料來源:http://komatsunomori.jp/event/968/, 檢索日期:西元2022年4月20日。

模擬機台(如圖 5、6)作為名眾參觀時,可以實際體驗及操作,使民眾能快速瞭解機械操作原理。

其中 PC01 模擬機台屬 於縮小版挖土機,其相關性能 與實機挖土機相近,且體積 小、重量輕,可於運用狹窄空 間範圍作業;另於 2022 年

Komatsu 與 Honda 共同研發PC01E 電動微型挖土機(如圖7),PC01E 是 PC01 傳統動力挖土機的電動款,配備便攜式可快速更換電池,可避免作業期程延長,且無安裝發動機,減少了廢氣及噪音,在維護及保養上也相對減少。

(三)英國 JCB

二、本國模擬機台之規劃

(一)人力規劃

(二)場地規劃

運用鋼棚或專案教室, 採區塊分站方式施訓,區分為 挖掘作業、裝載作業、回填作 業及壓實作業等訓練專區,人 員採輪替式換組,以熟悉各類 別作業,提升訓練效益。

(三)裝備規劃

目前已知國內可提供此 模擬機台之廠商為「動力育樂-桃園大溪」及「宇宏育樂-台中 太平」等 2 家,提供租賃及買 等方案,並提供定期及不定期保 養的服務(如表 7),相較於中 國製機台雖價格較為昂貴,但等 量國防安全、運送費用及後續保 量國防安全、運送費用及後續保 養問題,購買國內廠商建置機台 成本較優於國外。

表7 模擬機台廠商比較表

	動力育樂	宇宏育樂	
7455	購買:單台 25萬-28萬(新臺幣)	購買:單台 18萬-20萬(新臺幣)	
建置成本	租賃:首日2萬元,次日起每日計價3000元 (新臺幣)	租賃:首日1萬元,次日起每日計價2000元 (新臺幣)	
動力來源	電能(220V)驅動液壓泵	電能(220V)驅動液壓泵	
操作人數	1人	1人	
附屬設備	遮陽板:有 防護網:有 安全帶:有	遮陽板:無 防護網:無 安全帶:無	
保養檢修	基本保養:3000元/次 損壞檢修:視損壞項目而定	基本保養:2000元/次 損壞檢修:視損壞項目而定	

資料來源:作者自行整理。

三、小結

結語

近年工兵部隊因組織兵力 結構調整,為了達到量小、質 精、戰力強的目標,人裝資源 逐漸精簡,每一位官兵、每一 部裝備都是無比珍貴的戰力, 故在訓練整備上,應思考如何 避免無謂的訓練損耗,並有效 提高訓練成效。

依據國內外挖土機進行 作業發生的工安意外,其發生 原因大都以人為缺失為主要因 素,機械故障因素造成的意外 反之較少,因此落實有效率的 操作訓練,方為當前最需要重 視的一環。