

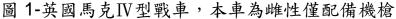
戰車數位化射控系統鏈結及歸零射擊(ZERO)步驟 暨 CCF 值記錄與儲存運用-以 CM11 戰車為例

筆者/陳少瑋

提要

- 一、第二次世界大戰後,戰車發展區分為 4 個世代,第 1 世代主以光學測距及機械化射控、第 2 世代以雷射測距及類比式射控、第 3 世代以改良式雷射測距及熱能成像儀(Tank Thermal Sight,以下簡稱,TTS)與數位射控、第 4 世代除具備第 3 世代系統功能,加裝車長獨立顯示器(Commander's Independent Thermal Viewer,以下簡稱,CITV)與戰場管理系統(Battle Management System,以下簡稱 BMS)。1
- 二、從第2世代以後戰車,已具備彈道計算機(Ballistic Computer),讓許多的環控系統與射擊記錄值,儲存於計算機記憶體內,不用全靠射手記憶或以手工紙本登錄(現在作為備份)。
- 三、CM11 戰車工程設計啟動於民國 1984 年至 1990 年撥交部隊成軍,以當時光電與積體電路設計水準,射控水準已與 1981 年 M1 初期先導型(105 砲)並駕齊驅,然美軍於 1984 年啟動 M1A1 升級計畫,更換 120 滑膛砲及升級射控系統,然本軍 CM11 則迄 2021 年,近 30 年未實施構改。
- 四、歸零射擊為所有直射槍、砲,為求人槍(砲)合一,必須實施的課目,不同於步槍,戰車砲僅能實施實距離歸零射擊,然近年受裝備老化,射控元件日漸衰退,不易揀選功能完整戰車,進行歸零射擊。
- 五、所謂「CCF」值為計算機綜合因子(Computer Combined Factory,以下簡稱,CCF),²一般會誤解為戰車砲射彈修正係數,³因為 CM11 為 2.5 世代戰車,計算機可以掌握「距離、前置、傾角、穩定及橫風」自動感測因子,另外可由面板輸入氣象資料「氣壓、溫度、彈溫及彈種」手動因子,加上每一輛戰車機械裝置、自(感測器)、手(輸入值)會有不一致性(產生機械與數據誤差),這些必須透過歸零射擊加以消除,使射擊精度提升。

關鍵詞:彈道計算機、計算機綜合因子、歸零射擊、消除機械誤差


前言

自 1917年 11 月 20 日英國以馬克 1-5 型(Mark I-V)戰車(如圖 1)投入康布萊戰役,⁴成功突破德軍塹壕與刺絲網組成的防禦陣地,在陸戰上各國在第一次

¹俞彬,《陸戰之王-坦克》,(中國·北京·人民郵電出版社·100 年 4 月),頁 15-16。

²生製中心二 O 二廠,《105mm 戰車砲彈穿甲力提升研發測試報告》,(台北市·2021 年 8 月),頁 3。

世界大戰後,投入研製,至 1939 年德國入侵波蘭及入侵西歐的閃擊戰,⁵戰車成為陸戰主力,然戰車砲射擊精準度往往需靠射手長時間培養,方能成為特等射手,二戰後各國戰車紛紛裝置輔助裝置,如光學測距機、潛望瞄準距與彈道換算器,使射擊精度提升,機械裝置的精準度遠不如數位化射控與雷射測距機,國軍在 1990 前使用各型戰車,第一發命中率均低於 50%,⁶因此在戰鬥間車長往往以超越握靶射擊第一發,「口訣是打低點,打地上比飛過去好」,引導射手以「彈著點投影法」迅速射擊第2發,第2發命中率提升至 85%,⁷然同時也會暴露陣地,敵軍也會迅速反擊,遭擊中機率隨之上升。

資料來源:上田信,《戰車機械結構圖鑑-1》,-檢索時間:2022.1.12

第二次世界大戰後,戰車發展區分 4 個世代,第 1 世代以光學測距及機械化射控、第 2 世代以雷射測距及類比式射控、第 3 世代以改良式雷射測距及熱能成像儀(Tank Thermal Sight,以下簡稱,TTS)與數位射控與彈道計算機(Ballistic Computer),讓許多的環控系統與射擊記錄值,儲存於計算機記憶體內,不用全靠射手記憶或以手工紙本登錄(現在作為備份),第 4 世代除具備第 3 世代系統功能,加裝車長獨立顯示器(Commander's Independent Thermal Viewer,以下簡稱,CITV)與戰場管理系統(Battle Management System,以下簡稱 BMS),1970年以後戰車設計朝主力戰車(Main Battle Tank,以下簡稱,MBT)方向發展,大口徑主砲、大馬力引擎、寬敞砲塔與數位射控及氣液壓砲控系統,這些科技

⁵同註1,頁41-75。

⁶同註1,頁15。

⁷同註 2。

化裝置,將靠人工射擊轉為數位裝置輔助射擊,第 1 發命中率也提升至 85-90 %,然而戰車造價也隨之上升,以最近日本自製 10 式戰車(如圖 2),量產價格高達 1,200 萬美金,8其他各國主力戰車外銷售價也節節攀升,主要原因在於相較第二代戰車動力提升一倍以上(1,200HP 以上),精密的數位化射控系統,智能化通資鏈路及自動化全電力砲控系統,使得戰車成為日益「耳聰目明、行動便捷」陸戰之王,而非當年步履蹒跚的「坦克」。

圖 2-日本自製「10 式」主力戰車,該車屬富士學校教導團

資料來源: Http://www.mdc.idv.tw,檢索時間: 2021.12.21

而 CM11(如圖 3)在 1990 年量產價為 300 萬美金,⁹這些昂貴的投資無非讓戰車射擊達到「快、狠、準」,而相較於機械式戰車試射歸正與數位化戰車歸零射擊(ZERO),數位化之後,戰車許多環境因素與射擊技術,交由彈道計算機代勞,以前由射手的「經驗累積」,轉為科技化輔助,而實施歸零射擊(ZERO),就是消除計算機綜合因子(CCF),讓射手與戰車砲「人、砲合一」。

壹、戰車砲控制裝置

CM11 戰車工程設計啟動於民國 1984 年至 1990 年撥交部隊成軍,以當時 光電與積體電路設計水準,射控水準已與 1981 年 M1 初期先導型(105 砲)並駕 齊驅,然美軍於 1984 年啟動 M1A1 升級計畫,更換 120 滑膛砲及升級射控系 統,然 CM11 則迄 2021 年,近 30 年未實施構改,戰車砲控系統區分電力控制 系統、操縱裝置、液(氣)壓裝置、觀瞄系統、伺服馬達及十字絲投影器與超仰角 制動器等七大部份分述如後:

⁸深度軍事編委會,《坦克與裝甲車圖鑒》,(中國,北京,清華大學出版社,2016年7月),頁 58-59。

⁹維基百科,< Http://zh.m.wikipedia.org,zh.-tw >,2011 月 5 月 21 日,<u>CM-11 戰車單位成本價-300 萬美金(79</u>年幣值),(2021 年 12 月 29 日)。

圖 3-國造 CM11 戰車

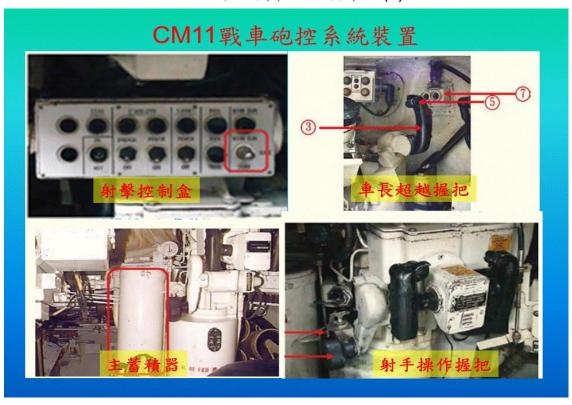
資料來源:Http://sites.google.com.tw,檢索時間:2021.12.21

一、電力控制系統:(如圖 4)

又稱為射擊控制盒,包括砲塔電源、武器選擇開關及穩定系統飄移調整螺,並有液壓裝置過熱警示燈,為射手啟動砲塔電源完成充壓(須查看壓力表指針須達 1,250-1,750Psi),低於 1,000psi 則無法驅動砲塔。¹⁰

二、操縱裝置:(如圖 4)

包含電動握把(射手 H 型及車長超越,兩者均有掌型開關、雷射前置按鈕及槍砲擊發開關等三裝置,當車長握住掌型開關即完成超越控制),射手人工高低(附擊發按鈕)及方向手搖柄。


三、液(氣)壓裝置:(如圖 4)

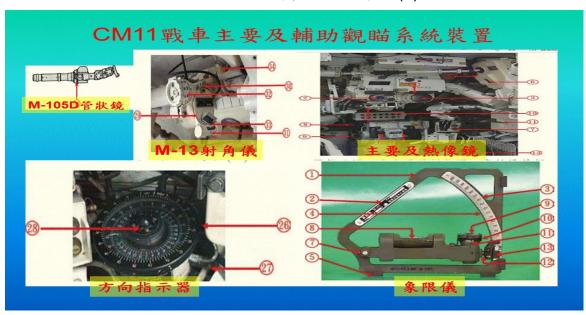
區分液壓油儲存筒(儲存 FRH 防火液壓油)、主蓄積器(儲存高壓氮氣)兩者互為聯通形成戰車砲氣液壓控制系統,其輸出受伺服馬達控制及人工高低機儲油桶(10 號機油)三部分。

¹⁰勞倫茲(Loventz)法則,<Http://www.hiwinmikro.com.tw>,2012 年 3 月 15 日,<u>數位化控制源起於線性馬達</u> (<u>Liner Motor</u>),當電流通過磁場產生相互作用,而產生推力,一用途區分可分為環型與直線型兩種,前者多用於旋轉式設備,後者用於自動控制,現代線性馬達控制精度可達奈米等級,(2008 年 12 月 29 日)。

圖 4-戰車砲控制系統(1)

資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2021.1.2

四、觀瞄系統:(如圖 5)


(一)光學:

M105D 直管徑、射手主要瞄準具及戰車熱像儀(含射手及車長延伸管鏡)。

(二)機械:

M13 射角儀、砲架校準水平儀及象限儀與方向指示器。

圖 5-戰車砲控制系統(2)

資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2021.1.2

五、伺服馬達:(如圖 6)

又有稱為線性馬達,因不採電樞設計,改以磁性平行驅動,可由類比訊號控制,具備即轉、瞬停功能與超仰角制動器配合,控制輸出裝置,賦予火砲正確俯仰及方向修正量。

六、十字絲投影器:(如圖 6)

CM11 射手主要瞄器採光點十字絲投影,非直接刻劃於接目鏡片上,戰車熱 像儀則採螢幕刻線,兩者完成覘視歸正後會隨火砲同步轉動,對準目標。¹¹ 七、超仰角制動器:(如圖 6)

以撓性開關控制伺服馬達油量,提供正確修正量至輸出裝置。¹²

資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2021.1.2

¹¹ 同註 3,頁 2-139。

¹² 同註 3,頁 2-195。

貳、數位化射控系統

數位化射控系統(射擊方式扳至 AUTO,才會有作用,Battle Range 則會關閉系統,啟動人工接戰),包含自動修正與手動輸入兩類,由於 CM11 採擾動式 (Perturbed)設計¹³,簡單來說,當自(手)動感測(輸入)修正量,僅會修正十字絲位置(不含直管鏡),此時不管十字絲如何移動,已經提供火砲位移修正量,射手(車長)須再搖動火砲使十字絲對準目標,才可進行射擊,因此美軍訓練術語,「十字絲永遠對準目標」—(Crosshair Is Always On Target)。

一、自動修正(如圖7、8)

(一)横風感測儀(Cross Wind)

注意裝設時,接地導線須以螺絲緊定於感測儀底座,纜線檢查接頭有無斷針,銅孔需保持清潔,確實連結緊定,上方箭頭對正火砲成平行,接地線未鎖緊會產生感應器受靜電微粒影響,誤判為風速持續增強,十字絲飄移更遠,纜線未連結或不潔,將使橫風作用不良,箭頭反裝或錯裝,將使感應風速成相反或無作用。

(二)傾角儀(Cant)

裝置於車頂上方,感應戰車傾斜狀態,以類比訊號回傳計算機,再以數位訊號回傳電子界面儀,轉換為類比信號,控制伺服器,保持戰車砲概略穩定瞄準目標,不隨底盤作動。¹⁴

(三)角速率儀:(Lead)

CM11 無法量測目標位移速率,因此前置量提取係以砲塔,每秒最快 400 密位,換算密位千除數,如目標以 10 公里/小時,為 2.31 密位,相對十字絲分劃,如下表。

速度 (KM/HR)	10	20	30	40	50
密位數	2.31	4.62	6.93	9.24	11.55
分化數	半分劃	么分劃	么分劃半	兩分劃	兩分劃半

以上表顯示目標速率低於 20 公里/小時,十字絲前置提取不甚明顯,以行 進間對活動目標射擊若平行同向,速率相同,則前置不會移動若逆向則兩 者速率相加,前置移動較為明顯,這也就是次口徑習會在 55 公尺內射擊, 不用提取前置量,也打得中活動靶的原因。

¹³中文知識百科,<Http://www.easyatm.com.tw>,2011年5月23日,戰車射控系統設計分為擾動式,非擾動式及指揮儀式三種,第三代戰車都以指揮儀式為主,也就是增加一組水平移動控制伺服馬達,使火砲與瞄準十字絲同步對正目標,加快接戰射擊速度,(2022年1月11日)。

¹⁴同註 3, 本裝置由電子處理器接收經計算機計算電流差, 經介面儀控制伺服馬達, 頁 2-183。

圖 7-戰車砲控制系統(4)

資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2022.1.2

(四)雷射測距儀(Range Finer)

使用前必須將膛視菱鏡向上扳,以鑰匙開啟雷射電源,配合覘視歸正,使用高低調整螺將雷射紅點與主砲覘視點規正同一點上,使用雷射測距時才會獲得正確測距,當射手(車長)按下雷射前置按鈕為「測距」,鬆開則為「前置」。

(五)陀螺儀(本裝置不屬 CCP 面板自動控制)

CM11 裝置垂直、水平及參考 3 顆陀螺儀,開起穩定裝置,裝填手必須在安全位置以右手食指置於截斷開關(如圖 9),若戰車砲發生異常轉動或急速下降,立即按下截斷按鈕,若產生輕微飄移現象,射手則以搖頭開關或射擊控制盒穩定調整螺,調校至火砲不飄移。

圖 8-CM11 戰車 CCP 面板自動感測鍵

圖 9-穩定系統截斷閥

CM11戰車CCP面板-自動感測鍵

資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2022.04.06

- 二、手動輸入鍵:(如圖 10)
 - (一)彈藥溫度(Ammo Temp) 以溫度計量測。
 - (二)大氣壓力(Baro Press) 以當日氣象報告值輸入。
 - (三)空氣溫度(Air Temp) 以溫度計量測。
 - (四)砲口前置參數(MRS)

CM11 本裝置無作用,砲口前置參數(Muzzle Refence System,MRS), ¹⁵ 為校正戰車砲彎曲變化,原理為砲口加裝反射鏡,砲盾裝設雷射定位器,需確認戰車砲曲度時,以雷射光束平行火砲上方,計算機自動補償誤差。

¹⁵同註 3, 本裝置可以處理砲管曲度及微量形變,但 CM11 未裝置,頁 2-173。

圖 10-CM11 戰車 CCP 面板手動輸入鍵

資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2022.1.2

(五)唯讀輸入鍵:(如圖 11)

1.彈種代碼:(Ammo Subdes)

查閱彈種代碼表輸入,在 CCP 面板門蓋背面,若彈種選擇器失效,可用手動輸入。

2.戰鬥瞄準距離:(BS Adjust)

範圍 200-8000 公尺, 測距機失效時使用。

3. 砲管磨耗: (Maint Data)

以相當全裝藥因素(Equivalent Full Charge,EFC),登錄於火砲履歷書,換算射擊發數,¹⁶因每一種彈藥 EFC 值不同,以 M68A1-105mm 戰車砲砲管壽命為 1,000 發,如果打 DM63(EFC=1),代表只能打 1,000 發 DM63,如果平日打練習彈(EFC=0.5-07 之間),戰車砲可以多打幾發,但本鍵原文為(MAINT DATA),若直譯應為維修資料,以 M1A2 戰車,射手控制數位面板有(METEL DATA)砲管磨耗資料及(MAINT DATA)維修資料兩鍵皆有,本軍應修正本鍵用途為維修資料(MAINT DATA)鍵,因彈道計算機無法自動記錄射擊發數與換算 EFC 值,若讀者不妨可以去試一試本鍵實際功能,而本軍接裝 CM11 單位,因彈道計算機年久失修,甚少有射擊士會打開旋蓋板,使用本鍵進行查詢功能,以筆者使用過本鍵經驗,按下此鍵可以查

¹⁶陸軍戰甲砲車發展中心,《戰車火砲履歷書》,(桃園,龍潭,陸軍總司令部,80 年 4 月),頁 3-5。

詢戰車多項狀態,(如表 1)。¹⁷

表 1-Maint Data 鍵操作對應表

射控裝置現況查詢											
90	91	92	93	94	95	96	97	98	99		
結束	彈種	横風	輸出	横風	傾角	前置	氣壓	温度	彈溫		
CCF 記錄值											
高低(HL)				左右(RF)							
40	41	42	43	44	45	46	47	48	49		
1	2	3	4	5	1	2	3	4	5		

資料來源:筆者整理製作

(1)射控系統現況查詢

按下 MAINT DATA 鍵,數字鍵盤按下 93,按下輸入鍵,顯示窗會顯示 輸出裝置密位數,若按下 MAINT DATA 鍵燈不會熄滅(不會結束),若結 束查詢則按下90後按輸入鍵(燈熄滅,結束操作)。

(2)CCF 記錄值查詢

按下 MAINT DATA 鍵,數字鍵盤按下 41,按下輸入鍵,再按下 46 顯示 窗會顯示第2筆 CCF 高低及左右消除修正值,完成輸入按下90後按輸 入鍵(燈熄滅,結束操作)。

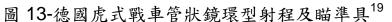
圖 11-CM11 戰車 CCP 面板唯讀輸入鍵

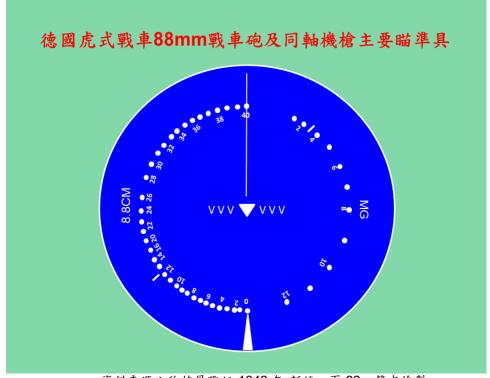
資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2022.1.2

¹⁷唯讀記憶體(Read-Only Memory,ROM),< Http://pedia.cloud.edu.tw>,2005 年 1 月 23 日,CM11 彈道計算 機在出廠時以寫入程式,只能讀取,無法改變複寫,縱使計算機電源完全消失,還繼續儲存,(2022 年 1 月 12 日)。

多、射控數位化與機械鏈結

要瞭解戰車數位彈道電子計算機(Tank Digital Ballistic Computer,以下簡 稱,TDBC)如何運作,先要瞭解數位計算與信號傳輸及類比自動控制兩大部分不 論數位科技在運算速度與傳輸頻寬,如何的強大快速,最終仍必須轉換為類比 信號,讓人類可聽、可見及可控制,戰車進入數位化射控時代,裝置數位與類 比感測裝置,經過輔助電算機,電子介面儀與數位彈道計算機往復快速計算轉 换,再經超仰角制動器控制伺服馬達,使得戰車瞄準基線在崎嶇地形、戰車行 駛及目標移動及惡劣天候下,得以修正補償,使得第3世代戰車(含 CM11)可以 進行動對靜及動對動射擊,1943 年德國虎式戰車(如圖 12)王牌指揮官魏特曼 (Michale Wittmann),所屬的特等戰車射手巴爾塔薩、沃爾(Balthasar Mauer, 德文譯名), 慣常裝定 800 公尺戰鬥距離,接戰再以瞄準點增減距離。




圖 12-德國虎一式戰車

資料來源:上田信,《戰車機械結構圖鑑-1》,(台北市,星光出版社,2007年4月),檢索時間:2022.1.12 以當時德國瞄準具(採用類似方向指示器,以圓形轉盤刻劃裝定距離,如圖 13)進行射擊,¹⁸不同英美採用現在垂直直管鏡射擊分劃板,德軍可以轉盤預先 裝定戰鬥距離,在以中間三角型瞄準點比對目標,有經驗射手先裝訂戰鬥距離 (800 公尺),接戰時以目標投影密位大小,增減距離後即可射擊(戰後成為歐美國 家設計 Battle Range 的主因),而英、美戰車則須由車長搜索目標,判定距離, 下達射擊口令,射手以直管鏡距離刻劃瞄準目標,因此德軍射手反應時間較快, 也使虎式戰車在東、西兩線成為美、蘇 M4 及 T34 最為可怕對手。

¹⁸小林源文著,許嘉祥譯,《魏特曼戰紀 1943-新編》,(台北市,蒼壁出版有限公司,110 年 1 月),頁 63。

資料來源:魏特曼戰記-1943年-新編,頁 62,筆者繪製

-、類比訊號:(如圖 14)

存在於現實環境之中,簡單來說,現存自然界可見、可聽都是以等(不等) 波幅進行傳遞,燈火(光)因散射,而縮短可見距離,以典型聲音傳播,當 音量讓對方聽不到時,人類就以有、無線電方式將類比信號藉由電波傳遞 出去,早期電話以搖柄或撥盤,編譯數字,傳送給指定接收方,接收者聽 到震鈴聲拿起話筒,開始接收類比信號,透過磁電鼓膜轉換可聽聲音,同 樣也以此方式將語音轉為類比信號傳給對方,重複往返此一程序,達成「交 談溝通」。

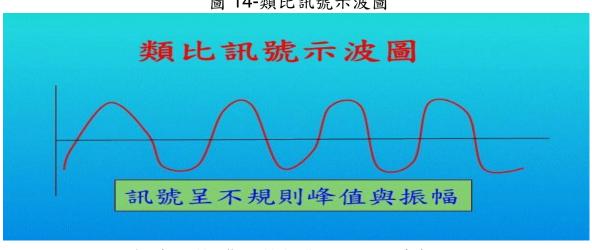


圖 14-類比訊號示波圖

資料來源:Http://www.hiwinmikro.com.tw,檢索時間:2022.1.6

¹⁹ 同註 18,頁 62。

二、數位訊號:(如圖 15)

現代數位傳輸與數值計算,採用二進位法,訊號傳遞與編碼以「O與1,高低電位差」,完成機械程式語言對應編碼,傳送時以封包與時序進行一連串「O與1」的數位訊號傳遞,因此相對於類比信號,更為快速,也不因振幅的衰退與不穩定,產生訊號衰減,因此數位化傳輸在頻寬擴大與無線網路的發展,完全取代類比式信號,可是人類眼睛不比電影「駭客任務」中的接線生,他可以直接解讀一長串數位訊號所代表意義,因為對方不管傳送的是文字或影像,最終還是必須轉換為類比訊號,呈現於顯示器之上,接收者才知道,他看見、聽到是甚麼。

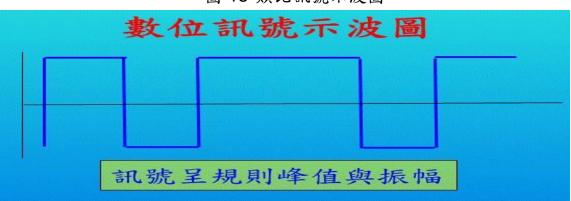


圖 15-類比訊號示波圖

資料來源:Http://www.hiwinmikro.com.tw,檢索時間:2022.1.6

三、戰車數位計算機:(如圖 16)

分為彈道與電子計算機兩部分。20

(一)彈道計算機:

直接接收數位感應器,並將感應因子換算成為修正值,以數位訊號傳輸至電子界面儀。

(二)電子計算機:

接收類比感應器,以類比訊號傳送至彈道計算機,再重新編譯為數位訊號傳送至電子介面儀。

四、電子介面儀:

將彈道計算機傳送之數位訊號轉譯為類比信號,傳送作動指令給伺服馬達,透過氣液壓系統在超仰角制動器控制下,將感應微調密位傳遞至輸出裝置,經耦合連桿傳動砲架軸承,賦予十字絲或火砲修正量,以達精確瞄準射擊。

五、伺服馬達:

又稱線性馬達,有別傳統電樞馬達,以銅絲線圈通電後形成環型磁場驅動

²⁰同註 3,CM11 彈道計算機必須電子界面儀不斷往復傳誦與轉換訊號,使伺服馬達作動,頁 2-193。

轉軸,從啟動至全轉速(可分段調整),因無法作到即轉即停,日常用扇葉電風扇即為明顯例子,現代 DYSON 所生產的無扇葉吹風機及電風扇即採線性馬達設計,起動快,關閉則瞬停,線性馬達不會產生電樞餘速(關閉電源扇葉還會轉動),使 0.1 密位修正量,仍可透過伺服馬達驅動。

圖 16-CM11 戰車數位計算機

資料來源:陸軍 CM11 戰車操作手冊(第三版),翻拍時間:2022.1.2

六、自動控制:(如圖 17)

如果以水塔進紙水量控制,機械控制時代,當滿水位時,以浮球控制閥門, 讓抽水馬達停止運轉,並關閉進水閥門,讓水不會溢出水塔;拜現代化科技之 賜,不用裝上槓桿式浮球,只需要裝上感應器,連接控制單元,接下來進止水 的工作,全部交給數位自動控制來做,自動控制運用範圍廣,大至生產線製造, 到家庭的家電運用。

(圖 16)-所顯示式單一感應裝置,但是戰車射控系統分為三部分。

- 第一、十字絲擾動,僅改變十字絲水平方向,(如橫風及前置量提取),當十字絲 在自動射擊模式下偏移目標(因戰車砲瞄準基線不會動),射手須再搖動主 砲使十字絲對準目標,才可進行戰車砲射擊。²¹
- 第二、間接自動控制,直接微調戰車砲垂直方向,(如雷射測距結果及彈種選擇器)當射手擊發雷射獲得測距數值或按下彈種選擇器,輸出裝置會驅動砲

٠

²¹同註 13,CM11 採用擾動式射控系統。

架,此時會看(聽)到驅動連桿轉動及聲音,進行戰車砲俯仰角調動,射手此時再觀察十字絲還是對準目標。

第三、直接自動控制,透過陀螺儀感測傾角改變,直接啟動主蓄積器液壓系統(過去常見穩定系統作用不良主因,為主蓄積器上方防塵通氣孔阻塞「成因主為被上漆」使液壓系統作動產生氣體無法排洩,當膨脹壓力過高,使FRH 衝出油尺加注口,(隨之警告燈亮起,戰車砲陡然下降置下死點使砲塔不隨車身同步連動),須注意陀螺儀僅能使戰車砲維持概定穩定瞄準目標,(不具備「目標鎖定」功能)。

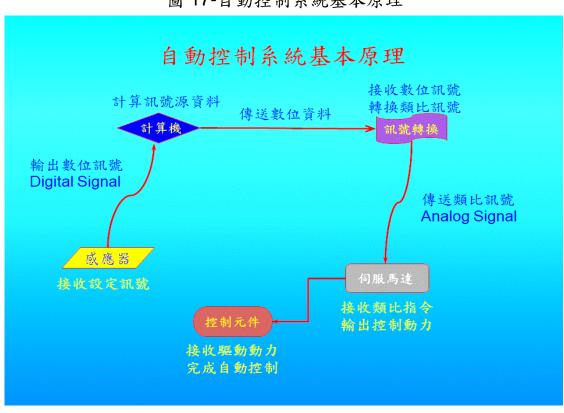
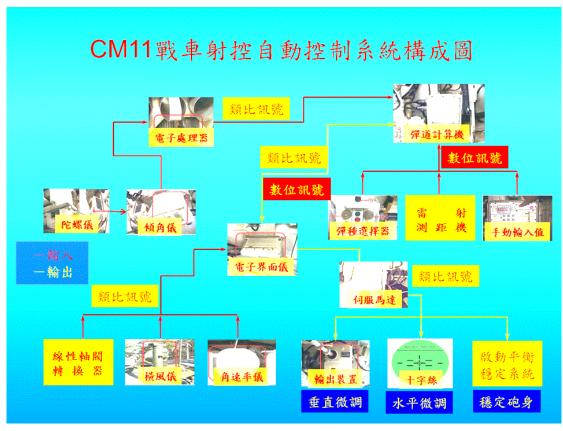


圖 17-自動控制系統基本原理

資料來源: Http://www.hiwinmikro.com.tw, 筆者整理繪製


戰車砲自動控制採用上述三種模式運作,(如圖 18);雖然 CM11 戰車彈道計算機為 16 位元,僅有 3K 隨機記憶體(RAM),以現在眼光來看落伍到掉牙,但是支援戰車自動射控系統,已經足夠,訓部未來數年內最少會獲得一款新式戰車,在編撰或譯印操作手冊時,遇英文簡稱,須要求主編教官檢附全稱,並找出它的正確譯名及用途;如今本文主題 CCF,過去訓部在 CM11 戰車操作手冊於審查測試,CCF 為(彈道「平均彈著)修正值」,但是 CCF 英文全稱為(Computer Combined Factory,CCF),22中文譯名應為(計算機綜合因子),那試問它與審查測試所謂「射彈修正修正值」有何關聯,如果真要找出一個類似火砲射擊習會(課目),為砲兵部隊基訓進入連、營教練前的「原級校正」射擊,主

²² 同註 2。

要找出每門火砲機械誤差,當然這些誤差量可用「附加修正量」校正,但是單砲可以,一個砲兵營就不行,當發掘的機械偏差量,當然由保修人員進行火砲機械調校,CM11 戰車的「ZERO」鍵,在原始狀態下(關閉所有感測系統),以消除戰車砲機械誤差值,才能夠在「AUTO」模式下進行審查測試射擊。

圖 18-CM11 戰車射控自動控制系統構成圖

資料來源:陸軍 CM11 戰車操作手冊(第三版),筆者整理繪製

肆、如何實施歸零(ZERO)射擊

歸零射擊為所有直射槍、砲,為求人槍(砲)合一,必須實施的課目,不同於 步槍,戰車砲僅能實施實距離歸零射擊,然近年受裝備老化,射控元件日漸衰 退,不易揀選功能完整戰車,進行歸零射擊。

一、射擊程序澄清說明:

(一)計算機綜合因子:(CCF)

在此先澄清一個長期 CM11 有關審查測試作法上的問題,CCP 面板在覘視歸正鍵(BORESIGHT)上方還有一個「ZERO」鍵,我們接裝了 30 年,幾乎已經到了戰車的全壽期終點-汰除,還是很少人去使用,甚至不知為何有這個鍵,查閱了「陸軍 CM11/12 戰車操作手冊-(第二版),有關審查測試(Review Test) ,²³與步槍歸零原理相同,步槍是由人手持射擊,人因影響射擊結果,戰車是架在砲架上射擊,換言之,人的影響程度甚微,

-

²³ 同註3。

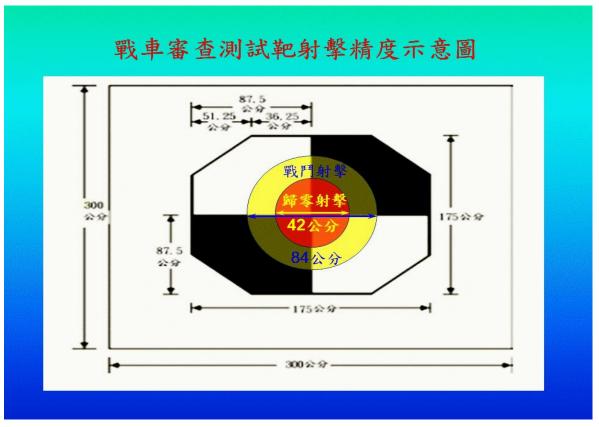
但射(砲)控系統影響較大,CM11 加裝數位化射控系統,CCP 上加裝了「歸零射擊」(ZERO)鍵,目的是在消除計算機綜合因子(CCF)對戰車造成誤差影響,使射彈精度提升,據查 1990 年下半年當時獨立第 51 旅,首批換裝 CM11 戰車 90 輛,全數完成 M-735 翼穩脫殼穿甲與 M-456 高爆戰防榴,兩彈種彈藥歸零(ZERO)射擊,後續再作實彈射擊時,射手於完成覘視歸正,並將瞄準具鐫標環轉置(4),之後按下(ZERO)鍵),以搖頭開關輸入或以手動(鍵盤,※注意上(H)正,下(L)負;右(R)正,左(L)負;(「一」負號鍵,位於鍵盤左下方)或使用 MAINT DATA 鍵以 40-49 數字鍵,輸入歸零射擊記錄值,²⁴即可進入審查測試射擊。

(二)審查測試:(Review Test)

完成歸零射擊,才會進行審查測試(Review Test),射擊測試靶 2 發(溫膛及測試各 1 發),如進入 4 英吋環內,即可實施各習會射擊,若精度不足則反向可檢查各項程序與輸入數值,是否正確,完成複查確認,再射擊 1 發,若達射擊精度要求,繼續射擊習會,未達標準則停止射擊,由單位及野戰段砲保士作詳細檢查。

二、歸零射擊(Zero)實施時機:

- (一)接獲新式裝備。
- (二)翻修(構改)返部。
- (三)射控元件更换。
- (四)更換主砲。
- (五)射擊士接替。
- (六)審查測試不合格。
- 三、類似步槍實距離歸零射擊,進入完成此一階段,會將表尺修正量紀錄於射擊手簿,也因為射手個人因素,所需耗彈數也不同,但完成後可以達到人槍合一,同樣原理也引用於戰車主砲射擊,依據上面所列時機,進行審查射擊,不同於步槍消除人為誤差,戰車要消除的是計算機綜合因子誤差,實施步驟如次:
 - (一)選擇 1,200 公尺射距靶場, 陣地平坦。
 - (二)完成覘視歸正,並經幹部確認複查無誤。
 - (三)將射擊模式扳至 BATTLE RANGE(戰鬥距離),除距離以手動輸入 1,200(或已知射擊距離),其他因子輸入「0」,使戰車原始狀態進行射擊。 (四)按下 ZERO 鍵,使用搖頭開關將水平(LR)及垂直(UD)調為 00、00,並按


²⁴戰車 712 營,《M-48H 戰車操作作手冊(草案)》,(新竹縣,陸軍獨立第 51 旅·1990 年 3 月),隨該旅裁撤,本書未典藏。

下輸入鍵。

- (五)打開砲塔電源,完成充壓。(※注意左手要持續按壓形開關通電)。²⁵
- (六)射擊溫膛彈 1 發 (※注意射擊時機第一至四項,需車外擊發),使用審查 測試靶,(如圖 19)。

圖 19-戰車審查測試靶

資料來源:陸軍 CM11 戰車操作手冊(第三版),頁附 1-42。

- (七)接續射擊 3 發(※注意需同批號同彈種,不可混打)
- (八)彈道解算求取平均彈著點。26
- (九)將砲塔電源關閉、洩壓零壓力。
- (十)左手按壓掌型,慣用眼貼近接目鏡,右手用搖頭開關將十字絲以G 瞄對 準平均彈著點。(※注意調整後將垂直及水平調整值紀錄下來)。
- (十一)打開砲塔電源充壓,將戰車砲以 G 瞄對準目標中心點,再射擊 1 發檢驗彈,若命中 8 英吋環內,則記錄於彈道計算機(ZERO 燈亮,完成之 CCF 值會顯示於顯示窗,按下輸入鍵,會記錄於 MAINT DATA40-44「高低 HL」及 45-49「方向 LR」,可記錄最近 5 筆資料,第 6 筆會覆寫第 1 筆資料「40 及 45」並填入火砲履歷書。
- (十二)、若未進入8英吋環,則重複步驟九至十一。

²⁵同註 2, 頁 2-48, 射手(H型)握靶,彈道計算機保持通電狀態,因右手要操作 CCP 面板。

²⁶同註 2, 頁,附 1-41-44。

伍、CCF 值儲存運用與如何維持戰車砲射控精度

所謂「CCF」值為計算機綜合因子(Computer Combined Factory,以下簡稱,CCF),一般會誤解為戰車砲射彈修正係數,因為 CM11 為 2.5 世代戰車,計算機可以掌握「距離、前置、傾角、穩定及橫風」自動感測因子,另外可由面板輸入氣象資料「氣壓、溫度、彈溫及彈種」手動因子,加上每一輛戰車機械裝置、自(感測器)、手(輸入值)會有不一致性(產生機械與數據誤差),這些必須透過歸零射擊加以消除,使射擊精度提升計算機綜合因子(CCP)經歸零射擊後,會將每一輛戰車出廠後機械性誤差消除,這個數值與自動射擊(AUTO)的修正沒有關聯,因長期本軍 CM11 戰車未實施歸零射擊,每逢戰車砲實彈射彈射擊前,先做審查測試射擊,接著就開始修調彈著,此一作法,極不正確,反而會使射擊精度愈來愈差,原因就在於 CM11 戰車射控採用「擾動式」設計,打開砲塔電源狀況下,如果調動瞄準具十字絲,火砲並未移動,若以彈著投影應急修正,勉可應付短時間射訓任務,然下一次射擊必須重新再來一遍,筆者特別強調以下要點。

一、CCF 值儲存與運用

(一)儲存:

完成歸零射擊戰車,射手(切記十字絲調整要用搖頭開關,不可使用瞄準具分劃調整螺),先以筆記本紀錄 CCP 面板顯示窗高低左右調整值,再按下輸入鍵,連、排長同時手抄 CCF 值,記錄於火砲履歷書。

(二)運用:

戰車砲射擊前,完成覘視規正,開啟砲塔電源,打開 CCP 面板(先作自我測試),接著按下 ZERO 鍵,檢查顯示窗顯示數值與最近一次歸零射擊 CCF 值是否相同,若不相同則使用搖頭開關調整,當顯示窗出現相同數值則按下輸入鍵,彈道計算機隨機記憶體會覆寫一次,接續進行審查測試射擊。

(三)CCF 值≠射擊修正紀錄值

再一次強調 CCF 中文譯名為計算機綜合因子,必須在戰車機械原始狀態下射擊,主要是消除戰車機械誤差,之後開啟自動(AUTO)射擊時,受天候、地形、彈藥與目標(或戰車)移動等環境因素影響,射擊一定會產生誤差,也就是說彈道計算機接手了環境因素微調工作,以 57-59 號靶散布面若在半徑 32 英吋環形(41 公分半徑)內,均屬正常,過去的誤解導致射手跟射擊師資不斷調修瞄準線,而且將這些修正值當作 CCF 值使用,此為長期射擊訓練受誤導,將具備數位射控系統戰車,當作傳統機械式戰車操作。

二、如何維持戰車砲射控精度

(一)歸零射擊≠審查測試:

歸零射擊主要因應前述時機,消除戰車砲機械誤差,若戰車出廠時瞄準具 「校靶」未完成,或未將聯合驅動砲架進行桁架水準儀調校,都會使歸零 射擊修正值加大,因此審查測試前若未進行歸零射擊,將無法消除機械誤 差,射擊精度相對降低。27

(二)射控系統不得任意拆拚:

戰車射控系統為一構造精密,經多重纜線串併聯接,每一元件於車輛出廠 時均按序號配賦,且經匹配與訊號耦合測試,此後續本軍將陸續接收新式、 射砲控系統更新及國造研發戰車,要摒棄過去錯誤觀念,為達成短期戰演 訓射擊任務,任意拆拚射控元件,導致線路接續斷針、氮氣封閉外洩及匹 配不良等狀況,裝備妥善日益下降。

(三)構改取代翻修延長壽限:28 (如圖 20)

現行各國主力戰車發展,在獲得適用裝備後,每 5-7 年進行一次構改,德 國豹二、美國 M1 及英國挑戰二型,都是以構改維持裝備高妥善,機械式設 備可沿用時間較久,但現代化戰車數位化射控,其中光學、光電、數位傳 輸及電子計算機,如以現在人手一支的「行動電話」為例,推陳出新速度 極快,如果你拿一支用了10年的手機,去市面上通信行要求維修,一般的 答案是,老闆會請您買支新比修舊機便宜,現在 CM11 若要找到 1984 年相 同的元件,來換修損壞的射控元件,那幾乎是不可能,因為已經過了37年, 而構改後的戰車是一輛幾乎全新的戰車,前述主力戰車製造國家都歷經 4-12 次以上構型改變,戰車可以使用至 2050 年,而且分批分年的構改, 可以避免一次性大量投資更新,也不會有消失性商源的問題。

²⁷戰車瞄準具校靶,<Http://kknews.cc>軍事,2008 年 7 月 1 日,現代戰車工廠在出廠前會作砲(槍)膛鏡與瞄準 具雷射「校準」作業,檢視裝配時人為誤差,與覘視規正不同,校靶作業不轉動瞄準具分劃螺,而是校正靶 為基點,校正技術人員,調整槍砲及瞄準具位置(作固定基座方向及垂直調校)直至雷射光束對準校正靶心, (2022年1月12日)。

²⁸上田信著,Dasha 譯,《戰車機械結構圖鑑-2》,(台北市,星光出版社,2004 年 4 月),頁 148-149,162-163、 166-164 •

圖 20-各國戰車構型管理演進-最新款車型圖

資料來源: 黃峻民,《德意志雄師-聯邦國防軍現役裝甲車輛寫真》,(台北市,蒼壁出版有限公司,106年4月),頁33,豹2A7戰車,檢索時間:2022年2月16日。

結語

一個被忽略且被錯用的射擊程序,它居於戰車射擊精度的關鍵,M1A2T戰車採用指揮儀式射控系統,機械誤差值在組裝工廠(Lima)出廠前,已先行調校完畢,因此取消歸零射擊程序,然本軍 M60 戰車後續改良及新式輪型戰車,目前仍屬研發及工程發展階段,後續採用數位化射控,將持續與造兵單位(中科院及生製中心)保持密切聯繫,製造出符合作戰需求車輛,同步編撰操作手冊與射擊教範,期使本軍裝備及戰技,能夠支持戰鬥與戰術運用,建議後勤保修單位,能夠以「構改」取代「翻修」,觀看國家地理頻道所拍攝「超級工廠-M1 艾布蘭戰車」,構改整新過程,每一輛戰車從拆解、清洗、燃氣渦輪引擎零工時整修,加裝構改新式裝備及全射控系統換裝新機,也就是說機械與外觀裝甲部分可用檢整及整治,光電觀瞄系統換成最新世代產品,讓每一輛經過安尼思頓與利馬兵工廠構改整新的 M1 戰車就是新車,美軍 M1 戰車 從 1981 年至 2021 年已使用 40 年,未來計畫再服役至 2050 年,美軍 M1 戰車持續透過構改,保持 M1 戰車部隊質量不墜,這是本軍戰車全壽期管理,必須嚴肅面對問題,使戰車部隊維持「灘岸殲敵」決勝主力,確保聯合國土防衛作戰任務之達成。

參考文獻

一、中文部分

(一)教則:

- 1.張弘叡。《陸軍CM11/12戰車操作手冊(第二版)》。(桃園市,國防部陸軍司令部,2014年7月)。
- 2.林宏一。《陸軍戰車射擊教範》。(桃園市,國防部陸軍司令部,2014年7月)。
- 3. 陸軍戰甲砲車發展中心。《戰車火砲履歷書》。(桃園,龍潭,陸軍總司令部,1991年4月)。

(二)專書:

- 1. 周小剛。《陸戰之王-世界各國主力戰車》。(台北市,知兵堂出版社,2008年3月)。
- 2.小林源文。《魏特曼戰記 1943-新編》。(台北市,蒼壁出版有限公司,2021 年 1 月)。
- 3. Chister Jogensen AND Chis Mann 合著。孔鑫譯。《戰車戰的戰術與戰略》。 (台北市,風格司藝術創作坊,2009年4月)。
- 4.上田信。《戰車機械結構圖鑑-1》。(台北市,星光出版社,2007年4月)。
- 5.上田信。《戰車機械結構圖鑑-2》。(台北市,星光出版社,2007年4月)。
- 6.深度軍事編委會。《坦克與裝甲車圖鑒》。(中國,北京,清華大學出版社, 1016年7月)。
- 7. 黃峻民。《德意志雄師·聯邦國防軍現役裝甲車輛寫真》。(台北市,蒼壁出版有限公司,106年4月)。
- 8.戰車 712 營。《M-48H 戰車操作作手冊(草案)》。(新竹縣,陸軍獨立第 51 旅,1991 年 3 月)。隨該旅裁撤,本書未典藏。

二、網路資料

- (一)維基百科。< Http://zh.m.wikipedia.org,zh.-tw >。2011 月 5 月 21 日。 (2021 年 12 月 29 日)。
- (二)勞倫茲(Loventz)法則。< Http://www.hiwinmikro.com.tw>。2012 年 3 月 15 日。(2008 年 12 月 29 日)。
- (三)中文知識百科。<Http://www.easyatm.com.tw>。2011 年 5 月 23 日。2022 年 1 月 11 日)。
- (四)唯讀記憶體。(Read-Only Memory,ROM)。< Http://pedia.cloud.edu.tw>。 2005年1月23日。(2022年1月12日)。
- (五)戰車瞄準具校靶。<http://kknews.cc>軍事。2008年7月1日。(2022年1月12日)。

筆者簡介

姓名: 陳少瑋

級職:中校研究教官

學歷: 陸軍官校 94 年班、陸軍裝甲兵訓練指揮部正規班 122 期

經歷:排長、連長、裁判官,現任裝甲兵訓練指揮部作發室中校研究教官

電子信箱:chenshauwei@eebmail.mil.tw