PEHZR FE+—4 F—H# KRE 111.05
JOURNAL OF C.CIT, VOL.51, NO.1, MAY., 2022

A Study on Symmetric Encryption Mechanism with
Fingerprint Recognition — a Case of Android Smartphone

Chen-Hua Fu'* and Chen-Ming Yeh?

'Department of Information Management, College of Management, National Defense University
2Information, Communications and Electronic Force Command

ABSTRACT

This study attempted to use the built-in fingerprint device on the smart mobile device and
symmetric encryption mechanism to assure the security of the stored files in the smart mobile device.
The encryption mechanism proposed by this study integrates the personal fingerprint verification
function and AES256 block encryption mechanism. The proposed encryption mechanism generates the
encryption key dynamically based on the name and length of the plaintext file. With dynamic secret
key generation mechanism, the proposed encryption mechanism can enhance the difficulty of
decryption of encrypted files and effectively improve the convenience and availability of encrypted
files. Finally, this study used Android Studio as App development platform to develop an App with
Java programming language. The App calls encryption core program written in C codes with JNI to
complete an encryption app that can be implemented in an Android smart mobile device. With several
scenarios, the results showed that the feasibility and practicability of the proposed encryption
mechanism applied to Android smart mobile devices were verified.

Keywords: Smart mobile device, Fingerprint detection, Symmetric encryption, Dynamic secret key

BRIESHBNHE BRI ZAR
— A Android & & & F 4 A 15

HIRE " FEoRa?

.Fﬁk’g‘imiﬁmﬁb'ﬁ)ﬂsiié #
"R E ELHH

%

AAEERERA S EATHE B L NEI UL B RS X o 5] 5E 4% P78 77 4 80
B DM S BFRATR A B BT A8 ATs AP sE L AES256 B m Bk E] 0 BB E
RERLEBEEAMEEH > ABRICEXETHEEBAOHE DA LRI EETHRER 8
B AR T FI A M o 1% » AFF% A Android Studio # A # 7t & A A2 4T % > £iB Java
RAZTHE App BAA INI$ U CEKXEBTABET O EZCER ° Ti—18 Android
FERMITHEEEAY App > LETE %4‘%%?’;% o B4 R B KB R AT R o MR R A R
Android ¥ EAVTE K EX T ATH ST AM

et - HEAFHEE - P HEANE - HETR

AW AR B #A 110.10.13; XAS15 B4 3% B #7 111.2.14; *@4F %
Manuscript received October 13, 2021; revised February 14, 2022; * Corresponding author

31

Chen-Hua Fu and Chen-Ming Yeh

A Study on Symmetric Encryption Mechanism with Fingerprint Recognition — a Case of Android Smartphone

I. INTRODUCTION

In recent years, in response to the
popularity of smart mobile devices, the number
of Android users worldwide has exceeded 2
billion. It is usual for employees to carry their
smartphones, tablets, notebook computers, and
other devices at offices. Employees can access
customer data, print reports, and reply to the
boss's instructions anytime and anywhere; this
improves their work productivity efficiently.
However, for an enterprise, employees might be
the biggest threat to the enterprise's data [1, 2].
However, when employees lose their smart
mobile devices or do not take security measures
to protect data in their smart mobile devices. The
enterprise may leak critical data from its
employees' smart mobile devices.

Each individual has unique national
features, such as eye coloration, fingerprint,
palm print, voice, facial image, and DNA
signature. A computer can perform some
authentications with those national features [3].
Biometric identification technology, such as
fingerprint recognition or face identification, has
been developed as an additional authentication
way to enhance information security and
network security [4]. Fingerprint-based
biometrics will cover the traditional password-
based and token-based authentication aspects to
improve system security [5].

This study will propose a refined
symmetric encryption mechanism with
fingerprint identification on smartphones to
enhance the security of encryption and
decryption procedures. With the proposed
symmetric encryption mechanism, we can
improve the data's confidentiality and increase
the data's availability on a smart mobile device.
For protecting data's confidentiality, this study
bases on symmetry encryption mechanism and
access control concept to propose a symmetry
block encryption mechanism, which fingerprint
recognition is adopted. For implementing the
proposed encryption mechanism on Android
smartphones, this study used Android studio to
develop the proposed encryption mechanism;
this study also called JNI (Java Native Interface)
[6] in Android studio to Integrate the AES
encryption program. The developed encryption

32

app can improve users' data confidentiality on
their smart mobile devices. Moreover, since the
proposed encryption adopts a fingerprint
recognition measure, users can decrypt an
encrypted file only with a correct fingerprint.
The fingerprint recognition measure implements
an access control mechanism in the proposed
encryption mechanism. Therefore, the proposed
encryption mechanism can the confidentiality
and access control mechanism for the data on a
smart mobile device.

II. RELATED WORKS

We discuss several topics related to the
proposed encryption mechanism in the following
subsections.

2.1 Fingerprint recognition

Usually, an identification system based on
biometrics can identify persons with their
physiological characteristics [7]; fingerprint
recognition is one of the biometric identification
systems. Each person has unique fingerprints;
we identify a specific person based on
fingerprint recognition. Identifying one person
by his fingerprint is like confirming the caller in
network communication based on MAC [8].

A pattern of ridges and valleys covers the
skin on the inside of a finger. Every person has a
unique fingerprint, which is different from any
other person. The fingerprint identification
depends on two basic assumptions: - Invariance
and Singularity Invariance, which means the
fingerprint characteristics do not change along
with the life [9]. Many studies have explored
whether these patterns were different for each
person several centuries ago, and indeed every
person is believed to have unique fingerprints
[10]. This study result makes fingerprints
suitable to identify the identification of their
owner [7].

Fingerprints are graphical patterns of
ridges and valleys on the surface of fingertips;
the ridge ending and ridge bifurcation is called
minutiae. The minutiae are the points where the
ridge structure changes, such as bifurcation and
endpoint [9]. Fig. 1 shows the different minutiae.
For fingerprint recognition systems, most
systems only use specific features in the pattern.

These features are since the papillary ridge in
the fingerprint pattern is not a continuous line;
but a line at the end, which splits into forks
(called forks) or forms islands. Although the
fingerprint usually contains about 100 minutiae,
the fingerprint area scanned by the sensor
usually only includes about 30 to 40 minutiae

[7].

Bifurcation Ridge Ending

Enclosure

Ridge Dot

/@\/Mfurcation

Fig. 1. Different ridge features on Fingerprint image

[9]

Feature vector

Row data
[= v

Agquisition

| Pre-processing Feature Extraction

1 -

= atch
| Matching I
i = 1o mateh

Fig. 2. The four stages of fingerprint recognition [9]

The main stages of fingerprint recognition
include four process stages, image acquisition,
image pre-processing, feature extraction, and
matching. Fig. 2 shows the relationships among
those four stages. The image acquisition stage is
to obtain online or offline. Online fingerprint
identification uses the optical fingerprint reader
to capture the image of a fingerprint. Offline
fingerprint identification puts ink on the
fingertip, then puts a sheet of white paper on the
fingerprint, finally scans the paper to get the
fingerprint image. The pre-processing stage is to
remove unwanted data, such as noise,
reflection, .etc, in the fingerprint image to
increase the clarity of ridge structure. Image
segmentation, binarization, elimination of noise,
smoothing, and thinning are the steps to enhance
the fingerprint image. The feature extraction
process of a fingerprint image is to locate,
measure, and encode ridge endings and
bifurcations in a fingerprint. Several methods are
available to extract features from a fingerprint
image; the famous one is the minutiae extraction

33

PEHSR FE+—4 F—H# KRE 111.05
JOURNAL OF C.CIT, VOL.51, NO.1, MAY., 2022

algorithm. The matching stage calculates the
degree of similarity between the user's input
fingerprint image and an enrolled image from
the database. Thus, this step is to compare the
acquired feature with the template in the
database. The three methods, the hierarchical
approach, the classification approach, and the
coding approaches, are available in this
matching process [9].

2.2 LCG Pseudo-random number generator

Random numbers are a fundamental tool in
many different areas; stochastic simulation and
cryptography are the two main fields of
applications [11]. In general, random numbers
are critical in cryptography. We can use random
numbers to encrypt e-mails, sign documents
digitally, pay electronically, and so on. For
cryptography, random numbers are unpredicted
numbers. However, a computer cannot generate
real random numbers; thus, we use the concept
of pseudo-random numbers to produce a serial
of random numbers in an unpredicted way. And,
we use a pseudo-random number generator to
generate a sequence of numbers in the interval
[12]. A pseudo-random number generator
(PRNG) is an algorithm to produce a serial of
numbers that approximates the properties of
random numbers. The sequence of numbers is
not truly random; a random seed would
determine it totally [13]. It is desirable to have
the output of a PRNG practically
indistinguishable and should not exhibit any
correlations or patterns [14].

A well pseudo-random number generator
should have two critical statistical properties,
uniformity and independence [12]. Usually,
good PRNGs should have several features, such
as reproducibility and consistency (independent
from the seed), portability, efficiency, and
coverage of the entire output space. The design
of PRNG should base on some practical aspects
[15]. Also, a good PRNG should work
efficiently, which means it can generate a large
amount of random numbers in a short period,
especially, for applications such as stochastic
simulation, stream ciphers, the masking of
protocols, or online gambling. Thus, it is
necessary to use a fast PRNG when large

Chen-Hua Fu and Chen-Ming Yeh

A Study on Symmetric Encryption Mechanism with Fingerprint Recognition — a Case of Android Smartphone

amounts of random numbers are required.
Several suitable PRNG algorithms include linear
congruential generator (LCG), lagged Fibonacci
generator, linear feedback shift register [13],
combined linear congruential generators
(CLCG), random-number streams, and middle-
square [12].

The LCG is one of the best-known PRNG
algorithms; it is a simple linear congruential
generator proposed by Lehmer. The LCG is a
classical generator that uses a transition function
[14] shown in Eq(1).

Xo+1 = (a X, + ¢) mod m (1)

where a is the multiplier (0 < a < m), c is the
increment (0 < ¢ < m), and m is the modulus
(m > 0), Xy is the random number seed.

Although the processes of LCG PRNG are
deterministic, it can show that the numbers
generated by the sequence appear to be
uniformly distributed and statistically
independent with proper parameter settings.
Therefore, the choice of a, ¢ and m is critical.
The LCG PRNG can pass the usual statistical
tests only when it initializes its random seed
properly and chooses the proper a, ¢, and m [12].
For generating total period random numbers, we
should follow several principles to set the
parameters, a, ¢, and m, in the LCG PRNG.
® m should be a prime and large, such as
231 - 1 for a 32-bit integer [12].

® |t is good that m and c are relatively
prime [13, 14].

® (a -1) is divisible by all prime factors of
m [13].

Finally, Two LCGs can be combined to
create a combined linear congruence generator,
CLCG. With good parameter settings in the LCG
PRNGs, the generator has a period that is the
product of the period of each LCG PRNG [12].

2.3 AES encryption algorithm

AES is a symmetry block cipher developed
by Joan Daemen and Vincent Rijmen; it is
flexible to support any combination of data and
secret key size of 128, 192, and 256 bits [16]. It
uses two common techniques, substitution &
permutation, to encrypt and decrypt data. AES

34

encryption/decryption is an iterative process
instead of Feistel cipher [17]. The fixed plaintext
block size of AES is 128 bits (16 bytes). These
16 bytes construct a 4*4 matrix, named a state;
AES encryption/decryption process operates on
a matrix of bytes. Also, another critical feature
in AES is the number of rounds, which depends
on the size of a secret key. Three key sizes, 128,
192, or 256 bits, are available in AES; the key
size determines the number of rounds in the AES
encryption/decryption process. The AES has ten
encryption/decryption rounds with a 128-bit key,
AES has twelve encryption/decryption rounds
with a 192-bit key, and AES has fourteen
encryption/decryption rounds with a 256-bit key
[17]. Fig. 3 shows the process flow of AES
encryption/decryption process.

Key
Plaintext Plaintext
—‘ 'y
Add round key [€——— w(0,3) Add round key
A4 =
Substitutive bytes Expaﬂd key I # || Inverse sub bytes
L
: E
2 L Y
5 e 3
[_+ Inverse mix cols.
Add round key w(4,7) ——| Add round key
Vv o
: : Inverse sub bytes
. Z
¥ 2
Substitutive bytes i
EN o
A :
o
5 A
5 ;
& —
Add round key W(36,39) —— [Add round key
A 4 —
g Substitutive bytes E Inverse sub bytes
* 2
3 g
2 v
= 1
LI [Addround key |4—— W(40.43) ‘Add round key
v
Ciphertext Ciphertext

Fig. 3. The block diagram of AES encryption/
decryption process

AES uses four data transformation processes
in a round to encrypt/decrypt data. The four sub-
processes contain the 'Substitute Bytes
Transformation', "the ShiftRows Transformation",
the "MixColumns Transformation", and the
"AddRoundKey Transformation" [17]. AES uses
four data transformation processes in a round to
encrypt/ decrypt data. The four sub-processes
contain the "Substitute Bytes Transformation",

the
the

the "ShiftRows Transformation",
"MixColumns Transformation", and
"AddRoundKey Transformation".

The 'Substitute Bytes Transformation' is the
first stage in one round. This stage uses a
nonlinear substation table (S-box) to substitute a
byte in the state for another byte. The AES
depends on multiplicative inverse and affine
transformation to construct S-box. The
"ShiftRows Transformation" is the second stage
in one round. This stage shifts bytes in each row
to the left cyclically rather than row number
zero. In this stage, row number zero does not
perform any permutation. The first row only
shifts one byte left circularly; the second row
shifts two bytes left circularly; the last row shifts
three Dbytes to the left circularly. The
"MixColumns Transformation" is the third stage
in the round. This stage performs a state
multiplication process; each byte of one row in a
set matrix multiplies by each byte of the state
column; it uses a matrix multiplication of the
state's columns to produce a new four bytes in
the state. The "AddRoundKey Transformation"
is the last stage in one round; it is the most vital
stage for the AES to encrypt/decrypt data. This
stage performs a simple XOR operation between
the working state and the round keys; it can
provide critical security for the AES during the
data encryption process; and, this stage creates
the relationship between the secret key and the
ciphertext[16, 17].

II1. A FINGERPRINT
RECOGNITION-BASED
ENCRYPTION MECHANISM

This study proposes a fingerprint
recognition-based encryption mechanism to
improve the confidentiality of the document files
in a smartphone. The proposed encryption
mechanism executes data file encryption
/decryption operation based on a two-stage
process over a smartphone; it is one of the
identity-based cryptography [18, 19]
mechanisms.

The following subsections will describe the
proposed fingerprint recognition-based
encryption mechanism in detail.

35

PEHSR FE+—4 F—H# KRE 111.05
JOURNAL OF C.CIT, VOL.51, NO.1, MAY., 2022

3.1 An overview of the fingerprint recognition
-based encryption mechanism

The proposed fingerprint recognition-based
encryption uses several techniques, such as
fingerprint recognition, pseudo-random numbers,
and AES encryption/decryption algorithm, to
perform the two-stage encryption process. In the
first stage, the proposed encryption mechanism
depends on a fingerprint recognition function of
a smartphone to identify whether the user has
the right to access the specific document file in
the smartphone or not. If the user passes the
fingerprint recognition, he(she) has the right to
perform an encryption/decryption process in the
second stage.

The proposed encryption mechanism
depends on generated random numbers and an
AES algorithm to perform encryption/decryption
processes in the second stage. Figure 4 shows
the process flow of the proposed encryption
mechanism. When wusers pass fingerprint
recognition, the proposed encryption mechanism
depends on the process option from the user's
choice, encryption or decryption, to perform a
different encryption/decryption process flow. In
the encryption process, the proposed mechanism
uses a pseudo-random number generator to
generate a master key first; then, it encrypts the
generated master key and saves the encrypted
master key in the file header of an encrypted file;
finally, it performs a file encryption operation
with the AES algorithm. In the decryption
process, the proposed mechanism decrypts the
encrypted master key from the header of the
encrypted file; then, it performs a file decryption
operation with the AES algorithm. Fig. 5 shows
the process flow in the proposed encryption
mechanism.

fingerprint

plaintext file ciphertext file

ENCRYFTION ; DECRYPTION
LEE-EL

Fig. 4. A diagram of the process flow of the fingerprint
recognition-based encryption mechanism

Chen-Hua Fu and Chen-Ming Yeh

A Study on Symmetric Encryption Mechanism with Fingerprint Recognition — a Case of Android Smartphone

encryption
function

Encryption/decryption
function select
: |
encrypt the generated master key

and save it in the encrypted file perform AES-based decryption process|
with the generated master ke
Iperform AES-based encryption process|
with the genefalted master key

Fig. 5. The encryption/decryption process flows in
the proposed encryption mechanism

I generate a master key

decrypt the encrypted master key }
from the encrypted file

Moreover, the proposed encryption
mechanism will implement with Java to call
fingerprint recognition function in an Android
smartphone; however, it is easy to disassemble a
Java-based app to realize an encryption/
decryption function in an app. Therefore, this
study implements the core encryption function, a
random number-based AES function, of the
proposed encryption mechanism with C to
enhance the security of the developed app.
Therefore, this study uses the JNI (java native
interface) to call the random number-based AES
program with C in the Java developed app.

3.2 Dynamic secret keys generation

Since the proposed encryption mechanism
depends on the AES algorithm to perform an
encryption/decryption process, the AES
algorithm is a symmetry encryption mechanism;
it requires a secret key to perform the
encryption/decryption operations. This study
depends on the name and length of an encrypted
file as a random number seed to generate a serial
of random numbers. Those random numbers will
be the master key in the proposed encryption
mechanism and will become the secret keys for
the AES algorithm to perform the encryption or
decryption process in the proposed encryption
mechanism. In general, different files can
receive their corresponding random number
seeds and a dynamic master key since there exist
differences in their file names and lengths.
Therefore, the proposed encryption mechanism
depends on a file's name and size to produce a
master key dynamically in the encryption
process. The proposed encryption mechanism

36

uses several techniques, such as ASCII code, bit
shift, and congruence calculation, to calculate
the random number seed. Fig. 6 shows the
random number seed calculation based on all
ASCII codes in a file name. For decrypting an
encrypted file, the encryption process stores the
length of a generated master key and a master
key in the file header of an encrypted file. Fig. 7
shows the file header's content of an encrypted
file.

Also, the proposed encryption mechanism
calculates a master key length and generates a
master key with the enhanced LCG [20]. Fig. 8
shows how the proposed mechanism calculates a
master key length and generates a master key
with the enhanced LCG. Moreover, Fig. 9 shows
a diagram of the master key generation with
random numbers generated by the enhanced
LCG.

|initia|i1e the random_num_seed with file Iengthl
1
| |

< filename length

Yes

|increment = int(filenamel[i]) << (1 % 17) |

random_num_seed =
random_num_seed +increment

[izi+l |
S

6

Fig. 6. The flowchart of the random number seed
calculation in the proposed mechanism

Ibyte 32~255
master master key

key (variable ciphertext
length length)

Fig. 7. The file header's format of an encrypted file

‘master_key_length =
random_num % maxil_'num master_key_length

o < master key lengt|

Yes
random_num_loop =
random_num() % maximum_random_num_loop|
j=0

master_keyl[i] =
random_num % 256
i=i+l

[

Fig. 8. The flowchart of a master key length and a
master key generation

%DW**mggwi

generated random numbers

FAEOOOEE-

N —master_key

A serial of random numbers (1, 2, 5,....) uses to select
the content of a master key

Fig. 9. A diagram the master key generation with
random numbers

Since the proposed encryption mechanism
stores a generated master key in the header of
the encrypted file for decrypting the encrypted
file, it is easy to be compromised by the
opponent. Therefore, this study wuses two
measures to protect the generated master key.
One is to encrypt the generated master key; the
other is to transposition the encrypted master key.
This study uses a lightweight stream cipher to
encrypt the generated master key with a serial of
generated random numbers. We depend on the
file's name, length, and several techniques, such
as bit shift and modulus operation, to produce a
random number seed; then, the proposed
encryption mechanism generates a serial of
random numbers for the lightweight stream
cipher. The values of the generated random
number are 0 ~ 255. We base on the ASCII
codes of the master key and the generated
random number to have three scramble
processes, XOR operation, ASCII code addition,
and ASCII code subtraction. Fig. 10 shows the
master key encryption process with the XOR,

ASCII code addition, and ASCII code
subtraction.

i=0
s ey e
Ye.
..
1

encrypted_master_key|

encrypted_master_key|
master_keyli]
XOR

a generated random
number, (0~255)

m:su;_key[u master_key[i]
H F

a generated random
number (0~255)

a generated random
number (0~255)

Fig. 10. The flowchart of the scramble process for
the master key with three operations

Also, this study uses a transposition
technique to store the encrypted master key in
the header of the encrypted file randomly. The
proposed encryption mechanism depends on the

37

PEHSR FE+—4 F—H# KRE 111.05
JOURNAL OF C.CIT, VOL.51, NO.1, MAY., 2022

master key's length to generate a serial of
random numbers; then, it gets lots of new
positions, which store each byte of the encrypted
master key in different locations. The scrambled
master key can reduce the possibility of the
encrypted file being compromised and enhance
the security of the encrypted file. Fig. 11 shows
a scrambled way that the proposed mechanism
transpositions the encrypted master key with
generated random numbers. Fig. 12 shows the
file header of an encrypted file that contains the
length of a master key and a scrambled
encrypted master key.

8 10
ef 89 34 e8 T 1447

c 2 0
[E¥oa 0 125 12 8f ¢2 68 Ta d2
75 18

Fig. 11. A diagram of the transposition process of an
encrypted master key

—— master key length

Fig. 12. The content of an encrypted file’s header

3.3 AES-based encryption/decryption process

The proposed encryption mechanism
performs a file encryption/decryption process
with the AES algorithm in an Android
smartphone; it uses 256 bits as a secret key for
the AES to strengthen the robustness of the
encrypted file. In general, there are many states
in a file; the AES algorithm uses the same secret
key, no matter with 128 bits, 192 bits, or 256 bits,
to encrypt/decrypt all states in the file. However,
the AES algorithm can encrypt the same
plaintext to get the corresponding ciphertext
(please see Fig. 13).

For avoiding the above situation, the
proposed encryption mechanism uses a

Chen-Hua Fu and Chen-Ming Yeh

A Study on Symmetric Encryption Mechanism with Fingerprint Recognition — a Case of Android Smartphone

generated dynamic master key as a set of secret
keys; the AES algorithm encrypts states with
different secret keys that can enhance the
confidentiality of an encrypted file and reduce
the compromised possibility of the encrypted
file. This study uses a sliding window method to
select a secret key required by the AES
algorithm from the master key. Fig. 14 shows
the diagram of secret keys selection from a
generated master key with a sliding window
method. The proposed encryption mechanism
depends on the state process counter, the master
key length, the secret key length (32 bytes), and
a congruence operation to calculate the locations
that each byte of a secret key should select from
the master key. Fig. 15 shows how the proposed
mechanism select a secret key from a generated
master key.

RBddress 0 1 2 3 4 35
00000000 41 41 41 41 41
00000010 41 41 41 41 41
00000020 41 41 41 41 41
00000030 41 41 41 41 41
00000040 41 41 41 41 41
00000050 41 41 41 41 41
00000060 41 41 41 41 41
00000070 41 41 41 41 41
00000080 41 41 41 41 41
00000090 41 41 41 41 41
00000040 41 41 41 41 41
000000L0 41 41 41 41 41
000000c0 41 41 41 41 41
00000040 41 41]

000000e0 41 41
Q000D0£0 41 41

6 7 8 9 a b c d e f Dmp

41 41 41 41 41 41 41 41 41 41 41 AARARARARARAARAR
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 412 4141 414141 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41

41 41
41 41

41
11

(a) plaintext

hddress
00000000
00000010
00000020
00000030
00000040 7
00000050 7
00000060
00000070 7
00000080 72 51 11 4
00000090 72 51 11 o
000000a0 72 51 11 o
000000k0 72 51 11 40
000000c0 72 51
00000040 72
000000e0 72 51 11
000000£0 72 51

o
n

-
@
"

g9 by d e
dd d3 ca 8b 8c 27 b3
dd d3 ¢a 8b 8¢ 27 bI
dd d3 ca 8b 8c 27 b9
dd d3 ca 8b 8c 27 b
dd 43 ca 8b 8c 27 b9
dd d3 ca 8b 8c 27 b9
dd d3 ca 8b 8c 27 b9
dd d3 ca 8b 8¢ 27 b9
dd d3 ca 8b 8¢ 27 b9
dd d3 ca 8b 8¢ 27 b9
dd d3 ca 8b 8c 27 b9
dd d3 ca 8b 8c 27 bY
dd d3 ca 8b 8c 27 b9
dd d3 ca 8b 8¢ 27 b9
dd d3 ca 8b 8¢ 27 b9
dd d3 ca 8b 8c 27 bY

5|7
c3 a2
d0 31 62 3 a2

Dump

. e E Y
e 20 EiG 227
r. 20 i 222
Q. P 2 e
Q. oIl 2
Q. e
). 2oEEiE 22
. g e
e0. 2o Mig 222
r. 2022
. TGz e
eQ. oA 27
Q. o7
. e ey
rQ. B
0. 2o Mg 222

-t

e
PR O
-

w

c3 a2
c3 a2
@3 a2
d0 31 62 ¢3 aZ
d0 31 62 c3 a2
e3 a2

)
P
[

62 €3 aZ
1 62 ¢3
31 62 c3 a2
162 c3 a2
3 a2
62 c3 a2
62 c3 a2

a2

(b) ciphertext

a2

=
’
b

- SROF - Y - A S S - R . YR TR S S« Q- . Q-

MR R R R R RN N R BB NN RN
W W W W W W W W W W W

c3

Fig. 13. The AES algorithm comparison of plaintext
/ciphertext with the same secret key

secret key
for st

e
Encryption

Encryption

process. process

32 bytes
(256 bits)

32 bytes
(256 bits)
1

32 bytes 32 bytes
(256 pits) 256 bits)

32 bytes
256 bits)

32 bytes
(256 bits)
=

L L pe SR [ETS

Fig. 14. A diagram of secret keys selection with a
sliding window method

38

[_i=0 |

No

Yes l

secret_keyl[i] =
master_key[(state_process_ctr * 32 +i)
% master_key_len]

Fig. 15. The flowchart of a secret key selection

Since the lengths of all files cannot be
divided by 16; therefore, in the
encryption/decryption process, the proposed
encryption mechanism depends on the size of a
processed data block to determine which
encryption algorithm it will use. If the processed
data block is equal to the size of a state, that is
16 bytes; then, it uses the AES algorithm to
perform the encryption/decryption process;
otherwise, it uses a stream cipher algorithm to
execute the encryption/decryption process with
several generated random numbers. If the
proposed mechanism performs an AES-based
encryption process, it will select a secret key
required by the AES algorithm from the master
key first; then, it does the encryption process
with the AES algorithm. If the proposed
mechanism performs a stream cipher-based
encryption process, it will generate several
random numbers for the stream cipher algorithm
first; then, it executes the encryption/decryption
process with the stream cipher algorithm. Fig. 16
shows that the proposed encryption mechanism
depends on the processed data length to use the
AES algorithm or a stream cipher mechanism to
perform encryption/decryption operations in the
encryption/decryption process.

Ye
Lod Tead data length== 16 No
nitialize a random
number seed

generate the required
random numbers for a
stream cipher process

selel

€ Secret key
from the master key

expand AES
encryption/decryption
key

perform AES
encryption/decryption
process

perform the
encryption/decryption
process with a stream
cipher mechanism

Fig. 16. The flowchart of the proposed encryption
mechanism in the encryption/decryption
process

IV. IMPLEMENTATION

In this section, we explain how to
implement the proposed encryption mechanism
in an Android smartphone first; then, we
demonstrate the operation results of the
proposed encryption mechanism in an Android
smartphone.

4.1 Prototype program implementation

This study divides the prototype
implementation of the proposed encryption
mechanism into two parts. One is the user
operation interface; the other is the AES-based
encryption/decryption core program. Fig. 17
shows the process flow of the proposed
encryption/decryption process.

AES-based
Core program

generate
master key

[il
| encryption |

mERA
mEkR

file
selection

fingerprint
recognition

encrypt [scramble
e | master key

file
encryption /
decryption
process

E ©77 77| decryption
Fig. 17. A diagram of the encryption/decryption
process flow in the proposed mechanism

e

Since the proposed encryption mechanism
would operate in an Android smartphone, this
study implements the user operation interface of
the proposed encryption mechanism with the
Android Studio SDK (Software Development
Kit) under the Windows 10 platform. We
implement an encryption app with Java codes in
the Android Studio SDK as the user operation
interface of the proposed encryption mechanism.
In the developed encryption app, we code Java to
import the BiometricPrompt package supported
by an Android platform with an Android API
(Application Programming Interface). Also, we
call an AES-based core program coded by C with
the JNI in the developed app.

This study depends on the proposed
encryption mechanism mentioned in Section 3 to
code the AES-based encryption/decryption core
program with standard C. For called by the
developed encryption app, we follow the JNI
calling format to code the argument's interface in
the AES-based encryption/decryption core

39

PEHSR FE+—4 F—H# KRE 111.05
JOURNAL OF C.CIT, VOL.51, NO.1, MAY., 2022

program. Then, the developed encryption app
can call the AES-based encryption/decryption
core program with the JNI to perform an
encryption/decryption process for a selected file.

4.2 Encryption/decryption operation with the
developed encryption app

In the operation of the developed
encryption app, the user should select a file that
he(she) wants to encrypt/decrypt first; then,
he(she) needs to choose an operation function,
encryption or decryption (please see Fig. 18).
When he(she) finishes a file selection, the
developed encryption app shows the file path of
the selected file (please see Fig. 19). If the user
choices the encryption operation, the developed
app performs the file encryption process. The
file encryption process executes the fingerprint
recognition function first. If the user passes the
fingerprint identification (please see Fig. 20), the
encryption process generates a ciphertext file
with an extension filename, enc. If the user
selects the decryption process, the file
decryption process also executes the fingerprint
recognition function first. If the user passes the
fingerprint identification, the decryption process
generates a recovery file from a ciphertext file
with an extension filename, R. Fig. 21 shows the
scrambled content in an encrypted file.

HEAE P

Fig. 18. The file and process selection in the

developed encryption app

Fig. 19. The screens of file selection and file path of
the selected file display

Chen-Hua Fu and Chen-Ming Yeh

A Study on Symmetric Encryption Mechanism with Fingerprint Recognition — a Case of Android Smartphone

Fig. 20. Screens of fingerprint recognition function

Fig. 21. The unreadable content of an encrypted file

4.3 A encryption/decryption correctness
verification of the proposed encryption
mechanism

For understanding the encryption/
decryption process correction of the proposed
encryption mechanism, this study uses four
types of frequently used files, such as doc, jpg,

pdf, and ppt, to execute encryption and
decryption processes with the proposed
encryption mechanism. The encryption/

decryption results help us to understand whether
the proposed encryption mechanism can handle
an encryption/decryption job for different
formats of files or not. Moreover, the correct
content of a recovery file that decrypts from an
encrypted file is the only criterion to verify

40

whether an encryption/decryption mechanism
can correctly perform an encryption/decryption
process or not. Therefore, this study adopts two
ways to compare the file contents of a plaintext
file and a recovery file. One way is to use the
"comp" command in the Windows command
prompt operation environment to compare the
contents of two files; the other way depends on
the hashing codes of two files to identify the
contents of those two files are the same or not.
This study uses several well-known hashing
functions to produce a hashing code of a file.

! IRy o A T 3
R e %: word_sample.doc
" | BT : word_sample.doc .k

gt‘f:& vord_sample.doc ¥ word_sample.doc.R.

SiM: PG _sample.jpg
: IPG_sample.jpe.R

A AT
o : pdt_sample.pdf
8 pdf_=zample.pdf. R

EE:% Ddf gamp le.pdf ¥ pdf_sample.pdf.R.

ppt_sample.ppt
ppt_=ample.ppt.R

5 m:‘ﬁﬁ
y}‘ ;pt zample.ppt F1 ppt_sample.ppt.R.

Fig. 22. The comparisons of the plaintext file and the
ciphertext file with the “comp” command

Fig. 22 shows the comparisons of the four
types of files with the "comp" command in the
Windows command prompt operation
environment (Since we use the traditional
Chinese version of Windows operating system,
therefore, Chinese information appears in the
comparison result of comp command.). Looking
at Fig 22, the four types of files receive the same
content in their plaintext file and recovery. Also,
we use MD5, SHA-1, and SHA-256 to compare
the plaintext files and the recovery files of those
four types of files (please see Table 1). Table 1
shows that the plaintext file and the recovery file
of each file format receive the same hashing
codes in MDS5, SHA-1, and SHA-256.
According to Fig. 22 and Table 1, We find that
the proposed encryption mechanism can
correctly recover plaintext files from encrypted
files. This result demonstrates that the proposed
encryption mechanism can perform an
encryption/decryption process for different types
of files well.

Table 1. The hashing codes of the four types of
plaintexts file and recovery files

DOC |9d67d4e76d11f0616abed46f4e051798

DOCR |9d67d4e76d11f0616abed46f4e051798

JPG |b1a073c551315b31d6daa75203eb0e43

MD |/PGR |b1a073c551315b31d6daa75203eb0e43

5 |PDF |73ed59f5294938dc6ff038536cfe3ech

PDFR |73ed59f5294938dc6ff038536cfe3ech

PPT |ddd28070f16c5f22dc4267a78b4cc368

PPTR |ddd28070f16c5f22dc4267a78b4cc368

DOC |ab34f7f8f0184d8a0ce6220e96719df325cc8804

DOCR |ab34f7f8f0184d8a0ce6220e96719df325cc8804

JPG |4d8351d1df3f904a8fc251a6c0c07997203d7efa

SHA |JPGR |4d8351d1df3f904a8fc251a6c0c07997203d7efa

1 |pDF |144876a441335f8f26f81d85289b84a999b75f48

PDFR |144876a441335f8f26f81d85289b84a999b75f48

PPT |4ac24cfa39881169bf94b42bf7539fc828c8e21f

PPTR |4ac24cfa39881169bf94b42bf7539fc828c8e21f

f812535c2beb050df7466d1162912e754bde8b158

DOC 13 8bcadcas7adesssdbibso
DOCR f812535c2beb050df7466d1162912e754bde8b158
3c8bc4dc957ade585dbfh89
PG a8f09f5dad6al875balacal257fbefod5a55252ef6d
d87b79159d553995707d7
IPGR a8f09f5dad6al875balacal257fbefod5a55252ef6d
SHA d87b79159d553995707d7
256 PDE bf1059d5ab0906d20689efa4434f929a8531b84fce
8444d4d676bcdad7cf60fe
PDFR bf1059d5ab0906d20689efad434f929a8531b84fce
8444d4d676bcdad7cf60fe
PPT 98a67863358524ch208cf6250492f562¢717170d49
2903adb52463c4c91092bc
PPTR 98a67863358524cb208cf6250492f562¢717170d49
2903adb52463c4c91092bc
Legend :

DOC: word_sample.doc, DOCR: word_sample.doc.R,
JPG: JPG_sample.jpg, JPGR: JPG_sample.jpg.R,
PDF: pdf_sample.pdf, PDFR: pdf_sample.pdf.R,
PPT: ppt_sample.ppt, PPTR: ppt_sample.ppt.R

V. CONCLUSION

Smartphones have become useful mobile
devices in our daily life; we always use them to
store critical files. Therefore, it is a significant
issue for users to improve the security of their
smartphone files. Usually, data encryption is the
best way to improve the confidentiality of vital
files. Therefore, this study proposes a two-stage
encryption/decryption mechanism to enhance the
confidentiality of the files stored in an Android

PEHESR SR +—4 F—# RE 111.05
JOURNAL OF C.CIT, VOL.51, NO.1, MAY., 2022

smartphone with fingerprint recognition measures.
The first stage in the proposed encryption
mechanism uses the fingerprint recognition
function supported by an Android smartphone
platform to identify the user who wants to access
a critical file in the Android smartphone. If the
user passes the fingerprint identification, the
proposed encryption mechanism performs an
encryption/decryption process with the AES
algorithm in the second stage; otherwise, the
proposed encryption mechanism will refuse to
access a critical file in an Android smartphone.

For understanding the feasibility and
correction of the proposed encryption
mechanism in an Android smartphone, this study
implements the proposed encryption mechanism
with Java and C. This study also uses several
scenarios to verify the correction of the
encryption/decryption process supported by the
proposed encryption mechanism. The results
show that the proposed encryption mechanism
can correctly encrypt and decrypt different files
in an Android smartphone with a fingerprint
recognition measure. Thus, the user can improve
the confidentiality of his/her critical files stored
in an Android smartphone with the proposed
encryption mechanism. The study result
demonstrates that the proposed encryption
mechanism can enhance the security of
important files with fingerprint recognition in an
Android smartphone.

The proposed mechanism supports
encryption/decryption operation on a smart
mobile device based on fingerprint recognition;
therefore, it has a limitation that a smartphone
must equip with a fingerprint recognition device.
However, this limitation will be disappearing
gradually. A smartphone with a fingerprint
recognition device and cameras would be a trend.
Thus, a smartphone can support fingerprint
recognition and face identification functions
easily. Also, for improving the security of files
on a smartphone with functionality supported by
a smartphone, encrypting confidential files with
face identification would be one possible
research issue in the future.

REFERENCES

[1] Colwill, Carl. "Human factors in

Chen-Hua Fu and Chen-Ming Yeh

A Study on Symmetric Encryption Mechanism with Fingerprint Recognition — a Case of Android Smartphone

information security: The insider threat-
Who can you trust these days?."
Information security technical report 14.4,
186-196, 2009.

Fu, Chen-Hua and Chen, Chih-Yung. "A
Study on Decision-Making Opinion
Exploration in Windows-Based Information
Security Monitoring Tool Development."
Sustainability 13.7: 3815, 2021.

Alotaibi, Sara Jeza, and David Argles.
"FingerID: A new security model based on
fingerprint recognition for personal learning
environments (PLEs)." 2011 IEEE Global

Engineering Education Conference
(EDUCON). IEEE, 2011.

[4] Xiao, Qinghan. "Security issues in
biometric authentication." Proceedings
from the Sixth Annual IEEE SMC

Information Assurance Workshop. IEEE,
2005.

Yang, Wencheng, et al. "Security and
accuracy of fingerprint-based biometrics: A
review." Symmetry 11.2 (2019): 141.
Gordon, Rob. Essential JNI: Java Native
Interface. Prentice-Hall, Inc., Hoboken,
New Jersey, 1998.

Ton, Van der Putte and Keuning, Jeroen.
"Biometrical fingerprint recognition: don’t
get your fingers burned." Smart Card
Research and Advanced Applications.
Springer, Boston, MA, 2000. 289-303.
Zhuang, Zheng-Yun, et al. "A hybrid
session key exchange algorithm for highly-
sensitive [P-based institutional
communications." Microsystem
Technologies 24.1 (2018): 273-283.

[5]

[6]

[7]

[8]

[9] Ali, Mouad MH, et al. "Overview of
fingerprint recognition system." 2016
International Conference on Electrical,

Electronics, and Optimization Techniques
(ICEEOT). IEEE, 2016.

[10] Datta, A. K., Lee, H. C., Ramotowski, R.,
& Gaensslen, R. E.. Advances in fingerprint
technology. CRC press, Boca Raton,
Florida, 2001.

[11] Vajargah, Behrouz Fathi, and Rahim
Asghari. "A novel pseudo-random number
generator for cryptographic applications."
Indian Journal of Science and Technology
9.6 (2016): 1-5.

42

[12] Vajargah, Behrouz Fathi, and Rahim
Asghari. "A pseudo random number
generator based on chaotic henon map
(CHCG)." International Journal of
Mechatronics, Electrical and Computer
Technology (IJMEC) 5.15 (2015): 2120-
2129.

[13] Mishra, Mina, and V. H. Mankar. "Text
encryption algorithms based on pseudo
random number generator." International
Journal of Computer Applications 111.2
(2015).

[14] Mohanty, Siddhant, A. K. Mohanty, and F.
Carminati. "Efficient pseudo-random
number generation for monte-carlo
simulations using graphic processors."
Journal of Physics: Conference Series. Vol.
368. No. 1. IOP Publishing, 2012.

[15] Datcu, Octaviana, Corina Macovei, and
Radu Hobincu. "Chaos based cryptographic
pseudo-random number generator template
with dynamic state change." Applied
Sciences 10.2 (2020): 451.

[16] Zeghid, Medien, et al. "A modified AES
based algorithm for image encryption."
International Journal of Computer Science
and Engineering 1.1 (2007): 70-75.

[17] Abdullah, = AkoMuhamad. "Advanced
encryption standard (AES) algorithm to
encrypt and decrypt data." Cryptography
and Network Security 16 (2017): 1-11.

[18] Wu, Chien-Hsing, Jing-Jang Hwang, and
Zheng-Yun Zhuang. "A trusted and
efficient cloud computing service with
personal health record." 2013 International
Conference on Information Science and
Applications (ICISA). IEEE, 2013.

[19] Narayana, V. Lakshman, and C. R. Bharathi.
"Identity based cryptography for mobile ad
hoc networks." Journal of Theoretical and
Applied Information Technology 95.5
(2017): 1173.

[20] Deng, Ming-Yan, "A Study on Symmetric
Encryption Scheme with Enhanced Pseudo
Random Number and Streaming Cipher
Skill." master thesis, Department of
Information Management, College of
Management, National Defense University,
2009. <https://hdl.handle.net/11296/w7s332>
(Visited time : Oct. 15, 2021)

