後備部隊戰力防護之研究

一以建構快速布放式 抗爆震掩體爲例

撰稿人:曾世傑 楊國鑫 蔡營寬 林詳恩

摘 要

- 一、國防部於111(今)年1月1日將原全民防衛動員室改隸為「全民防衛動員署」,同時重新劃分第一類型「灘岸守備旅」、第二類型「縱深與城鎮守備旅」與第三類型「重要目標防護單位」等三種類型部隊。
- 二、觀察近年演習科目,無論阻絕設置方式或工事構築之強度,僅具備基本阻敵效果,一旦面臨中共強大新式武器,恐無法阻止其火力對我軍造成重大危害。
- 三、本研究依後備部隊現況、面臨敵軍威脅、布放式掩體性能概述與抗爆震等項分析,研究發現布放式掩體在遭受9.5kgTNT炸藥爆炸後,其最佳化設計尺寸僅須81cm×30cm×84cm等項成果,並提出結合後備部隊於灘岸、縱深與城鎮、重要目標防護守備之運用方式,以及對我防衛作戰啟示芻議。

關鍵字:後備部隊、地工織布、布放式掩體、抗爆震

膏、前

近年共軍對臺武力威脅持續升溫, 面對未 來不預期變化,我國總統蔡女士於110年國慶 大會中提出「四個堅持」,並堅信「確保主 權、捍衛國土」之理念,為國軍立下深厚保家 衛國、為何而戰的基礎。 前上所述,體現出 我國國防基本理念(詳如圖1),除國軍戰備整 備外,更結合全民總力建構與發揮聯合戰力, 期藉重層防衛嚇阻手段,創造有利態勢,阻敵 進犯意圖,確保國土安全。²

因應共軍「快速奪取臺灣」企圖,我國已 朝高度機動、疏散、隱蔽與複式備援方向發 展,期望打亂敵作戰節奏與延遲行動進程,並 以灘岸、縱深反擊及重要目標防護等三類型 之後備部隊防衛手段,發揮我海島防衛地理 優勢,擴大不對稱作戰能力。3另為達固守韌 性、擴展防衛縱深與戰略持久之目標,進而爭 取形成總體國防力量時間,國防部刻下執行後 備動員改革,於111(今)年1月1日將原全民防 衛動員室改隸為「全民防衛動員署」,同時進 行後備部隊組織編裝調整,在現存動員制度基 礎之上,重新劃分第一類型「灘岸守備旅」、 第二類型「縱深與城鎮守備旅」與第三類型 「重要目標防護單位」等三種類型部隊。4其 要旨在於以「納動員於施政、寓戰備於經建」

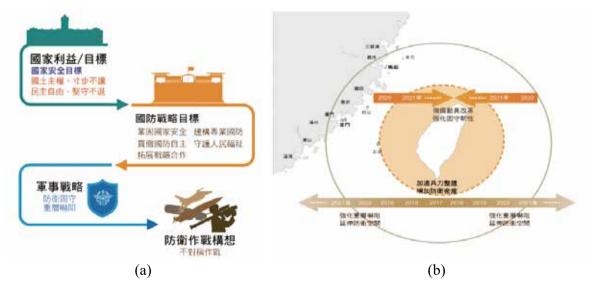


圖1 110年國防部告書戰略構想: (a) 戰略規劃概念示意圖 (b) 軍事戰略及防衛作戰構想示意

資料來源:國防部,〈110年國防報告書〉,2021年11月,頁55-56。

¹ 摘錄自中華民國總統府,〈共識化分歧,團結守臺灣,總統發表國慶演說〉,《中華民國總統府》,2022年 10月10日,〈https://www.president.gov.tw/News/26253〉(檢索日期:2021年10月31日)。

² 國防部, 〈110年國防報告書〉, 2021年11月, 頁55。

³ 同註2,頁56。

國防部,〈中華民國110年四年期國防總檢討〉,2021年3月,頁22。

等精進作法,俾達到完善「動員組織」、增強「動員能量」及遂行「防衛作戰能力」等目標,⁵上述精進作法更可見國軍落實於年度各型戰備演訓之中。

觀察近年部隊訓練及年度演習(如圖2), 在灘岸守備類型演習科目中,⁶無論阻絕設置 方式或工事構築之強度,僅具備基本阻敵效 果,且實際執行構工亦費力費時,一旦面臨中 共不間斷發展之強大新式武器,恐無法阻止其 火力對我軍造成重大危害。基於上述威脅,我 防衛作戰勢必謀求創新不對稱戰術戰法以為因 應,且新成編之後備部隊戰力規劃,除應結合 現行新式裝備外,更須尋求可迅速完成組裝建 構、具高度機動力且防護效能高之阻材、掩體 與作戰工事。

經蒐整相關文獻,前人研究已提出用以適應未來戰場環境,迅速增補戰場罅隙,同時有效遲滯登陸敵軍行動等阻絕建議,其中包括可籌購野戰快速掩體、散撒布雷系統等項,7然而對其抗炸防護效能與後備部隊實際運用方式,尚未有進一步探討。為深入探究野戰快速掩體抗炸效能,以及如何運用於未來後備部隊之戰術戰法,本研究基於上述思維,主要探討後備部隊於戰力防護階段,結合兵、火力配置與快速布放式掩體施作,用以增進我軍阻絕及工事的效用。而在進行戰力防護階段創新戰術戰法之前,應優先分析布放式掩體之抗炸效能,俾使其極大化發揮防護能力。綜上所述,

圖2 工兵部隊灘岸阻絕設置圖(a)漢光37號南部地區海灘(b)工兵部隊基地測考紀實。 資料來源:筆者整理自青年日報,檢索網址https://www.ydn.com.tw/news/newsInsidePage?chapterID=1444914; https://www.ydn.com.tw/news/newsInsidePage?chapterID=1230554。檢索日期,2022年5月3日。

- 5 「完備動員組織」、「跨部會協調合作」、「強化後備部隊」、「精進教召訓練」及「妥善裝備整備」等 6 項整備工作。整理自國防部,〈110 年國防報告書〉, 2021 年 11 月, 頁 8、75-77。
- 6 八里海灘主要以制式的工兵阻材或是非制式的資材搭配設置阻絕,例如:消波塊、廢棄車、電線桿...等, 防禦及戰車掩體工事部分,以人力堆疊沙包及運用工兵重機械構築砂土牆為主要手段;澎湖地區規劃嘉義 後備工兵部隊運用蛇腹型刺絲網、四線柵等簡易工事,針對重要處所設置阻絕系統,來達成守護指揮所、 政經中心之目的。
- 7 陳威霖、周寬渝,〈共軍登陸作戰破障能力之研究〉,《陸軍學術雙月刊》,第五十五卷第567期,2019年 10月,頁89。

以下將先從後備部隊作戰能力現況與特性進行 探討,接續論述我國目前面臨敵軍威脅、國外 布放式掩體阳材性能諸元後,再擷取有關文獻 爆炸實驗數據,實施數值模型驗證與參數研 究,
り期藉透過數值分析方法獲得掩體抗爆震 分析運用效益,⁹進而提出最適化掩體設置之 建議,10最終提出後備部隊使用布放式掩體作 法之芻議(研究架構如圖3所示)。

貳、後備部隊戰力分析

我國後備軍事動員,係以國內可運用在戰 場上的人員及物力先期納入編管,並於戰爭伊 始迅速動員投入的作戰的狀況。1110年立法 院三讀通過《國防部全民防衛動員署組織法》

之規定,於國防部體系編成全民防衛動員署 (以下簡稱全動署),並將原後備指揮部併入, ¹²為建立重層嚇阻的防衛戰力與明確「常後 一體」目標,13各類型後備部隊任務亦隨之調 整。14下列探討各類型後備部隊任務、編組及 戰力與可能遭受敵情威脅。

一、後備部隊任務調整

各後備部隊平時由編制現員幹部執行備戰 工作,戰時依動員令發布開始動員,並編成 甲、乙、丙、丁四種類型後備旅,遂行作戰。 ¹⁵此次組織編裝革新重點,係將原甲種後備旅 調整為第一類型「灘岸守備部隊」,乙、丙、 丁種後備旅及各山地、站台連,依防衛作戰任 務導向,區分為第二類型「縱深及城鎮守備」

- 8 摘錄自鑫威資訊,《LS-Prepost》,https://www.simware.com.tw/lsdyna overview/lsdyna-PrePost/》(檢索日期: 2021年12月12日)。
- 摘錄自鑫威資訊,《LS-DYNA全國最大中文知識庫—鑫威資訊-LS-DYNA教材》,〈https:// sites.google.com/view/sw-faq01/%E5%AD%B8%E7%BF%92%E8%B3%87%E6%BA%90/lsdyna%E6%95%99%E6%9D%90〉(檢索日期:2021年12月12日)。
- 曾世傑、楊國鑫、蔡營寬、〈地下結構體抗爆震研究-以加勁土衰減爆震壓力之數值分析為例〉、《陸軍學 術工兵半年刊》,159期,2021年10月,頁20-21。
- 摘錄自國防部,《國防部全民防衛動員署組織法》,《全國法規資料庫》,https://law.moj.gov.tw/LawClass/ LawAll.aspx?pcode=F0000093(檢索日期:2021年12月5日);秦大智、唐宇侃,〈國軍建立後備兵員制 度之回顧與探討〉、《後備半年刊》,95期,2017年6月,頁73。
- 12 全動署負責軍軍事動員政策之規劃、督導及執行協助行政院與所屬機關(構)、直轄市、縣(市)政府全 民防衛動員政策之規劃、督導及執行、國軍軍事動員、全民防衛動員演訓之規劃、後備部隊編組、選充、 召集、訓練、軍需物資、軍事運輸等相關事項。摘錄自國防部,《國防部全民防衛動員署組織法》,《全國 法規資料庫》, https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=F0000093(檢索日期:2021年12月5日
- 戰力規劃力求將「平時」與「戰時」做結合,並整合軍民資源與功能,建構更完整的「全民防衛動員」總 體戰力。夏國華,〈從國土防衛探討恐怖攻擊下我國應有之全民防衛動員〉,《後備半年刊》,96期,2017 年11月,頁65。
- 14 以色列國土南北狹長,為了增加戰略縱深,將全國劃分 14 個動員區,每個動員區有 1-2 個預備役旅,分 屬北、中、南部軍區,各區設立若干個徵召集結點及應急軍用倉庫,以便立即動員、立即作戰,此為第一 線預備役部隊,另有第二線、第三線領土防衛力量。摘錄自韓岡明,〈「領土防衛」─「全民防衛動員署」 的新任務〉,《國防安全雙周報》,第45期,2022年1月,頁36-41。
- 15 於下頁。

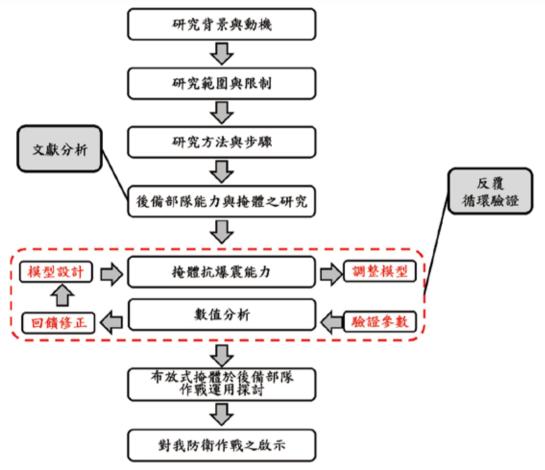


圖3 研究架構圖

資料來源:筆者自行繪製。

與第三類型「重要目標防護」等作戰部隊,並 賦予其在戰場上之防衛作戰任務。

(一)灘岸守備部隊

1.部隊編組

原 7個步兵旅,自 110 年 1月 1日 起,規劃 在 112 年底前 會完成調整 成 12 個步兵旅 (如表 1);另為迅速恢復後 備軍人戰鬥技能,強化教育召集訓練強 度,將原「2年1訓、每次 5至7天」 調 整為「年年施訓、每次14天」,並全程 野外宿營,於戰術位置實施戰鬥教練, 使後備部隊熟悉與肆應作戰地區環境遂

¹⁵ 甲種後備步兵旅以新訓為母體編成,運用於海灘守備;乙種旅再依部隊屬性,分為步兵、機步、裝甲、砲兵、特戰等類型,由兵監單位編成,運用於海灘、縱深地區等機動打擊任務;丙種旅則以縣、市後備指揮部為母體單位編成,運用於城鎮守備任務;丁種旅屬單一特殊任務,亦由縣、市後備指揮部為母體單位編成,運用於重要軍事目標及民生設施安全維護。國防部後備指揮部,《後備旅作戰教則(草案)》,(臺北:國防部後備指揮部,民國99年8月31日),頁2-1。

		742 14 1	一个							
	國軍第一類型「灘岸守備部隊」編成現況表									
項次	地區	部隊類型數量	編成現況							
1	北	步兵旅 ×5	迄 110 年底,已完成整編 4 個步兵旅、另 1 個 步兵旅 預計於民國 112 年底前完成 年底前完成。							
2	中	步兵旅 ×3	均已完成。							
3	南	步兵旅 ×4	迄 110 年底,已完成編成 2 個步兵旅、另 2 個 步兵旅 民國 112 年底前 完成。							

表1 國軍第一類型「灘岸守備部隊」編成現況

資料來源:筆者整理自維基百科,〈中華民國陸軍〉,檢索網址:https:// zh.wikipedia.org/wiki/中華民國陸軍, 檢索日期:2022年1月7日。

行戰場經營,以建立未來接訓及戰備整 備常數,作為後續政策研修及部隊訓練 執行之參據。16

2.任務特性

臺灣四面環海,屬海島型國家,臺 澎防衛作戰本質以遂行守勢作戰為主, 海(灘)岸第一線戰力就顯得尤其重要, 由該類型部隊負責沿海地帶拘束敵軍上 岸,而為使戰力能保存於地下,火力發 揚於陣地前,需充分利用濱海灘岸地形 完成布署。17除兵、火力部署外,更須 與常備部隊共同形塑「拘打配合、灘岸 殲敵」之有效戰力,此其關鍵之一在於 結合掩體、阻材設置,18室固整體防禦

陣線。

而為確保戰力之完整,此類型戰力 保存位置,基於各階段不同之戰術運 用,可區分駐地、動員編成及戰術位置 等項,依序完成整備,¹⁹並依年度作戰 需求,賦予各後備營軍事勤務隊遂行野 戰防空、工事整備任務,然以現有部隊 編制人力、裝備而言,在阻絕與工事構 築能力仍略顯不足。20

(二)縱深及城鎮守備部隊

1.部隊編組

由各軍事院校、各兵監測考中心的 後備部隊及各縣(市)所屬的後備部隊編 成,21而為了提升部隊縱深及城鎮守備

¹⁶ 同註 2, 頁 76-77。

金嘉康,〈本島灘岸守備營連陣地編成之研究〉,《陸軍雙學術月刊》,第512期,2010年8月,頁68。 17

¹⁸ 陳慶同、王建民,〈從「灘岸決勝」的觀點探討後(守)備部隊之作戰能力〉,《後備半年刊》,95期,2017 年6月,頁58。

¹⁹ 國防部後備指揮部,《後備旅作戰教則(草案)》,(臺北:國防部後備指揮部,民國 99 年 8 月 31 日),頁 5-16 •

²⁰ 同註18,頁67。

部隊作戰能力,持續規劃將軍事訓練役、教育召集訓練及後備部隊編管結合一致,爾後在軍事訓練役訓練期間及退後教召訓練期間,都有相當程度城鎮戰的訓練,使其任務與訓練能縝密結合。²²

2.任務特性

依守備區域不同又區分地形要點守備、城鎮守備、淺山要隘守備等,地形要點守備負責灘岸地區直後之戰術位置,以擴大防禦縱深,阻敵灘岸登陸後續行擴張戰果。城鎮守備由編成地所屬後備旅擔任,負責保鄉、保產、拒止、遲滯、分割戰線予殲敵之一部。另淺山 要隘屬後備山地連負責,以維護責任區內淺山周邊交通線之安全,阻敵向核心陣地突入後,佔領有利地形,²³此類型戰力保存執行作法可依情報判斷結果,於指定地區完成工事及各項阻絕,並配合兵、火力修正規劃,以遲滯敵軍行動。

(三)重要目標防護守備部隊

1.部隊編組

由各作戰區負責整合作戰區內及 海、空基地目標防護部隊,與民防團隊 及保警共同執行任務,²⁴發揮全民統合 戰力。

2.任務特性

我空軍基地、海軍要港、高山雷達 站、機動雷達、飛彈車組等重要軍事目標,均列為須安全防護對象,²⁵另鑒於 戰史例證,維護足以轉換戰時後勤能量 等重要關鍵基礎設施,亦將牽動戰局變 化,²⁶上列均規劃由我守備部隊遂行重 要目標防護任務。

(四)小結

無論灘岸、縱深地區、城鎮或重要 軍事目標,均須透由各類型後備部隊構 築不同掩體進行防護,上列類型設施應 優先建構地下化掩體進行防護,惟目前 僅部分設施達此要求。而尚未達到應具 備之防護程度者,應對現地既設設施強 化其抗炸防護力,或於現址附近尋求適 切區域,建構具抗爆震功能之地下化堅

²¹ 同註19,頁2-3-2-5。

²² 羅添斌,〈強化後備戰力-4個月軍事訓練役與城鎮作戰結合,退後教召 14 天〉,《自由時報》,2020 年 10 月 21 日,〈https://news.ltn.com.tw/news/politics/breakingnews/3327521〉(檢索日期:2021 年 2 月 22 日)。

²³ 同註 19,頁 5-34;葉紘胥,〈丙種城鎮守備旅在防衛作戰時期任務之研究〉,《後備半年刊》,95期,2017 年6月,頁96。

²⁴ 國防部,〈國防部「提升後備戰力」專案報告〉,頁 3-4,〈https://misq.ly.gov.tw/MISQ/docu/MISQ3006/uploa dFiles/2020101512/40204029051162330000.pdf〉(檢索日期:2021年11月6日)。

²⁵ 主要區分「軍事設施」、「民生設施」、「交通設施」與「行政機構」,確保國家關鍵基礎設施運作正常(如電力、油料、供水、通訊、傳播、海、空運、金融等)。葉紘胥、〈丙種城鎮守備旅在防衛作戰時期任務之研究〉,《後備半年刊》,95期,2017年6月,頁96-97。

²⁶ 張簡建弘,〈從戰史例證證論基地與作戰關聯性之研究-兼論防衛作戰全民動員〉,《後備半年刊》,88期,2013年10月,頁137。

固設施或急造式掩體,以備戰時能維持 其原有功能。然我國針對此類替代軍事 設施相關建議構型與設計尺寸,均停留 於抗爆震研究階段,27國內亦僅少數研 究文獻可供參考。

二、當面敵情威脅

近年來,共軍對我軍事作為越趨強硬、頻 繁與密集,中共習近平自2019年在《告臺灣同 胞書》40周年紀念會上正式啟動「統一臺灣戰 略」,28復於2021年黨慶活動中,特別官示解 決臺灣問題等議題,由此觀察共軍從未放棄對 臺使用武力。²⁹

(一)中共軍力發展

中共從2015年啟動軍改迄今,已藉 歷次聯合登陸演習、臺海周邊遠海長 航等作為,持續強化「聯合情監偵能 力」、「資通電作戰能力」、「聯合軍 事威攝能力」、「聯合封鎖能力」、 「聯合火力打擊能力」、「聯合登陸作 戰能力」、「戰略支援能力」、「聯勤 保障能力」等對臺作戰能力,30上述包 括兩棲作戰、陸軍航空兵與空中突擊行 動。31另中共軍力已由人力密集轉為科 技密集,朝向軍事現代化、精準化之目 標邁進,並預計在2027年前,將完成對 臺及第一島鏈節圍內目標遠距打擊能 力。32由上可知,共軍對臺的軍事行動 與火力射程範圍均持續擴大,我防衛作 戰戰力防護亦應針對其武力發展,據以 調整我常、後備部隊作戰能力與兵、火 力部署,俾建構戰場作戰有利環境。

(二)對我後備部隊威脅

前開所提共軍武力發展現況,對我 後備部隊之任務將造成極大影響。研判 中共航渡發航前,勢必利用其火箭軍 導彈,優先對我重要機場、港口、雷達 站、防空陣地、情監偵等固定設施進行 摧毀,取得制空、制海權後,接續在其 優勢海、空火力下進行航渡,33接近登 陸作戰階段,則以裝甲破障車搭配海軍 火力向我灘岸進行破障(詳如表2)。34進 入島上作戰階段時,共軍中、遠程及空 軍火力威脅,持續向我第一線灘岸守 備、位於廣正面縱深、城鎮地區之第二 類型部隊、主要進出口與重要目標處所 逕行攻擊,35此階段對我危害最大應屬

²⁷ 同註10。

曾復生,〈全民國防戰略區是備忘錄〉,《後備半年刊》,103期,2021年6月,頁12。

德國之聲,〈習近平談「解決台灣問題」台海戰爭的懸頂之劍〉,《聯合新聞網》,2021年7月1日,〈 https://udn.com/news/story/7331/5571996〉(檢索日期:年2月26日)。

³⁰ 同註4,頁8-9。

U.S.A-Department Of Defense, \(\) Military and Security Developments Involving the People's Republic of China > ,2021/11,p.120.

³² 同註2,頁36-37。

³³ 楊有恆、〈共軍聯合島嶼進攻戰役能力研究〉、《後備半年刊》,88期,2013年10月,頁90-93。

同註7,頁83。

表2 共軍武力對我之威脅

共	軍	武	カ	對	我	威	脅	_	覽	表
項次	軍種	1'	作戰目的		重要	武器裝備		對守何	備部隊影響	
1	陸軍				換裝輕式坦克 遠程多管火箭 裝備。			l .		
2		綜合戰略威 棲突擊戰力 戰能力。			換裝飛彈驅逐 整合現有艦、			登陸作戰時: 距火力打擊: 功能。		
3	空軍	完備「制空」 略投送、全: 戰武力。			以掛彈量大等型取代舊機			對我縱深及 場		
4	火箭軍	強化攻臺及 打擊,提升 體打擊。			提升彈頭威力中程飛彈。	7、換裝新	型短、	對我縱深及均 要目標實施遠		
5		整合天、空優勢,提供			建構對地觀測展太空站。	川、 導航衛	星、發	可提供共軍》 對我重要目標 擊。		

資料來源:筆者整理自國防部,《110年國防報告書》,2021年11月,頁34-37。

敵砲兵部隊各式自走砲、火箭砲、陸航旅之航空火箭彈火力,並對我主要戰甲部隊武器裝備、各式掩體、陣地及機動指揮所等目標實施火力制壓。36亙作戰全程,敵皆可利用戰略支援部隊偵蒐、遠程多管火箭對我縱深、城鎮地區及重要目標實施遠程打擊。我軍平時於守備地區雖有戰場經營及阻絕規劃,但各地區的阻絕作為仍保持其傳統的方式,甚或沒有堅固戰場工事、掩體、陣地可供運用,37對於如何於應急作戰階段達到戰力保存實際作為,尚須持續檢討與精

淮。

三、後備部隊具體因應

現代戰爭節奏快速且在戰爭開打前多以形塑決戰前有利態勢,同時以遠程火力威脅為主要手段。觀察111年上半年俄、烏軍事衝突,大多運用全民力量,為村落及守備區設置各式掩體(詳如圖4),然此類堆疊沙包、構築工事手段與方法,除較為費工費時外,其防護程度亦顯薄弱。

孫子兵法第四篇軍形篇提及:「昔之善戰者,先為不可勝,以恃敵之可勝,不可勝在己,可勝在敵...是故勝兵先勝,而後求戰,敗

³⁵ 葉紘胥,〈丙種城鎮守備旅在防衛作戰時期任務之研究〉,《後備半年刊》,95期,2017年6月,頁103。

³⁶ 同註10,頁4-5。

³⁷ 同註18,頁67。

圖4 烏克蘭居民搭設防護掩體工事:(a)利用沙包保護瞭望塔(b)利用樹枝搭設警戒陣地(c) 於重要路口堆疊沙包(d) 替掩體工事鋪設偽裝網

資料來源:筆者整理自The Newyork Times, \https://www.nytimes.com/2022/02/27/world/europe/ukraine-citizensrussian-army-fight.html \(\) . \(\) https://www.nytimes.com/2022/02/27/world/europe/ukraine-villages-russiawar.html?searchResultPosition=1〉(檢索日期:2022年3月1日).

兵先戰,而後求勝」38,說明若欲尋求勝機, 必先平時做好備戰準備取得必勝條件;³⁹為厚 植平時經濟建設與國防潛力,凝聚衛國意志展 開總體防衛,國軍每年均結合年度「漢光演 習」舉行「全民防衛動員演習」,並涵蓋「同 心、自強、萬安、民安」等四類驗證後備戰力

³⁸ 陸軍官校編印,《孫子兵法註釋》,(高雄:陸軍官校,民87年9月),頁110。

³⁹ 曾世傑,〈從孫子兵法「勝兵先勝」觀點探究全民防衛動員重要性-以1973年以阿贖罪日戰爭為例〉,《後 備半年刊》,99期,2019年6月,頁51。

演習,旨在統合各級地方政府「動員、戰力綜合、災防」體系,以落實平時能夠救災,戰時動員應戰等具體作為,⁴⁰惟上述未見戰力防護階段如何遂行戰力保存具體作為。

迄至111年初全動署甫成立之際,應依前人研究建議,41肆應不斷變化之敵情,納用新式裝備提升戰力,填補阻絕及戰場工事的不足,使守備地區防禦強度朝向「整合民生設施」、「提升阻絕維度因應敵情威脅,調整設置策略」、「整合工事配置,型塑戰場環境」、「籌補快速阻材,臨機增補設置」等面向發展。在具體作為中,可採購快速、機動、省力且具有抗爆震的快速設置掩體,同時須針對快速布放式掩體設施進行抗爆震效能評估,據以獲取最適化構型尺寸,以供戰場實際構築運用。

參、快速布放式抗爆震掩體之研究

一、快速布放式抗爆震掩體概述

舉凡中、西古今各大戰事,防禦作戰除仰賴兵力配置及配合地形運用外,工事及各型掩體的設計也為取勝關鍵之一,如法國馬其諾防線、中國長城皆然。⁴²惟戰爭型態轉變迅速,狠快、精準已成為不可或缺的條件,如能運用機動性高的快速布放式掩體,除平時減少儲放

空間外,戰時可隨任務彈性運用,快速改變戰場空間,發揮強大防禦成效。⁴³

(一)快速布放式掩體緣起

1989 年,由英國企業家和前煤礦工人Jimi Heselden等人,研發製造有關HESCO掩體產品,用以防止岸堤侵蝕海岸與沼澤地區防洪,此類掩體可稱為HESCO MIL、Hesco barrier或Hesco bastion (如圖5)。迄1990年,迅速流行成為安全設備,後續於2005迄2016年間,分別在新紐奧良市、艾奧瓦州北達科他州及錫達拉皮茲市等地區,創下防止洪水氾濫成功案例,現為北美使用最廣泛的防洪屏障之一,44我國取其可迅速布

圖5 運河運用掩體設置防洪屏障圖 資料來源:運用HESCO掩體增加河堤高度, 避免暴漲河水倒灌。筆者整理自 Flooddefensegroup, 〈https://www. flooddefensegroup.com/our-products/hescobastion/〉(2021年12月6日)。

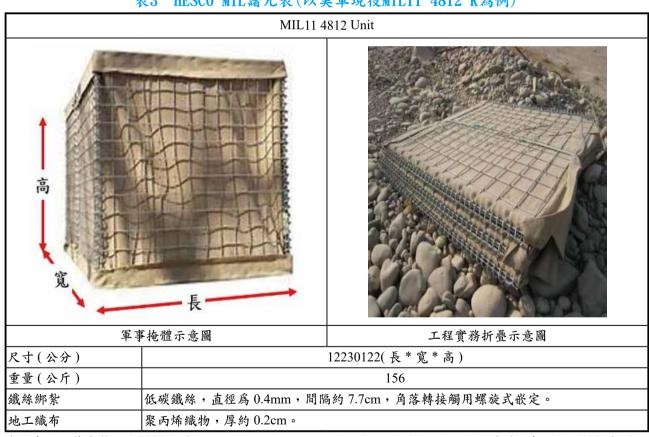
⁴⁰ 摘錄自鄒文豐,〈全民國防專欄-全民防衛動員 齊心協力護家園〉,《青年日報》,2021年9月17日,〈https://www.ydn.com.tw/news/newsInsidePage?chapterID=1445477&type=forum〉(檢索日期:2021年10月17日)。

⁴¹ 同註7,頁86-88。

⁴² 摘錄自維基百科,〈馬其諾防線〉,《維基百科》,〈https://zh.wikipedia.org/wiki/馬其諾防線〉;〈長城〉,《維基百科》,〈https://zh.wikipedia.org/wiki/長城〉"檢索日期: 2022 年 2 月 26 日)。

⁴³ 吳奇諭,〈防衛作戰中組合式掩體運用之研究〉,《工兵半年刊》,150期,2017年5月1日,頁2。

⁴⁴ Wikipedia, Hesco bastion, 〈https://en.wikipedia.org/wiki/Hesco_bastion〉(檢索日期: 2021年12月6日).


設特性,稱其為「快速布放式掩體」(下 列均以此命名)。

(二)性能諸元與一般用涂

快速布放式掩體乃是運用相同模組 之鐵絲組成在外的防護網,再以地工織 布包覆, 透過套件組成使其具有抗衝 擊的能力,這種看似簡單的套件,卻因 物理的抗拉互相牽引增加強度,使掩體 除了能抵抗洪水衝擊,還能做一定限度 的抗爆炸及抗衝擊的靈活運用,平時可 折疊保存、運輸,需要時再攤開進行設 置,⁴⁵而因應不同環境或不同需求有不 同的形式,亦可用堆疊、相互結構方式 來構建所需的大小,為近年來世界各國 公認最重要的防禦掩體設計,美軍作戰 時就廣泛用於前線作戰基地之防禦堡 壘, 並提供各項軍事武器、裝備、生活 設施及人員生活的保護作為。⁴⁶(性能諸 元介紹如表3)

(三)裝備特性

表3 HESCO MIL諸元表(以美軍現役MIL11 4812 R為例)

資料來源:筆者整理自HESCO,〈https://www.hesco.com/products/mil-units/mil/〉(檢索日期:2021年12月

⁴⁵ Hesco, \https://www.hesco.com/products/mil-units/mil/\rangle (檢索日期: 2022年2月26日).

同註 43, 頁 1-2。

此類型掩體運用最少人力、重機械即可操作,在加入填充材料後,將可迅速完成設置,以一個長10公尺的連續掩體為例,只需要2人與一台重機械(如挖掘機或鏟裝機),設置時間僅30分鐘就可完成。但如果使用沙包堆疊的話,同樣體積之掩體牆將需要8個人用8個小時以及三倍的填充材料才可完成;⁴⁷布放式掩體因具備多項優質性能,現世界各國皆有發展運用,其中美國在民生問題及戰場(如伊拉克地區)皆有使用,泰國與中共運用於解決水患問題;,其掩體特性整理分析如下:⁴⁸

- 1.節約人力:小型掩體只需2員即可架 設,大規模工事可利用車輛拖拉架 設,再運用重機械填土方即可完成。
- 2.架設快速:相較人力堆疊沙包,組合式 掩體搭配重機械,架設及撤收時間都 相對迅速。
- 3.便於運輸:組合式掩體可折疊成箱,體 積壓縮為原體積約1/10,運輸極為便 利,且儲放容易,不會造成空間的佔 用。
- 4.利於回收:掩體側邊鐵絲取出後,即打 開網面,使土方流出掩體,即可折疊 回收,並重複利用。
- 5.防護力強:可有效抵抗衝擊、爆炸帶來 之影響。
- 6.快速修復:配有修復工具組,僅需針對

- 破損區域進行修復即可,無須更換整 個組合式掩體。
- 7.適應需求:可依據不同之環境與需求, 設計不同掩體。

(四)設置方式

組裝掩體僅需要少數人力,先將其展開並可搭配往內填充沙子、土壤或礫石,通常會搭配工程機具建構(如圖6所示),可節省時間及勞力,在防洪作業和作戰工事上相當便利,且該掩體施工效率係十倍於傳統填充沙袋的成果。49

二、軍事用途

(一)運用範疇

自1991 年以來,美軍部隊已於戰 地開始大量運用布放式掩體,除地面部 隊外,海、空軍也用於設置營地掩體、 防禦工事、裝備掩體、指揮所與哨塔搭

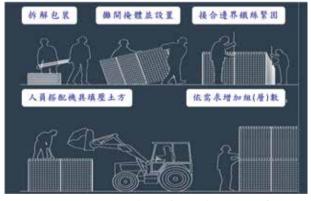
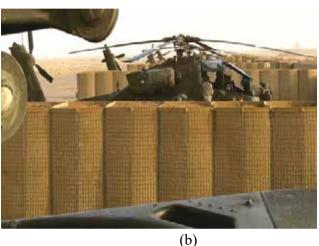


圖6 HESCO MIL布放式掩體組裝示意圖 資料來源:整理自Flooddefensegroup, https://www.flooddefensegroup.com/our-products/hesco-bastion/) (2021年12月13日)。

⁴⁷ 同註 45。


⁴⁸ 同註 43, 頁 2-5。

⁴⁹ 同註 45。

建,可結合車輛快速執行長距離範圍搭 建。另常見於戰場中各交通管制點、重 要處所、戰地設施等周邊地區,設置此 類型掩體(詳如圖7),以防止敵軍突襲。

50目前我國雖尚未採購此類型掩體,但 亦有軍事研究人員曾提出過相關一般性 說明。⁵¹

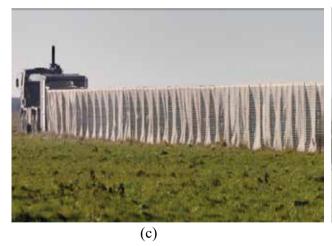


圖7 HESCO MIL掩體各式軍事運用圖: (a) 營房外掩體防護(b) 直升機裝備掩體(c) 利用輸具 快速布放長距離掩體(d)利用堆疊設置搭設建築處所外側,並增加其出入口抗爆震防

資料來源:筆者整理自Flooddefensegroup,〈https://www.flooddefensegroup.com/our-products/hesco-bastion/〉(檢 索日期:2021年11月31日)。

⁵⁰ 同註 43, 頁 2-3。

同註7、註10。 51

(二)軍事掩體防護效能案例

依美軍阿富汗軍事紀實, ⁵²某基地 遭恐怖份子汽車炸彈攻擊後,基地周邊 掩體牆發揮防護作用(抗爆效果詳如圖8 所示)。後續分析,敵爆炸源約在基地掩 體牆外6公尺處,概估此炸彈產生爆炸 能量約400公斤TNT炸藥, ⁵³而掩體經爆 炸波衝擊後,發現並未完全影響整體結 構,僅承受面處有些微的破壞,在背面 幾乎毫無損壞,經部分修補後,仍具備 防禦功能,由此研判快速布放式掩體運 用於戰場上,係具備高程度之抗爆震能 力。

三、「快速布放式掩體」運用可行性評估

防衛作戰應急作戰階段時間短促,為使我 軍作戰部隊與敵接戰時,具備較高持續戰力,

圖8 美軍掩體承受爆炸示意圖

資料來源: HESCO사 한국 에이전트, 〈https://m.blog. naver.com/baeksrun/222158946415〉(檢索 日期: 2021年11月16日). 在工事阻絕設施與各式掩體建構要求,必須要能夠具備快速組裝、現地取材性質,「快速布放式掩體」功能即具上述性質,可符合我國作戰各項需求。另掩體經過強化後之土石籠袋圍束後,大幅提升抗爆炸效能,⁵⁴可結合後備部隊戰術戰法運用,並厚實各守備區之守備能力。

(一)一般性運用

前人研究中,已整理布放式掩體結 合防衛作戰運用方式與預期效果(詳如表 4所示),我軍可充分運用並加強各項阻 絕設施,提升防禦陣地主要部隊、重要 武器、裝備、關鍵設施等防禦力,填補 我戰力不足之處,惟針對掩體尺寸與爆 震波衰減關係,尚須運用爆震分析軟體 進行數值分析,據以獲得合理尺寸。

(二)抗炸效益探討

隨國軍部隊歷經組織、人員調整後,各類型武器、裝備運用於戰術戰法應力求精確,並可配合科學方法提出假設、進行實驗與計算模擬,以得到可靠性效益評估。基此,筆者在先前研究中,雖已針對急造式掩體進行抗炸數值模擬,並獲得防護效能分析等具體成果,55然我國對於「快速布放式掩體」抗炸評估,尚停留在學術研究階段。經蒐整文獻,有印度學者對是類掩體執行

⁵² HESCO 사 한국 에이전트(韓國代理商)(韓國代理商), 〈https://m.blog.naver.com/baeksrun/222158946415 〉(檢索日期: 2021年11月16日).

⁵³ 常見的 155mm 彈頭重量約 43kg,內部裝藥以 6-10kg 的 TNT 為主,但爆炸所產生的能量又會隨火砲載具、彈種的不同而有所差異。

⁵⁴ 同註10,頁6-8。

⁵⁵ 同註 43, 頁 14-15。

	防衛作戰之掩體運用表												
運	用		段	運	用	方		預	期		果		
		松 山 唧 翔		配合阻絕配置					阻滯灘岸登陸載具				
灘岸	作戰	灘岸戰鬥		建置人員、武器掩體				協助灘岸陣地構築					
		反擊階段		機動設置道路阻絕				掩護部隊側翼安全					
縱深地區作戰				機動設	置道路阻絕			遲滯敵軍機動					
				建置人	員、武器掩骨	遭		協助縱深守備陣地防禦					
比岩	<i></i> 少歌			機動設	置道路阻絕			增加城鎮作戰複雜性					
城鎮作戰				機動設	置道路阻絕			城鎮外圍側翼防護					
人印从鄠				建置防護掩體				協力重要目標防護					
生程	全程作戰			建置防護掩體					維護各類型部隊安全				

表4 防衛作戰之 掩體軍事運用表

資料來源:筆者整理自吳奇諭,〈防衛作戰中組合式掩體運用之研究〉,《工兵半年刊》,150期,2017年5月 1日,頁12-14。

衝擊波試驗,56該研究成果亦提出掩體 抗炸效益,摘述如後:

- 1. 可以有效衰減衝擊波。
- 2. 衝擊波衰減因子取決於平均粒徑大小 與擋牆厚度。
- 3. 地工織布隔絕砂土與衝擊波直接接 觸,淮而降低應力傳遞幅度。
- 4. 快速掩體填合適材料後,即可成為有 效保護系統,以衰減衝擊波傳遞。
- 5. 由於地工織布與鐵絲網由外向內包覆 回填土,其本身材質無法承受高溫與 衝擊波直接壓力,須依實際環境條件 適切調整地工織布強度。

(三)小結

綜上文獻內容,對於布放式掩體僅 一般使用性描述,或多採用連續性、大 範圍的掩體進行數據模擬計算抗爆值 (連續性掩體抗爆炸示意如圖9所示),尚 未有單一或小範圍掩體抗炸評估的研究 成果,且我國近年國防報告中,亦未有 具體增強後備部隊戰場經營效能建議數 據。

圖9 HESCO連續性掩體進行抗爆震實驗

資料來源: Forces.net, "What Trump Can Learn From Military Walls", \(\text{https://www.forces.net/} \) analysis/what-trump-can-learn-militarywalls〉(檢索日期:2022年3月1日).

為提升整體後部隊戰場經營成效, 本篇將取HESCO掩體尺寸為案例模型, 於後續篇幅中,進行以國內土層、地工 織布組建成「快速布放式掩體」抗爆震 研究,執行一系列的數值模型建立與分 析,以深入探就其抗爆炸效能,作為我 軍後備部結合「快速布放式掩體」部署 兵、火力,以及創新不對稱戰術戰方面 之運用。

肆、掩體抗爆炸效能分析

本節概述爆震分析軟體執行流程,為使參數設定更為精準,在程式驗證部分係以K. Scherbatiuka、N. Rattanawangcharoenb一系列研究論文的實驗及數據模擬完成比對後,⁵⁷擷取後續案例研究所需參數;案例研究中,建立3D立體模型且完成參數設定,⁵⁸分析採用軟體進行有限元素分析,最後擷取數據、圖像實施探討。⁵⁹

一、程式驗證

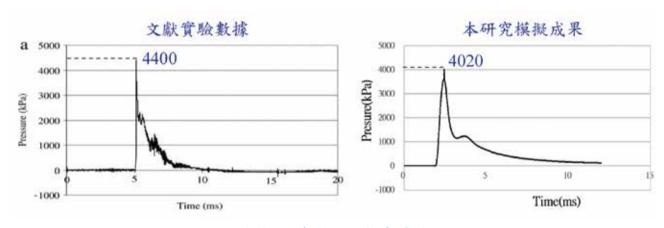
國外K.Scherbatiuk學者進行布放式掩

體爆炸試驗,經文獻分析獲得炸藥重量約為200kg,與掩體距離4公尺,文獻採用LS-DYNA 爆震分析程式進行數值模擬,因該篇研究獲得澳大利亞國防科技組織期刊刊載,深具參考價值。60接續將仿照文獻中爆炸實驗尺寸建立進行數值模型驗證,表5顯示本研究成果設差值在10%以內,圖10則顯示尖峰爆壓一歷時曲線圖趨勢相當吻合,驗證成果良好,所獲得參數與設置方式,將於次節案例研究探討。

二、案例研究與探討

為使掩體效能分析數據趨近實體,本研究 以美軍常用掩體形式「MIL11-4812R」為基準 模型設置,⁶¹並作適度修正。主要探討掩體長 度、厚度與高度等不同參數變化,與尖峰爆壓 值衰減效能之關係,俾供後備部隊執行作戰工 事掩體尺寸設計依據。

(一)數值模型建立與分析


圖11係仿照美軍掩體所建立之基準數值模型,設計尺寸為120×30×120(長度、厚度、高度),其中設置炸藥、空氣、⁶²土壤、地工織

- K. Scherbatiuka, N. Rattanawangcharoenb, "Experimental testing and numerical modeling of soil-filled concertainer wall", Engineering Structures, Vol.30, Issue 12, 2008.5. K. Scherbatiuka, N. Rattanawangcharoenb, D. J. Popec, J. Fowle, "Generation of a pressure—impulse diagram for a temporary soil wall using an analytical rigid-body rotation mode", International Journal of Impact Engineering, Vol.35, Issue 6,2007.4.
- 58 同註10。
- 59 同註 10;曾世傑、蔡營寬、施述立,〈防衛作戰戰力防護之研究-以北部灘岸後方地區構築地下掩體為例 〉,《陸軍學術工兵半年刊》,156期,2020年5月。
- K. Scherbatiuka, N. Rattanawangcharoenb, "Experimental testing and numerical modeling of soil-filled concertainer wall", Engineering Structures, Vol.30, Issue 12, 2008.5.; K. Scherbatiuka, N. Rattanawangcharoenb, D. J. Popec, J. Fowle, "Generation of a pressure—impulse diagram for a temporary soil wall using an analytical rigid-body rotation mode", International Journal of Impact Engineering, Vol.35, Issue 6,2007.4.
- 61 Hesco 提供美軍的掩體區分傳統型的 MIL 共 13 種及可回收性的 MIL Recoverable 共 12 種。
- 62 空氣力場大小隨掩體大小異動,且距掩體及炸藥有 3-6 公分之距離,溫、濕度皆為固定參數不變動;土壤 性質、密度、黏度為固定參數不變動。

	₹ 0 数值力和微磁化。	1 2						
	數值分析驗證比較表							
對照組	文獻實驗數據 設計模組模擬數據							
炸藥量 (kg)	F藥量 (kg) 200							
炸藥與掩體之距離 (m)	炸藥與掩體之距離 (m) 4							
掩體大小 (cm3)	0.9750.9750							
尖峰爆壓值 (kPa)	4400	4020						
選差值 (%) 8.6								
附記:經文獻驗證,兩者	尖峰爆壓誤差低於 10%,後續運用此模組	進行案例分析研究。						

數值分析驗證比較

資料來源:筆者自行研究成果與K. Scherbatiuka文獻比較。摘錄自K. Scherbatiuka,N. Rattanawangcharoenb, "Experimental testing and numerical modeling of soil-filled concertainer wall", Engineering Structures, Vol. 30.Issue 12,2008.5.

文獻驗證比較成果圖 圖10

資料來源:筆者自行研究成果與K. Scherbatiuka文獻比較。摘錄自K. Scherbatiuka,N. Rattanawangcharoenb,"Ex perimental testing and numerical modeling of soil-filled concertainer wall", Engineering Structures, Vol. 30,Issue 12,2008.5.

布、低碳鐵絲等元素。地工織布、低碳鐵絲皆 參照實體設置,63威脅源設置距目標掩體前方 3公分處啟爆,採用前述所提之對我危害最大 敵砲兵火力155榴彈砲(TNT炸藥為9.5kg), 64 藉以觀察「布放式掩體」承受爆炸後的現象。

下列將以圖11為基準模型,另外在不同正 面長度、厚度與高度之條件下,建立布放式掩

體數值模型,進行遭同一炸源下之抗爆震效能 分析,分述如後:

(二)正面長度影響

1.成果分析

圖12為兩種掩體在不同正面長度 下,抗爆震衰減效能數值分析結果。爆 壓值衰減將隨掩體正面長度越長,衰

⁶³ 鐵絲為直徑 0.4 公分、相隔 7.7 公分前後交錯設置; 地工不織布 厚度 為 0.2 公分。

爆炸能量及炸藥重量去換算為 TNT 單位設計炸藥尺寸。

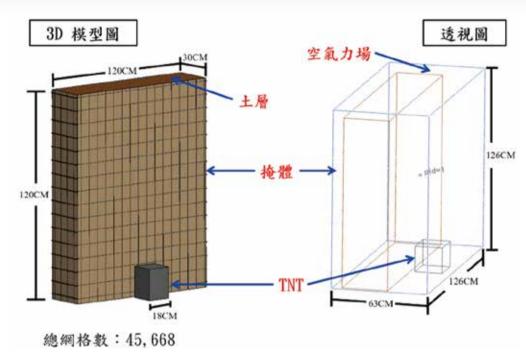


圖11 數值模型設計示意圖

資料來源:筆者依研究成果自行繪製。

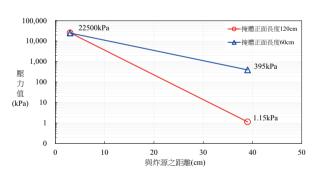


圖12 不同掩體長度衰減爆壓比較圖

資料來源:筆者依研究數據繪製。

減效果越佳,當掩體正面長度減少到60cm時,壓力值仍高達395kPa,對人體肺部將造成重大危害。⁶⁵

2.運用建議

守備部隊主要須結合各類型掩體、 佈雷系統、阻絕設施構建完整防禦體 系,其兵、火力配置亦須結合戰場作戰 工事經營,方能於戰時極大化保存戰 力,肆應敵情發揚火力,故須先考量掩 體後方壓力值降至48kPa以下,得以確 保作戰人員安全。圖13數值分析成果顯 示,掩體長度至少須達到81cm,可使 爆壓值衰減至人體承受主要爆震範圍。

臺灣本島地形交通縱橫交錯,且道 路寬度大小不一,公路最少僅兩線道, 寬度達3至5公尺不等,俾供來往車輛使

⁶⁵ 人員忍受爆震壓限度說明,1379~1724kPa 死亡、896~1241kPa 有 50% 機率死亡、689~827kPa 瀕臨死亡、大於 552kPa 肺部重傷、207~276kPa 肺部輕傷、103kPa 造成 50% 耳膜破裂、小於 48kPa 為人體可承受主要爆震範圍,小於 35kPa 安全。摘錄自國防部陸軍司令部,《工事教範》,(桃園:陸軍司令部,2002 年 9 月),頁 3-19。

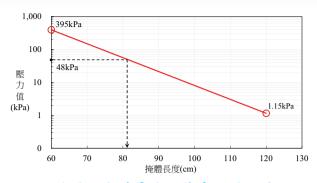


圖 13 掩體最佳化長度設計尺寸

資料來源:筆者依研究數據繪製。

用。66為維持布放式掩體抗爆震效能, 當作戰地區道路狹小或重點區域、淮出 路口、交通樞紐等,因應地形受限無法 增加掩體正面長度時,須增加其厚度、 高度因應;另正面較廣地區,可以增加 長度配置,以有效支援守備任務,戰力 不致發生罅隙。

(三)厚度變化分析

1.成果分析

圖14分別為厚度30cm、60cm掩體 衰減爆壓數值結果。可以發現TNT炸藥 爆炸後,剛進入掩體產生之尖峰爆壓值 將近25,500kPa,此將造成人員、裝備 重大傷損,經過兩種掩體衰減爆壓後, 爆壓值均降至未能引起傷損值-48kPa以 下,⁶⁷驗證掩體已發揮抗爆效能,厚度 越厚,衰減效益隨之提高,呈現正比。

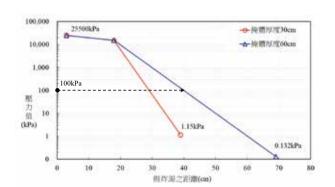


圖 14 不同掩體厚度衰減爆壓比較圖 資料來源:筆者依研究成果繪製

另探討爆壓值經過掩體與空氣等不 同介質傳遞現象,當爆壓從掩體傳遞至 外側空氣時,因介質條件差異,與相對 位置之掩體內部尖峰爆壓值相比,傳遞 至空氣場中爆壓迅速衰減,瞬間下降至 1.15kPa,但掩體內部仍高達100kPa, 此現象係因在土壤介質係以粒子接觸, 較空氣場中傳遞能量要更為連續,進入 空氣場之尖峰爆壓值將會迅速消散。

2.運用建議

依掩體厚度數值分析成果,面對 9.5kgTNT炸藥爆炸,掩體厚度至少須 達30cm以上,其後方爆壓值均降至人 體可接受節圍內。另作戰地區內,因為 山系、水系與縱橫交錯之交通網有所差 異,因此在運用快速布放式掩體時,須

車道如供汽車、機車及慢車共同使用,一般稱混合車道,其車道寬宜3.5公尺至5.0公尺;三級路(含) 66 以下市區主、次要公路,當設計速率60公里/小時且因空間受限時,最小車道寬得採3公尺。摘錄自中 華民國交通部,《公路路線設計規範》,頁 2-1,〈 https://www.motc.gov.tw/ch/home.jsp?id=740&parentpath=& mcustomize=divpubreg view.jsp&dataserno=427&aplistdn=ou=data,ou=divpubreg,ou=ap root,o=motc,c=tw&to olsflag=Y&imgfolder=img%2Fstandard〉(檢索日期:2022年3月1日)。

曾世傑、蔡營寬、施述立,〈防衛作戰戰力防護之研究-以北部灘岸後方地區構築地下掩體為例〉,《陸軍 67 學術工兵半年刊》, 156 期, 2020 年 5 月, 頁 31。

考量上述地形、地貌差異條件所帶來之 影響;有足夠縱深地區,則可結合現地 土壤進行回填構築,並配搭厚度增加與 多層次交錯手段,或改變現地不同回填 土壤性質,以提升抗爆能力。

(四)高度變化分析

1.成果分析

圖15顯示不同掩體高度衰減爆壓比較,從趨勢研判,爆壓衰減現象,將隨高度越高,則衰減效能越好,成正相關,與一般物理現象相同。且當掩體高度降低至60cm時,掩體後方爆壓值提升至587kPa,對人體肺部將產生極大的損害。⁶⁸基於上述研究成果,掩體高度尺寸設計,應考量減少設置時間與成本,並能衰減爆壓值達到不致影響人體主要傷害為原則,適度減少掩體高度。

2.運用建議

如圖16數值分析成果顯示,掩體設

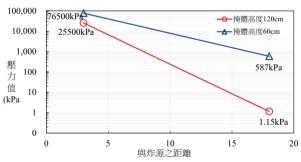


圖15 不同掩體高度衰減爆壓比較圖 資料來源:筆者依研究成果繪製。

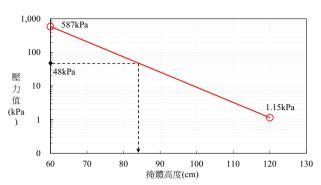


圖16 掩體最佳化高度設計尺寸 資料來源:筆者依研究成果繪製。

置高度至少須達到84cm,可使爆壓值 衰減至人體承受主要爆震範圍,後續可 以堆疊方式建構連續掩體牆,運用於防 護基地周圍或重要目標,以增加其抗爆 炸效能。

三、綜合討論

表 6 為 綜 整 上 述 數 值 分 析 結 果 , 當 9.5kgTNT炸藥在一快速布放式掩體前方爆炸後, 欲使掩體後方尖峰爆壓值降至人體可承受範圍內, 最佳化設計尺寸長度×厚度×高度僅須達81cm×30cm×84cm。

本章數值分析研究僅優先擇一美軍常用掩體尺寸進行探討,且結合本國出產之鐵絲網、 地工織布與土壤組成套件進行參數設定,因此 上述研究成果可作為後備部隊未來設置布放式 掩體參據。其運用方式上可多層設置、向上堆 疊等,以下將進行後備部隊於防衛作戰運用布 放式掩體強化守備任務之探討。

⁶⁸ 人員忍受爆震壓限度說明,1379~1724kPa 死亡、896~1241kPa 有50%機率死亡、689~827kPa 瀕臨死亡、大於552kPa 肺部重傷、207~276kPa 肺部輕傷、103kPa 造成50% 耳膜破裂、小於48kPa 為人體可承受主要爆震範圍,小於35kPa 安全。摘錄自國防部陸軍司令部,《工事教範》,(桃園:陸軍司令部,2002年9月),頁3-19。

參	數	研	究	分	析	成	果	彙	整	表								
	掩骨	豐尺寸參數:	分析		參婁	发最佳化 2	分析		建議尺寸									
區分	材	铯體尺寸(cr	m)	爆壓衰 減	掩	體尺寸(c	em)	爆壓衰減	抵抗 TNT9.5kg									
	長度	厚度	高度	效果 (kPa)	長度	厚度	高度	效果 (kPa)	之最佳化掩體尺寸設計									
基準掩體	120	30	120	1.15	120	30	120	1.15	(cm)									
掩體長度	60	_	_	395	81	_	_	48	掩體 長度	81								
掩體厚度	_	60	_	0.132	_	30	_	1.15	掩體 厚度	30								
掩體高度	_	_	60	587	_	_	84	48	掩體 高度	84								
附記:上海	表中「一」	符號表示尺	寸未變動	0					────────────────────────────────────									

表6 參數研究分析成果彙整

資料來源:筆者依研究數據整理。

伍、布放式掩體於後備部隊作戰運用 探討

依前述敵軍對我危害最大行動研判,當敵 採取猝然突襲時,勢必向我重要軍事目標實施 轟炸。在其過往登島演習中,共軍持續精進其 破障能力,朝多方向、多方式、寬正面的環形 立體登陸突擊、全縱深同時奪占灘岸、縱深地 區與灘後城鎮。69當動員令發布後,後備部隊 將於24小時內,於戰術位置後方適切地點所擇 定之動員編成地完成動員編成,並遂行戰力保 存、臨戰訓練及戰場經營等工作,亦同步開始 進行防禦工事、各阻絕與雷區設置。為使改制 之後備部隊發揮阻敵、殲敵任務,可進一步運 用快速布放式掩體遂行工事阻絕任務,並須結 合現有能量、準則等配套措施,俾得發揮整體 成效。

上沭運作成功基礎植基於平時現地兵要調 查、人力、物力動員計畫作為是否周延與因 地制宜。以下將依研究成果獲得之最佳化設 計,輔以國軍現有「工事構築要則」,70以及 「防衛作戰之阻絕運用」等教範為基礎(詳如 表7), *1 並結合敵情威脅、研究成果,整理出 後備部隊掩體運用原則(詳如表8),提出對三 類型的後備部隊利用掩體完成工事及阻絕設置 的規劃建議。

一、灘岸守備

針對第一類型部隊在灘岸守備位置,運

⁶⁹ 同註 43, 頁 12。

⁷⁰ 國防部陸軍司令部,《工事教範》(桃園:陸軍司令部,2002),頁 5-53-5-65。

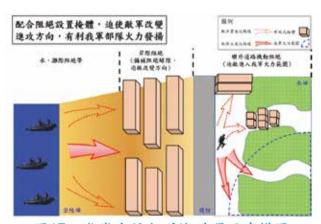
⁷¹ 國防部陸軍司令部,《阻絕教範》(桃園:陸軍司令部,2003),頁 5-1-5-55。

表7 國軍準則「工事」及「阻絕」運用參考表

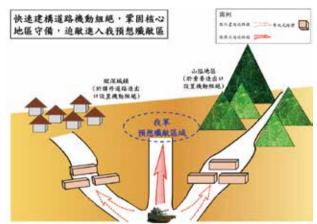
國 軍 準	則 「 工	事」	及「	阻	絕	J	運	用	參	考	表
部隊類型	任務地區		工事構築原	則			F	且絕設	置原則		
第一類型 守備部隊	灘岸地區	1. 灘頭處選 2. 可運用植 3. 視坡度、	披物種協助	掩蔽		2. 重馬	1.配置	,配合	高之阻 兵火力 流之耗		
第二類型 守備部隊	縱深及 城鎮地區	1. 搭配堅固 2. 構築交通 3. 需有防爆	要道	撐		2. 以量 3. 阻路	量制時- 各、阻息	對我危事 爭取時, 點, 所配,	間 敵機動		
第三類型 守備部隊	重要防護目標	1. 維護聯絡 2. 地下指揮							防敵突/ 腓除困事		

資料來源:筆者自行設計整理自國防部,《工事教範》〈桃園〉,2002年9月,頁5-53-5-65;國防部,《阻絕教範》〈桃園〉,2003年10月,頁5-1-5-55。

表8 後備部隊掩體規劃運用參考表


後備部	隊 肆 應	不同守備條件	運用布放式掩體規劃參考表
守備條件	設置區域	建議方案	掩體設置目的
	灘際阻絕	加長掩體、多層次縱深交 錯設置。	增強守備部隊反裝甲及防空能力,填補阻絕系統間 隊,阻斷敵登陸行動。
灘岸守備	人員及裝備 掩體	單一較厚之掩體、較高掩 體。	取代現行沙包、人力構築工事之作法,以削弱灘岸地 區遭受火力影響,保護守備部隊人裝之安全。
# 件 寸 佣	堤防區域	連續性之掩體。	掩護部隊在後方實施各戰術行動,並遲滯敵軍擴大登 陸行動。
	聯外道路	單一較厚之掩體、較高掩 體。	可迅速設置,以強化機動阻絕之效能,阻敵縱深作戰 部隊向內陸機動
	交通要點	單一較厚之掩體、連續加 長型掩體交錯運用。	阻滯敵軍機動、分割部隊集結以固守核心陣地,爭取 時間另求勝機。
縱深及	縱深陣地	配合陣地、裝備特性調整 掩體尺寸。	可隨戰況臨機調整陣地,迅速持續執行守備防禦作 戰。
城鎮守備	反空機降	符合路寬之掩體。	困敵空降之敵,使其無法向下執行特戰、破壞任務。
	機動阻絕	配合路寬、阻絕帶設置調整掩體尺寸。	可迅速因應重點設置,強化阻絕帶抗爆震能力,以侷 限敵戰術作爲。
重要目標	重要基礎建設	增加高度、連續性加長之 掩體。	增加立體防護能力,保護建築基礎,以維持其支援民 生及作戰效能
防護	地下化設施	增加高度且建構一定範圍 之連續性掩體。	削減空襲、敵砲火所造成之爆震波,鞏固地下化設施 完整。

資料來源:筆者依研究數據整理。


用布放式掩體, 迫敵改變作戰方向, 將兵、 火力、掩體、阻絕設施等縱橫交錯配置(詳如 圖17所示),以達最高效能。因敵將在登陸灘 頭建立灘頭堡,我軍應於灘岸後方構築加長掩 體、多層次縱深交錯設置,並配置適切兵、火 力,阳敵於灘岸前沿一帶,以火力殲敵於灘岸 地區;另在灘岸後方重要進出路、兵力間隙或 敵次要可能登陸地區,可運用連續性掩體、制 式器材或非制式阻材, 並隨作戰地區正面或路 而寬度選用不同掩體形式種類進行構築,以有 效削弱敵軍砲火攻擊,使其無法迅速破壞通 渦。

二、縱深及城鎮守備

當敵一但突入灘岸地區後方,屆時我軍將 陷入構築工事掩體時間較短、可用資源有限之 困境。守備部隊運用布放式掩體特性,隨作戰 需求調整形式與快速架設,可快速構築城鎮防 禦據點,並限制拘束敵進攻路線(詳如圖18所 示), 誘使其進入我軍綿密交叉火網, 造成重 大損傷。

灘岸守備部隊掩體運用建議圖 資料來源:筆者依研究成果繪製。

縱深及城鎮守備部隊掩體運用建議圖 資料來源:筆者依研究成果繪製。

三、重要目標防護守備

重要目標防護主要由我第三類型守備部隊 執行,此類部隊人力資源較少,應搭配快速布 放式掩體構築工事(詳如圖19所示),將可彌補 戰力薄弱之處,增加重要防護目標功能完整 性。為達到衰減敵軍火箭、砲彈爆炸產牛地表 下方爆震波目的,具體可針對既設與臨時增設 具抗炸防護效果之地下指揮所、供作戰用途固 定設施以及關鍵基礎設施如電廠、處所等重要 目標,在其上方採用布放式掩體堆疊,大幅度 增加垂直覆土厚度,亦可於側邊進行一般平行 設置,增加立體面防護能力。

陸、對我防衛作戰之啟示

我國現行灘岸至縱深戰力保存作為,一般 均在灘岸地區設置傳統沙包、阻絕刺絲、大型 壕溝為主,與敵火箭軍日趨提升火力威脅相 比,我軍無論設置地區考量、抗炸防護能力等 項均有待強化,對於後備部隊戰場經營與戰力 保存而言將是一大隱憂,以下將參據本研究成 果,提出我防衛作戰中可供精進措施。

堆 疊 掩 體 鞏 固重要建築物結構基礎

抢揽人员進出 出入口之安全

設置掩體強化地下化設 施 防 護 能 力

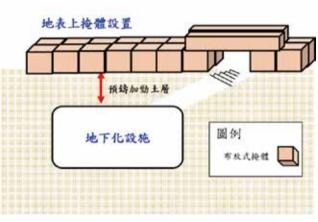


圖19 重要目標防護守備部隊掩體運用建議圖

資料來源:筆者依研究成果繪製;修正自青年日報,檢索網址:https://www.facebook.com/ydnews123/posts/1535975919858672。檢索日期,2022年5月18日。

一、寓工程技術於作戰工事,完善防衛作戰戰 力防護機制

美軍於戰場中運用快速布放式掩體遂行戰力防護已行之有年,且不斷適應不同地區戰場環境,同步針對各類型掩體進行研改。戰場作戰行動係以講求迅速與精準為首要,我防衛作戰係以守勢為主,雖於被動接戰,一旦發生戰事,仍須極盡一切手段掌握戰場主動性,具體作為即是能誘敵至預設地區,並集中優勢兵火力予以擊滅。惟觀察我國灘岸至縱深地區戰場經營作為鮮少,且戰、演訓任務所見阻絕設施強度有限,欲解決上述困境,建議應從平時戰備整備階段著手進行(戰力防護執行示意如圖20所示),並針對設置地區之工事、掩體構型、抗炸強度、設置所須時間、機具與人力等

參數分析,並依敵最大可能行動、作戰地區環境分析,由灘岸至縱深、城鎮核心地區,據以研擬我軍最佳行動方案,期藉「全民戰力」提升守備地區強度,將業界工程技術納入作戰工事構築,完善防衛作戰戰力防護機制,俾掌握戰場主動性,提升決戰成功公算。

二、科技化評估戰場環境,實戰化遂行戰場經營

未來防衛作戰一旦進入陸上作戰,我國國 土即變成作戰地區,因此務須於戰前完成所有 備戰各項措施,完備各項計畫,其中包含戰場 環境評估。目前我國地理資訊系統(Geographic Information System)科技相當成熟,並同步與 全球定位系統、遙測、ArcGIS等項併同廣泛 運用於各領域之中,⁷²可進行大氣、地表下方

72 摘錄自陳錦嫣編,〈ArcGIS 地理資訊系統介紹〉,《嘉義大學》,〈http://opencourse.ncyu.edu.tw/ncyu/file. php/7/tmp/ 空間決策分析/word/01ArcGIS 軟體簡介.pdf,〉(檢索日期: 2022 年 2 月 25 日)。

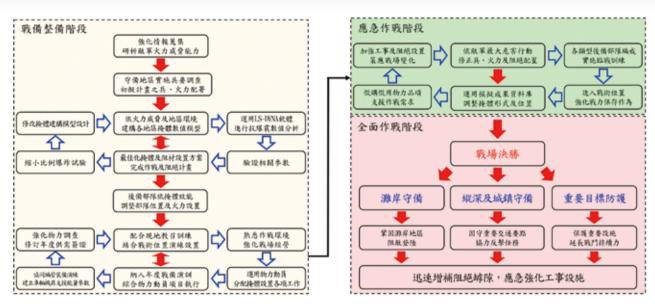


圖20 快速布放式掩體結合防衛作戰戰力防護執行示意圖

資料來源:筆者依研究結果繪製。

淺層資訊擷取,可運用其迅速、精準特性,呈 現3D立體戰場環境,初步完成戰場環境與地 質條件勘查後,再透過數值分析軟體,完成戰 地掩體設置構型與尺寸評估。

建議後備部隊遂行教召、戰、演訓任務 前,可透過ArcGIS 地理資訊系統進行戰場環 境評估,使後備部隊官兵初步對於作戰環境有 所認識,可再透過現地戰術教育,將作戰場景 具象化。另運用現地地形地貌與作戰計畫所賦 予之主要任務,完成各式阻絕工事、快速布放 式掩體、急浩式地下掩體與陣地構築,並強化 陣地、掩體隱、掩蔽措施及偽裝作為,結合實 戰化訓練遂行戰場經營。

三、強化夜戰訓練於教育召集課程,同步提升 後備部隊防空能力

後備部隊革新作法其中一項,係於教召課 程當中增加夜戰訓練,此項革新實有助於部隊 戰場存活能力,訓練科目應廣泛貼近戰場景

况。依筆者所見,一旦進入應急作戰階段,後 備部隊開始動員後,我國重要軍事海空基地、 防空陣地、雷達站均為敵火箭軍、遠程火砲優 先攻擊目標,且動員執行均將在敵火力涵蓋範 圍下實施,待我部隊動員編成後之所有行動, 亦將受敵戰略支援部隊監偵,故書間所有行動 應置重點在隱、掩蔽與欺敵作為,惟進行各類 型戰場阻絕、作戰工事、掩體構築,則須在夜 暗掩護下實施,建議可將布放式掩體夜間構築 訓練具體納入教召課程實施,俾得於戰場中極 大化戰力保存。

我國後備部隊秉持「化民力為我力、融我 力為戰力」作戰指導,主要作戰人力係透過擴 編動員充實,武器、裝備、構工機具更須從駐 地庫房或一般物資徵集場運送至動員編成地, 此過程均在敵遠程火力射程之內。故須強化後 備部隊動員實施期間之防空措施,可確保我動 員部隊戰場運動過程安全,順利進入戰術位置

遂行各項臨戰訓練。

四、結合人、物力動員體系,貫徹常、後一體 演訓任務

為肆應敵軍後續將對我採取猝然突襲,我 軍可結合布放式掩體快速設置、具抗炸效能特性,在戰場中發揮極大效益,以提升戰場部隊 存活力。在111年後備政策革新作法中,全動 署與各部會合作更具效率,故戰時戰略物資、 阻材、建材、鋼筋、挖土機、卡車等重工機 具,可透由內政、交通、科技部等部會協調方式,迅速交付至作戰部隊使用,寓全民能量於 軍事作戰。

筆者認為應於經常戰備時期,藉漢光、同心、自強等重大演訓,規劃常備與後備部隊共同演練科目,可將運輸車輛、支援構工之工程機具與操作專業人員需求納入演訓參數,並據以檢討年度作戰需求簽證。此種透過人、物力動員遂行常、後一體演練,可達成快速動員後備部隊,迅速建構重層嚇組之不對稱防衛戰力之目標。

柒、結論

本研究針對美軍常用快速布放式掩體型式進行抗炸效能分析,成功運用LS-DYNA軟體,模擬出以我國鐵絲、地工織布材料與土壤所組建之布放式掩體,在遭受9.5kgTNT炸藥爆炸後之數值模型參數,並獲取掩體尺寸長度、厚度、高度僅須達81cm×30cm×84cm為最佳化設計等成果。

後續可再提升敵軍炸藥威脅,據以獲取布 放式掩體最佳化設計尺寸,且將相關參數納入 國軍準則與建軍備戰作需文件,平時結合戰備 整備階段持續實施數值分析、爆炸試驗研改, 再透由常、後一體演訓機制,不斷修正戰場經營作戰工事參數,使未來後備部隊遂行整體防衛作戰深具信心,更添勝利契機。

參考文獻

一、中文部分

(一)專書

1.陸軍官校編印,1989年。《孫子兵法註釋》。高雄:陸軍官校。

(二)期刊論文

- 1.吳奇諭,2017/5,〈防衛作戰中組合 式掩體運用之研究〉,《工兵半年 刊》,150期。
- 2.金嘉康,2010/8,〈本島灘岸守備營連 陣地編成之研究〉,《陸軍雙學術月 刊》,第512期。
- 3.陳威霖、周寬渝,2019/10。〈共軍登 陸作戰破障能力之研究〉,《陸軍學 術雙月刊》,第五十五卷第567期。
- 4.陳慶同、王建民,2017/6,〈從「灘岸 決勝」的觀點探討後(守)備部隊之作戰 能力〉,《後備半年刊》,95期。
- 5.夏國華,2017/11,〈從國土防衛探 討恐怖攻擊下我國應有之全民防衛動 員〉,《後備半年刊》,96期。
- 6.張簡建弘,2013/10,〈從戰史例證 證論基地與作戰關聯性之研究—兼論 防衛作戰全民動員〉,《後備半年 刊》,88期。
- 7.曾世傑,2019/6,〈從孫子兵法「勝兵 先勝」觀點探究全民防衛動員重要性

- 一以1973年以阿贖罪日戰爭為例〉, 《後備半年刊》,99期。
- 8.曾世傑、蔡營寬、施述立,2020/5, 〈防衛作戰戰力防護之研究—以北部 灘岸後方地區構築地下掩體為例〉, 《工兵半年刊》,156期。
- 9.曾世傑、楊國鑫、蔡營寬,2021/10, 〈地下結構體抗爆震研究─以加勁土 衰減爆震壓力之數值分析為例〉, 《陸軍學術工兵半年刊》,159期。
- 10.曾復生,2021/6,〈全民國防戰略區 是備忘錄〉,《後備半年刊》,103 期。
- 11.葉紘胥,2017/6,〈丙種城鎮守備旅 在防衛作戰時期任務之研究〉,《後 備半年刊》,95期。
- 12.楊有恆,2013/10,〈共軍聯合島嶼 進攻戰役能力研究〉,《後備半年 刊》,88期。
- 13.韓岡明,2022/1,〈「領土防衛」— 「全民防衛動員署」的新任務〉, 《國防安全雙周報》,第45期。

(三)官方文件

- 1.中華民國交通部,2020/8,〈公路路線 設計規範〉。
- 2.國防部,2020/10, 〈國軍「提升後備 戰力」專案報告〉。
- 3. 國防部,2021/3,〈中華民國110年四 年期國防總檢討〉。
- 4. 國防部,2021/11,〈110年國防報告 書〉。

(四)軍事準則

- 1. 國防部後備指揮部,2010。《後備旅作 戰教則(草案)》。臺北:國防部後備指 揮部。
- 2. 國防部陸軍司令部,2002。《工事教 範》。桃園:陸軍司令部。
- 3. 國防部陸軍司令部,2003。《阳絕教 範》。桃園:陸軍司令部。

(五)網際網路

- 1.八個人的旅行部落格,2017/6/21。 〈漢光33號演習一澎湖的戰場印象 (上)〉,《八個人的旅行部落格》, \langle https://blog.xuite.net/pig16162/ twblog/514028914 > •
- 2.中華民國總統府,2021/10/10。〈共 識化分歧,團結守臺灣,總統發 表國慶演說〉、《中華民國總統 府》, 〈 https://www.president.gov.tw/ News/26253 > •
- 3.孫建屏,2021/9/15。〈仿真實戰,工 訓中心營外測考〉,《青年日報, 2021年9月15日》, 〈https://www.ydn. com.tw/news/newsInsidePage?chapter ID=1444914 > •
- 4.卓以立,2020/5/30。〈驗證物力動 員支援作戰,自強35號演習車機 直接交付〉,《青年日報,2020 年5月30日》, 〈https://www.ydn. com.tw/news/newsInsidePage?chapter ID=1230554 > •
- 5.陳錦嫣。〈ArcGIS 地理資訊系統 介紹〉,《嘉義大學》,〈http:// opencourse.ncyu.edu.tw/ncyu/file.php/7/

- tmp/空間決策分析/word/01ArcGIS軟體簡介.pdf〉。
- 6.國防部,2021/12/5。 〈國防部全 民防衛動員署組織法〉,《全 國法規資料庫》,〈 https://law. moj.gov.tw/LawClass/LawAll. aspx?pcode=F0000093〉。
- 7.鄒文豐,2021/9/17。〈全民國防專欄
 —全民防衛動員 齊心協力護家園〉,
 《青年日報》,〈https://www.ydn.
 com.tw/news/newsInsidePage?chapterID
 =1445477&type=forum〉。
- 8.黃庭,2019/3/14。〈21砲勤召 貫徹 「即刻動員 即刻作戰」〉,《青 年日報》,〈https://www.ydn.com. tw/news/newsInsidePage?chapter ID=1137029〉。
- 9.維基百科。〈中華民國陸軍〉,《維基百科》,〈https:// zh.wikipedia.org/wiki/中華民國陸軍〉。
- 10.維基百科。〈馬其諾防線〉,《維基百科》,〈https://zh.wikipedia.org/wiki/馬其諾防線〉。
- 11.維基百科。〈長城〉,《維基百科》,〈https://zh.wikipedia.org/wiki/ 長城〉。
- 12.德國之聲,2021/7/1。〈習近平談「解決臺灣問題」臺海戰爭的懸頂之劍〉,《聯合新聞網》,〈https://udn.com/news/story/7331/5571996〉。
- 13.羅添斌,2020/10/21。〈強化後備 戰力-4個月軍事訓練役與城鎮作戰

- 結合,退後教召14天〉,《自由時報》,〈https://news.ltn.com.tw/news/politics/breakingnews/3327521〉。
- 14.鑫威資訊。〈LS-Prepost〉,《鑫威資 訊》,〈https://www.simware.com.tw/ lsdyna overview/lsdyna-PrePost/〉。
- 15.鑫威資訊。〈LS-DYNA全國最大中文知識庫—鑫威資訊-LS-DYNA教材〉,《鑫威資訊》, 〈https://sites.google.com/view/sw-faq01/%E5%AD%B8%E7%BF%92%E8%B3%87%E6%BA%90/ls-dyna%E6%95%99%E6%9D%90〉。

二、外文部分

(一)期刊論文

- 1. K.Scherbatiuka, N.Rattanawangcharoenb, 2008.5. "Experimental testing and numerical modeling of soil-filled concertainer wall", Engineering Structures, Vol. 30, Issue 12.
- 2. K.Scherbatiuka, N.Rattanawangcharoenb, D.J. Popec, J.Fowle, 2007.4." Generation of a pressure-impulse diagram for a temporary soil wall using an analytical rigid-body rotation mode", International Journal of Impact Engineering, Vol. 35, Issue 6.

(二)官方文件

U.S.A-Department Of Defense,2021/11.
 Military and Security Developments
 Involving the People's Republic of China.

(三)網際網路

- 1. Flooddefensegroup, \langle https://www. flooddefensegroup.com/our-products/ hesco-bastion/>.
- 2. Forces.net,2019/8/1."What Trump Can Learn From Military Walls", \(\) https:// www.forces.net/analysis/what-trump-canlearn-military-walls \(\) .
- 3. HESCO, \langle https://www.hesco.com/ products/mil-units/mil/>.
- 4. HESCO사 한국 에이전트(韓國代 理商). \https://m.blog.naver.com/ baeksrun/222158946415 \(\) .
- 5. The Newyork Times, 2022/2/27."'I'm a Soldier Now. Even in Untouched Villages, Ukrainians Prepare to Fight", ⟨ https://www.nytimes.com/2022/02/27/ world/europe/ukraine-citizens-russianarmy-fight.html \(\) .
- 6. The Newyork Times, 2022/2/28. "Once Sleepy and Picturesque, Ukrainian Villages Mobilize for War", \langle https:// www.nytimes.com/2022/02/27/world/ europe/ukraine-villages-russia-war. html?searchResultPosition=1 > .

7. Wikipedia, "Hesco bastion", https:// en.wikipedia.org/wiki/Hesco bastion .

作者簡介

陸軍步兵上校曾世傑

陸軍官校89年班、現爲臺灣科技大學營 建工程研究所博士候選人,曾任連、營 長、工程官、計畫參謀官、動員參謀官 ; 現任國防大學陸軍指揮參謀學院軍事 理論組教官。

楊國鑫教授

美國德州大學奧斯汀校區土木建築環境 工程博士(2009),曾任國立臺灣科技大 學營建工程系助理教授、副教授、加拿 大皇家軍事大學訪問學者(科技部國外短 期研究計畫);現任國立臺灣大學土木工 程學系教授兼副系主任。

陸軍工兵中校蔡營寬

中正理工學院,92年班、美國佛羅里達大 學博士104年班,曾任研發官、工程官; 現任國防大學理工學院環境資訊及工程 學系副教授兼軍工組組長。

陸軍工兵少校林詳恩

陸軍官校100年班,曾任排、連長、工兵 參謀官;現爲國防大學陸軍指揮參謀學 院正規班111年班受訓學員。