研製砲兵夜間測地輔助器材提升夜間測地效能

作者: 黃盈智

提要

- 一、野戰砲兵為戰鬥支援兵種,以火力支援地面部隊作戰,射擊為達成任務唯 一手段。然射擊效果良窳,端賴適時獲得目標位置及精算射擊諸元,惟測 定目標位置及求取射擊諸元,又以精確測地作業為根本要素。
- 二、國軍砲兵為肆應全天候作戰需求,將「夜間測地」納為野戰砲兵測地項目 之一,其作業成果影響火砲射擊效果,惟目前各級砲兵部隊未配發制式夜 間測地輔助器材,各單位僅能採自製方式滿足需求,規格未統一且作業成 效不彰,影響戰備任務遂行。本計畫研製目的係發展制式且規格統一「夜 間測地輔助器材」,期能精進砲兵夜間測地效能,提升作業速度與精度,滿 足砲兵部隊夜間作戰實需。
- 三、本研究採文獻回顧法,首先探討歷年砲兵先進研究中,與本計畫主題相關 書籍、文獻及網路資訊,作為策進、執行與研發作業之參據,進而說明本 案之研發效益與對砲兵夜間測地之影響,最後提出綜合結論與建議。
- 四、砲兵測量裝備種類繁多,因其具備提供砲兵精確測地成果,與目標獲得裝備定位定向精確諸元之強大功能,故可遂行砲兵測地與射向賦予作業,在長達十餘年的服役中,對國軍戰力之貢獻,實有目共睹。惟於夜間測地部分,為確保其戰力不墜,砲兵部隊除落實各級保養、維護與操作要領外,理應透過各式研發作為,採性能提升方式有效發揮測量裝備之夜間作業效能,進而提升砲兵全天候作戰能力,基此,本案「砲兵夜間測地輔助器材」實為一立意良好之研究典範。
- 五、「砲兵夜間測地輔助器材」經研發驗證,具有小投資、大效益之優點,其具備通用、穩定、且便利夜間電源供應等能力,俾利砲兵部隊遂行夜間測地任務,有效提升整體作業之速度與精度。綜上,筆者提出(一)保留後續研改及擴充介面;(二)模組化、輕量化;(三)積極爭取納入軍品推廣;(四)完善後勤補保機制;(五)結合民間光電產能等5點建議事項。

關鍵詞:夜間測地、M2 方向盤(Aiming Circle)、全站儀(Total Station)、導線法(Traverse Survey)、前視(Fore Sight, FS)、後視(Back Sight, BS)

前言

野戰砲兵為戰鬥支援兵種,以火力支援地面部隊作戰,射擊為達成任務唯 一手段。然射擊效果良窳,端賴適時獲得目標位置及精算射擊諸元,惟測定目

標位置及求取射擊諸元,又以精確測地作業為根本要素。國軍砲兵為肆應全天 候作戰需求,將夜間測地納為野戰砲兵測地項目之一,其作業成果影響火砲射 擊效果,惟目前各級砲兵部隊未配發制式夜間測地輔助器材,各單位僅能採自 製方式滿足需求,規格未統一且作業成效不彰,影響戰備任務遂行。本計畫研 製目的係發展制式且規格統一「夜間測地輔助器材」,期能精進砲兵夜間測地效 能,提升作業速度與精度,滿足砲兵部隊夜間作戰實需。本研究採文獻回顧法, 首先探討歷年砲兵先進研究中,與本計畫主題相關書籍、文獻及網路資訊,作 為策進、執行與研發作業之參據。接續,說明本案之研發效益與對砲兵夜間測 地之影響,最後提出綜合結論與建議(研究架構如圖1)。

本研究雖以徠卡、蔡司全站儀及 M2 方向盤為主要研究目標,新式全站儀獲 得後,蔡司全站儀將除役,來卡全站儀規劃轉予後備部隊運用,M2方向盤則續 為砲兵連測量班之主要裝備。基此,本案之研發成果與經驗仍可作為後續建案 或相關研究之參據。

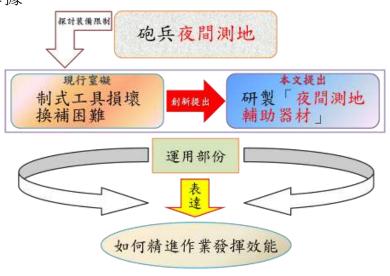


圖 1 研究架構圖 資料來源:筆者自製

砲兵夜間測地作業現況及窒礙問題

為使讀者對本研究主題具備全般概念,本研究將區分「砲兵測地裝備概述」 與「作業現況及窒礙問題」等2部分說明。

一、砲兵測地裝備概述

國軍野戰砲兵測地裝備,依作業特性與功能別,可區分為「定位定向系統」、 「測量器材」與「測量輔助(計算)器材」(如圖2),本研究範疇為國軍砲兵現 役測地裝備,包含「M2方向盤」「蔡司Rec-Elta-13型全站儀」「徠卡TCRA-705型全站儀」及「標桿(架)與水準器」等,並針對上揭裝備(含附件)實施 研發改良(如圖 2 紅色框線所示),設計通用之「砲兵夜間測地輔助器材」,進 而提升野戰砲兵夜間測地作業效能。本節茲將現行砲兵測地裝備概述如后。

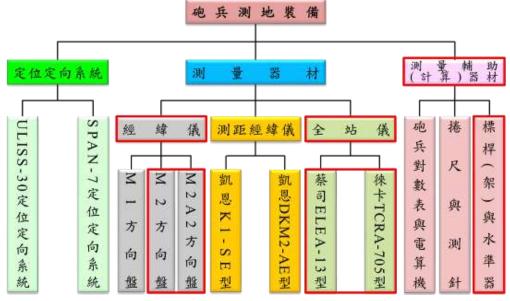


圖 2 國軍砲兵測地裝備-資料來源:筆者自製

(一) M2 方向盤

民國 68 年以前,因光學技術尚未普及,此時期之測量器材通常僅具備基本 測角功能(水平角、垂直角與方位角),故稱之為「經緯儀」。方向盤(Aiming Circle) 為此階段最具代表性裝備,國軍砲兵最早期係使用 M1 方向盤(圖 3),礙於裝 備老舊,遂於民國 66 年起換裝 M2 方向盤(圖 4),因上揭裝備夜間作業能力有 限,如運用於砲兵夜間測地作業,須額外增加人員實施測站照明,且其搭配作 業之標桿無配套夜間作業輔助工具(如標桿燈),故作業精度受限且耗費時間。

圖 3 M1 方向盤示意圖

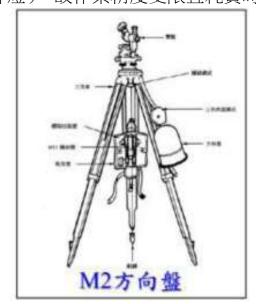


圖 4 M2 方向盤示意圖

資料來源:圖 3 引自 ARTILLERY SURVEY, (TM6-600), 11/1954, GHQ ARMY GRC, 頁 34。圖 4 引自耿國慶, 〈跨 越「方向盤」階段,邁向「數位化」目標之研究-以美軍為例〉《砲兵季刊》(臺南),第 183 期,陸軍砲兵訓練 指揮部,民國 107年11月),頁32。

(二) 蔡司與徠卡全站儀

民國 84 年起,「全站儀」(Total Station)已逐漸成為測量器材之主流趨勢,國軍為與時俱進,分別於民國 84 年 6 月與民國 96 年 12 月,獲得德國蔡司全站儀(圖 5①)與瑞士徠卡全站儀(圖 5②)。「全站儀」又稱為全能測量儀或電子測速儀,係整合「電子經緯儀」、「電子測距儀」、「電子計算機」及「電子記錄器」成一體之儀器,同時測量測點連線之水平角、垂直角、傾斜距離,計算水平距離、高差、測點坐標與高程,並能自動顯示讀數,儲存數據,直接輸入功能較大之電子計算機,利用周邊設備,建置圖檔資料,輸出成果。依上揭定義,國軍蔡司、徠卡等兩類裝備都應屬全站儀之範疇。此外,本時期之測量器材,其經緯儀、測距儀均捨棄原分離設計,改採「整合式」為主流,優點為有效減少視、光軸偏差。雖蔡司、徠卡全站儀均標榜內建夜視功能,惟其儀器「定心」與搭配作業之反射器並無配套夜間作業輔助工具(圖 6),造成夜間作業困難,實有研改精進之空間。

圖 5 蔡司、徠卡全站儀示意圖

資料來源:轉引自《陸軍野戰砲兵測地訓練教範(上冊)》(桃園:國防部陸軍司令部,民國 107 年 08 月),頁 2-61、百 2-127。

圖 6 原蔡司、徠卡全站儀配賦之反射器均無輔助夜間作業功能 _{資料來源:筆者自製}

(三)標桿(架)與水準器

標桿(架)與水準器為砲兵測地最常使用之「測站標示器材」,惟現行標桿 (架) 並無調升(或調降)功能,且未具備軍用規格之「標桿燈」,可供測量人 員實施夜間作業,部隊長期缺乏「制式夜測輔助工具」,須使用軍用手電筒或自 製燈具因應,規格未統一且效能不彰,現行標桿(架)與水準器功能說明如次。

1.標桿:國軍砲兵部隊現用之測量標桿(如圖 7①),為兩節金屬空心圓桿 合成,全長6英尺6英吋(約1.98公尺),由上而下漆成紅白相間之6等份,每 等份長1英尺(30公分),最下之6英吋(15公分)處為鐵錐,以便插入土中, 不用時,分為兩節,置於標桿套內。

2.標桿架:標桿架係支持標桿於測站上時所用之輕便三腳架,使標桿能於堅 實之地面直立之(如圖7②)。

3.標桿水準器:標桿水準器係供豎直標桿用(如圖 7③)。

原標桿(架)與水準器無輔助夜間作業功能 圖 7 資料來源:筆者自製

(四)國軍砲兵測量器材(含夜間作業能力)分析比較:國軍砲兵測量器 材(含夜間作業能力)差異分析比較彙整如表 1。

表 1 國軍砲兵測量器材(含夜間作業能力)差異分析比較表

器材名稱	M2 (M2A2)	德國	瑞士	
□□.l.1 □ II1	方向盤	蔡司全站儀	徠卡全站儀	
撥 發 時 間	民國 66 年	民國 84 年 6 月	民國 96 年 12 月	
望遠鏡倍率	4倍	30 倍	30 倍	
測距儀型式	無	內建整體式	內建整體式	
夜間測地能力	需額外增加光源, 且搭配作業之標桿 無配套夜間作業輔 助工具。	雖儀器內建夜視 功能,惟搭配作業 之標桿、反射器無 配套夜間作業輔 助工具。	雖儀器內建夜視功 能,惟搭配作業之標 桿、反射器無配套夜 間作業輔助工具。	

測	距	模	式	無	紅外線光波	紅外線光波 與雷射測距
測	距	時	間	無	3~5 秒	3~5 秒
測	距	範	童	無	單一稜鏡(15公里 能見度下可測至 2,000公尺)	單一稜鏡(紅外線 2,000 公尺;雷射 7,500公尺)
經	緯億	· 型	式		電子式	電子式
電	池	型型	式	無	鎳鎘電池	鎳氫電池
充	電	時	間	無	6 小時	4 小時
角單	度	顯	宗 位	密位	密位、度分秒、 度小數、400 級	密位、度分秒、 度小數、400級
垂	直角	角類	型	高低角	高低角 天頂角	高低角 天頂角
角顯	示	精	度度	0.5 密位	0.1 秒	1秒
補 (章 窟	器)	無	有,單軸補償 (±2分40秒)	有,雙軸補償 (±4分)
儲石	字與言	十算功	力能	無	1,000 筆	10,000 筆以上
定	心	方	式	垂球	光學 與垂球	光學為主
鍵定	結向	定系	位統	不可	可	可
整	置	時	間	3分30秒	2分30秒	2 分鐘
數			量	2,290套	91套	85套

資料來源:參考《陸軍野戰砲兵測地訓練教節(上冊)》(桃園:國防部陸軍司令部,民國 107 年 08 月), 頁 2 -14~頁 2 - 172。

二、作業現況及窒礙問題

國軍砲兵夜間測地有別於一般測地作業,因視線不佳致縮短覘視距離,極 易產生誤差,加上夜間通信連絡不易,作業相對困難。另原配發之夜間測地測 輔助器材(如標桿燈等)因逾壽期,均損壞殆盡,部隊長期缺乏制式工具,須 使用軍用手電筒或自製燈具因應,規格未統一且效能不彰、品質良莠不齊且通 用性欠佳,亦無法適用全軍測量裝備。本節茲將部隊因未具備夜間測地測輔助 器材,所肇生之作業窒礙問題,歸納為「夜間測量裝備定心困難」、「夜間測地 標定目標不易」與「夜間無法有效調整器材(覘標)高度」等 3 項(窒礙問題 彙整說明如表 2)。

夜間測地窒礙問題彙整說明表 表 2

	P	1主员的发来正见为代	
室 礙問題 區分	夜間測量裝備「定心」困難	 夜間測地「標定目標」 不易	夜間無法有效 「調整器材(覘 標) 高度」
說明	國軍現行測量裝備 定心方式區分為「垂 球定心」與「光學定 心」等2種,惟上述 方法僅適用於畫間 作業。	夜間作業因視線不良,測量人員操作裝備 瞄準標桿時,須懸掛「軍用手電筒」或「自製燈具」作為「標桿燈」之替代方案;瞄準反射器時,則須額外增加人員實施反射稜鏡照明。	夜間作業時,因 視線不佳,致無 法有效量取及 調整器材(覘 標)高度。
影響	夜間實施「定心」作 業時,因視線受限, 故須額外增加人員 實施測站照明,影響 測地作業時效與品 質。	1.現行以「軍用手電筒」或「自製燈具」作為「標桿燈」之替代方案,將導致標定目標過大(軍用手電筒之光源外徑 4.5 公分),容易令測量人員產生作業標定誤差。 2.因照明用手電筒光度不足,容易令測量人員產生作業標定誤差。	間接造成高程誤差

(一)夜間測量裝備「定心」困難:舉凡測量器材作業之初,均須運用特 定方式將儀器中心位置精確對正某一測點,吾人稱之為「定心」或「對正測站」 (國軍各式測量裝備定心方式如圖 8、表 3)。現行 M2 方向盤與蔡司、徠卡全 站儀等主要測量裝備,前者係使用「垂球定心」,後二者係使用「光學定心」; 惟不論使用種方式定心,於晝間作業時均不影響工作執行;惟夜間作業時,因 視線受限,故須額外增加人員實施測站照明,影響測地作業時效與品質(國軍 各式測量裝備書、夜間定心作業對照如圖 9~圖 11)。

^{1「}垂球定心」成本低廉、結構簡單,係運用「物理」原理,直接將垂球懸掛於器材中心位置,用以對正測站。

^{2「}光學定心」係運用「光學原理」設計,不受強風或地形影響定心精度,為現階段測量器材廣泛採用,其限制 為作業環境務須光源充足,當夜間視線受限時,則較不適用此法。

隆砲兵李列

名稱:M2方向盤 定心方式:垂球定心

名稱:蔡司全站儀 定心方式:光學定心

國軍各式測量器材與其定心方式 圖 8 資料來源:筆者自製

表 3 國軍各式測量裝備定心方式比較

	代 图 图 中 口 入 //	引生な用た位分と心	,
項目	垂 球	光	學
測量裝備	M 2 方 向 盤	蔡司全站儀	徠 卡 全 站 儀
	成本低廉、結構簡	係運用「光學原理」	係運用「光學原理」
	單,係運用「物理」	設計,不受強風或	設計,不受強風或
 特	原理,直接將垂球	地形影響定心精	地形影響定心精
1.0 wh	懸掛於器材中心位	度,為現階段測量	度,為現階段測量
	置,用以對正測站	器材廣泛採用(如	器材廣泛採用(如
	(如圖9)	圖 10)。	圖 11)。
限制(夜間作業)	1.易受強風影響定心作業。 2.易受操作者單, 視覺方與強力。 , 發力, 對方。 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	1.畫間作業無限制 2.夜間作業時,因視 野受限,故須額外 增加人員實施測站 照明。	1.畫間作業無限制 2.夜間作業時,因視 野受限,故須額外 增加人員實施測站 照明。

資料來源:黃盈智,〈M2 方向盤光學定位鏡組研發介紹與運用〉《砲兵季刊》(臺南),169 期,砲訓部,頁3。

圖 9 M2 方向盤畫、夜間定心差異比較 資料來源:筆者自製

圖 10 蔡司全站儀畫、夜間定心差異比較 _{資料來源}: 筆者自製

圖 11 來卡全站儀畫、夜間定心差異比較 資料來源:筆者自製

- (二)夜間測地「標定目標」不易:野戰砲兵測地作業三要素,為量測「水 平角³」、「垂直角⁴」與「距離⁵」等諸元,為力求作業精確,測量人員須操作測 量裝備(儀器),並將其視準軸中心(即儀器望遠鏡內十字刻畫線之中心,如圖 12) 瞄準目標(標桿或反射稜鏡中心位置),上述動作看似簡單,實則需要嚴格 訓練,方能成為一位合格測量人員。書間作業因視野良好,瞄準標桿時,須將 十字刻書中心標定標桿之中央位置; 瞄準反射器時, 則須標定反射稜鏡中央(如 圖 13)。惟夜間作業因視線不良,瞄準標桿時,須懸掛「軍用手電筒」或以「自 製燈具」作為「標桿燈」之替代方案;瞄準反射器時,則須額外增加人員實施 反射稜鏡照明(如圖 14),上揭 2 種方法,前者因標定目標過大(軍用手電筒之 光源外徑達 4.5 公分,如圖 15);後者則因照明用手電筒光度不足,均容易致測 量人員產牛作業標定誤差(圖16)。
- (三)夜間無法有效「調整器材(覘標)高度」:砲兵測地作業中,器材與 覘標高度對高程測量的影響甚鉅,⁶晝間作業時,測量人員可使用捲尺實際量測 器材與覘標高度,作為高程計算之依據(如圖 17);惟夜間作業時,因視線不佳, 致無法有效量取並調整器材(覘標)高度(圖18),間接造成高程誤差。

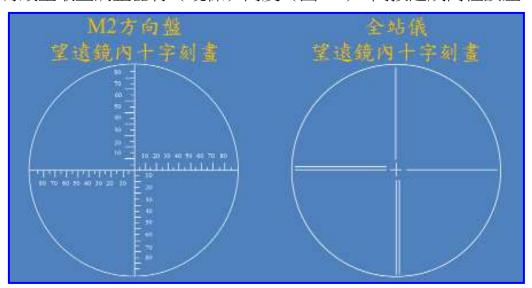


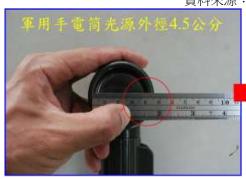
圖 12 M2 方向盤與全站儀望遠鏡內十字刻畫示意圖 資料來源:筆者自製

³ 在器材視軸之水平面上,以測站為頂點,測量其他二點間之夾角,即為「水平角」,通常按順時針方向測量。

⁴ 垂直角區分為「天頂角」與「高低角」等 2 種類型,天頂角係以地心與測站連線向上延伸入天頂之方向為 0 軸,與器材視軸至覘視點連線所成之垂直夾角;高低角則為器材視軸中心至覘視點之連線,與器材視軸水平 面所成之垂直夾角,謂之「高低角」,在水平面上者為正,以下為負。

⁵ 平面或球面上任意 2 點間之長度,謂之距離,亦區分為「水平距離」與「傾斜距離」等 2 種。砲兵測地係屬 小區域之平面測量,故通常使用(或測量)「水平距離」。

^{6「}器材高」係由測量器材之水平視軸至測站之地面或樁頂之垂直距離;「覘標高」則為測定高低(天頂)角時, 對覘標之覘視點至覘標所在地面或樁頂之垂直距離。上揭2者對於高程作業(或計算)結果影響甚鉅,故應 於作業前明確訂定之。



晝間標定標桿與反射稜鏡示意圖 圖 13 資料來源:筆者自製

夜間標定標桿與反射稜鏡示意圖 圖 14 資料來源:筆者自製

以「軍用手電筒」替代「標桿燈」易產生作業誤差 圖 15 資料來源:筆者自製

圖 16 手電筒照明反射稜鏡光度不足,夜間難以辨識 資料來源:筆者自製

書間使用捲尺量取器材與覘標高度示意圖 資料來源:筆者自製

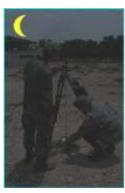


圖 18 夜間使用捲尺量取器材與覘標高度示意圖 資料來源:筆者自製

解決方案與預期目標

為有效解決國軍現行夜間測地所面臨窒礙問題,研擬精進砲兵夜間測地作 業之具體方案,本研究創新研發「砲兵夜間測地輔助器材」,提出「以雷射取代 垂球、光學定心」、「以特製燈具取代軍用手電筒」及「以可升降式腳架(與標 桿)取代傳統儀器腳架(與標桿)」等3項解決方案(窒礙問題與解決方案如圖 19), 進而達成「提升夜間測地坐標與方位精度」與「減少高程誤差」等目標(精 進內容與預期目標如圖 20)。

圖 19 砲兵「夜間測地」室礙問題與解決方案 資料來源:筆者自製

圖 20 砲兵夜間測地精進內容與預期目標 資料來源:筆者自製

一、以「雷射」取代「垂球、光學」定心:現行 M2 方向盤與蔡司、徠卡全站儀等主要測量裝備,分別使用「垂球」與「光學」等方式定心,上揭方法於夜間作業時,均因視線受限,故須額外增加人員實施測站照明,影響測地作業時效與品質。本研究運用雷射光源不受環境、天候影響,於夜間仍清晰可見之特性(如圖 21),研擬以「雷射定心」取代現行「垂球與光學定心」,進而提升測量裝備定心精度、操作便利性及節省人力。

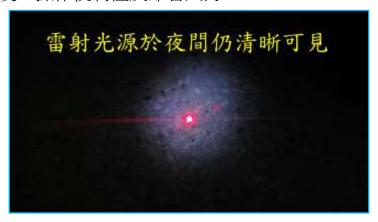


圖 21 「雷射光源」具備於夜間仍清晰可見之特性 _{資料來源:筆者自製}

二、以「特製燈具(符合軍事規格)」取代「軍用手電筒」:為解決夜間測地因作業視線不良,致標定目標不易的問題,本研究研擬製作符合軍事規格之「標桿燈」與「反射稜鏡燈」,作為現行部隊須懸掛「軍用手電筒」或以「自製燈具」因應之改進方案(如圖 22);除符合軍事規格(防水、防塵)可全天候作業外,亦可有效解決原「標定目標過大」與「照明燈光不足」等問題,減少測量人員標定誤差,進而提升夜間目標標定範圍與精確度。

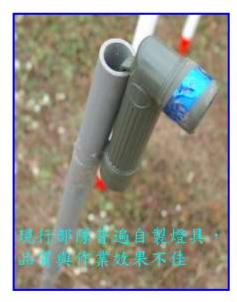


圖 22 現行部隊須懸掛「軍用手電筒」或以「自製燈具」因應 資料來源:牛彥凱,〈提升砲兵觀測所夜間標定設備之研究〉《砲兵季刊》(臺南),第177期,砲訓部,民國106 年06月,頁3。

三、以「可升降式腳架與標桿」取代「傳統儀器腳架與標桿」: 夜間測地作 業因視線不佳,致無法有效量取及調整器材(覘標)高度,本研究研擬設計可 調升(調降)之儀器腳架與標桿(架),作為解決方案(如圖 23~圖 24)。新式 腳架與標桿(架)除可彈性調升(調降)高度外,亦可通用國軍現役測量裝備, 加上不受天候與環境限制,可有效消弭高程誤差與提升作業精度。

本研究研擬設計可調升(調降)之新式儀器腳架 圖 23 資料來源:筆者自製

圖 24 本研究研擬設計可調升(調降)之新式標桿(架) _{資料來源:筆者自製}

研製砲兵夜間測地輔助器材

本研究為解決國軍現行夜間測地所面臨之窒礙問題,創新研發出砲兵夜間測地輔助器材,並以運用範圍廣、使用壽限長之光學元件為主要研究目標。隨著科技日新月異,目前現貨市場發展出多款體積小、重量輕、亮度高之光學組件,可依據國軍各式測量裝備之機械結構與作業能力需求,考量不破壞裝備結構且便於夜間操作之便利性,達成提升夜間測地作業效能之目標。本節主要區分「研發期程與規劃」、「各部名稱與功能介紹」、「裝備操作運用」與「綜合結論」等4大部分。

一、研發期程與規劃:研製案採委商研製方式,研製期程為 1 年,首先依據現有資源、人力及考量任務執行期間,擬定三階段之作業流程與各階段時間管制節點。區分第一階段,以「砲兵夜間測地輔助器材」規格、功能規範研討與訪商洽談製圖為主(如圖 25),期使研發品項能發揮預期效益。其次,於第二階段,個別訂定成品初步測試、製作缺失研討與裝備驗收測試等項目為階段目標。最後,為使後續之成果推廣有利,於第三階段中將「砲兵夜間測地輔助器材」廣泛提供砲訓部受訓班隊學員生,於相關課程中操作使用,從中獲得具體之操作建議與改進意見回饋。綜上,依全案三階擬定之作業內容繪製甘特圖7(如

⁷ 甘特圖(英語: Gantt chart)是橫條圖的一種流行類型,也稱為條狀圖(Bar Chart),係由亨利.甘特於1910年

圖 26), 俾利控管研發任務之執行進度。

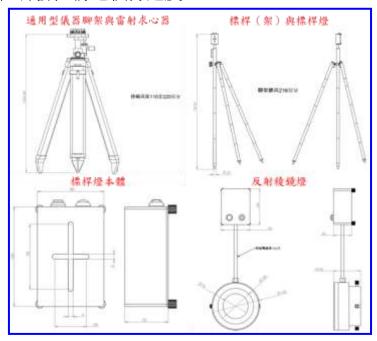


圖 25 「砲兵夜間測地輔助器材」研製設計圖(單位:公厘)

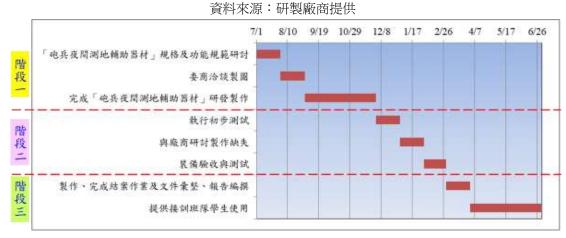
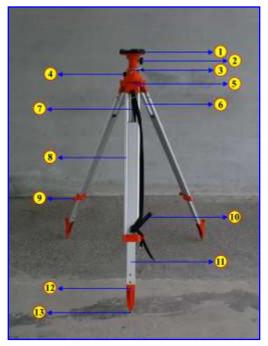



圖 26 甘特圖 資料來源:筆者自製

- 二、各部名稱與功能介紹:本案之研發成果「砲兵夜間測地輔助器材」,係由「通用型儀器腳架 1 具」、「雷射求心基座 1 個」、「標桿(架)及標桿燈 2 套」、「反射稜鏡燈 2 套」、「M2 方向盤連接器 1 個」與「攜行箱 1 個」等六大部分組成(如圖 27 至圖 33),說明如次。
- (一)通用型儀器腳架:由鋁合金材質打造,具重量輕、攜行方便等特點, 其設計概念為整合國軍現役 M2 方向盤、蔡司與徠卡全站儀等儀器腳架,並增加

開發,其內在思想簡單,基本為一線條圖,橫軸表示時間,縱軸表示活動(項目),線條表示在整個期間上計劃和實際活動完成情況。其直觀地表明任務計劃於何時進行,及實際進展與計劃要求之對比。資料來源:https://zh.wikipedia.org/wiki/。

安全鍊條,防止操作失慎造成儀器傾倒,另新增架頭調升(調降)功能,可依 作業需求快速調整器材高度,「通用型儀器腳架」各部名稱與功能說明如圖 27、 表 4。

「通用型儀器腳架」示意圖 圖 27 資料來源:筆者自製。

「通用型儀器腳架」各部名稱與功能說明表 表 4

_)
項次	名 稱	功能	說明
1	升降式架頭與 護蓋	升降式架頭之功能為承載 量儀器,另可依作業需求的 升降範圍為 110~220 公分 頭使其避免碰撞。	快速調整器材高度(高度
2	本體緊定螺	目的為使「雷射求心基座」 緊密結合,順時針旋轉為緊	= '
3	架頭升降手把	作用為調整架頭高度,順頭;逆時針則反之。	時針轉動手把可升高架
4	架頭固定螺	使用「架頭升降手把」將「後,需順時針旋緊「架頭固以確保儀器作業穩定。	
5	腳架連接器	作為「架頭」與「上、下層	御架 」 間之連接裝置。
6	安全 鍊條	合計使用 3 條安全鍊條,目連結,避免野外作業時,因 造成腳架傾倒。	
7	背帶	作為野外變換測站時攜行或	或背負腳架用途。

8	<u> </u>	腳	架	為鋁合金材質,區分為上、下腳架,以作為高度調
0		Nah	未	整用途。
9	別力	取 完	畑	調整上、下腳架至固定高度後,作為腳架緊定、防
9		架緊定	珎	傾倒用途。
10	束		帶	作為野外變換測站時固定腳架用途。
11	7	腳	架	為鋁合金材質,區分為上、下腳架,以作為高度調
11	Ι',	1J.c.h	示	整用途。
				於泥土地上整置腳架後,應採順時針方式,依序將
12	踏		板	踏板用力採踏,直至腳尖沒入土中,以穩固腳架,
				避免遭強風吹襲而損壞測量儀器。
13	鋁質	質 腳	尖	作為插入土中,以穩固腳架用途。

(二) 雷射求心基座: 由鋁合金材質打造, 其中心部位新增雷射定心功能, 運用雷射光源不受環境、天候影響,於夜間仍清晰可見之特性,以「雷射定心」 取代現行垂球與光學定心,「雷射求心基座各部名稱與功能說明如圖 28、表 5。

圖 28 「雷射求心基座」示意圖 資料來源:筆者自製

「雷射求心基座」各部名稱與功能說明表 表 5

項次	名 稱	功能說明
1	本體結合螺	測量儀器本體安置於求心基座上方後,作為固定、 防止鬆脫用途,順時針旋轉為緊定,逆時針則反之。
2	雷射對中器	即雷射光源產生器,其產生之可見光源外徑小於 1 公厘,於晝、夜間均得適用,可精確對正地面測站,減少測量儀器定心誤差。
3	水平調整螺	合計 3 處,作為居中「圓形水準氣泡」或調整測量 儀器水平用途。
4	雷 射 開 關	即雷射光源開關,按壓後即可於基座中心底部,產生一雷射光源,據此對正地面測站(定心)。

5	圓形水準氣泡	搭配「水平調整螺」可作為測量儀器之定平(維持水平)用途。
6	電池座與電池	安裝市售 4 號電池 1 顆,可連續使用 2 小時(含)以上,操作人員可自行實施電池更換。

(三)標桿(架)及標桿燈:由鋁合金材質打造,具重量輕、攜行方便等特點,本案研製標桿除可結合「標桿燈」或「反射稜鏡」等配件外,亦新增高度調整功能,可依作業需求彈性調整覘標高度,「標桿(架)及標桿燈」各部名稱與功能說明如圖 29、圖 30、表 6、表 7。

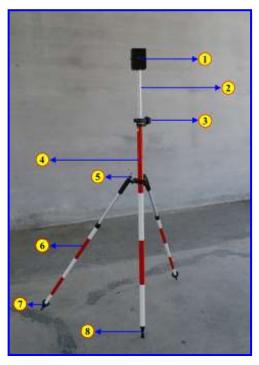


圖 29 「標桿(架)及標桿燈」示意圖 資料來源:筆者自製

表 6 「標桿(架)及標桿燈」各部名稱與功能說明表

	PC - PN1	
項次	名 稱	功能說明
1	標桿燈與結合	標桿頂端為之結合座,可作為結合標桿燈(或反射
I	座	稜鏡)用途。
2	標桿本體(內部)	標桿本體係由內、外兩截式組成,內部標桿由鋁合金材質打造,並具備高度刻畫註記(最小刻畫單位為 1 公厘),可依使用需求快速調整標桿(覘標)高度(高度升降範圍為 110~216 公分)。
3	固定螺與圓形 水準器	順時針將緊定螺旋緊,即可固定標桿高度,逆時針 鬆開緊定螺,即可調整標桿高度。圓形水準器則作 為維持標桿水平並垂直地面測站用途。

4	標桿本體(外部)	標桿本體係由內、外部兩截式組成,外部標桿由上 而下漆成紅白相間之 4 等份,每等份長 1 英尺(30 公分)。
5	伸縮握把	以拇指下壓「伸縮握把」即可調整「標桿腳架」長度; 髮開「伸縮握把」即可固定「標桿腳架」長度。
6	標桿腳架	可由「伸縮握把」調整「標桿腳架」長度,據以居中圓形水準器,確保標桿維持水平並垂直地面測站。
7	踏板與腳尖	於泥土地上整置腳架後,應採順時針方式,依序將 踏板用力採踏,直至腳尖沒入土中,以穩固腳架, 避免遭強風吹襲而損壞測量儀器。
8	鐵 錐	作為插入土中或對正測站用途。

「標桿燈本體」示意圖 圖 30 資料來源:筆者自製

表 7 「標桿燈本體」各部名稱與功能說明表

項次		名	İ		稱	功	能	說	明
1	標	桿	燈	本	體	字縷空設計立	位搭配夜間螢分	P65 等級 ⁸),正 光標記,以利標 拖夜間標定,另	桿燈內

⁸ 防護等級認證(International Protection Marking, IEC 60529)亦稱作異物防護等級(Ingress Protectio n Rating)或 IP 代碼(IP Code)。有時候也被叫做「防水等級」「防塵等級」等,定義了機械和電子設備 能提供針對固態異物侵入(包括身體部位如手指,灰塵,砂礫等),液態滲入,意外接觸有何等程度的防護 能力。資料來源:https://zh.wikipedia.org/wiki/。

		間測地需求,彈性調整光源亮度與顏色,共具備
		紅、橙、藍、綠與全亮等 5 種燈光模式可供選擇。
0	7	標示光源投射部位上、下、左、右各一,作為夜
2	夜間螢光標記	間標定輔助,以利測量人員快速尋獲目標。
2	連 接 器	可結合於標桿結合座,作為連結「標桿燈」與「標
3	連 接 器	桿」用途。
		合計六處,順時針旋轉為緊定,逆時針旋轉則反
		之,作用為緊定電池蓋及保護標桿燈內部零件。
4	電池蓋轉螺	「標桿燈」供電需求為安裝市售3號電池3顆,
		可連續使用 2 小時(含)以上,操作人員可自行
		實施電池更換。
5	電 池 蓋	作為防水、防塵及保護標桿燈內部零件用途。
6		本案研發之「標桿燈」共具備紅、橙、藍、綠與
0	燈光模式轉換鍵	全亮等 5 種燈光模式可供選擇。
7	電源開關	可開啟或關閉標桿燈光源。

(四)反射稜鏡燈:反射稜鏡燈簡稱「稜鏡燈」,係由鋁合金材質打造,具重量輕、攜行方便與通用性佳等特點,可適用國軍蔡司、徠卡全站儀配賦之反射稜鏡,「稜鏡燈」正面採隱藏式光源設計並搭配夜間螢光標記,兼顧夜間敵情顧慮及便於測量人員實施夜間標定,另可依夜間測地需求,彈性調整光源亮度與顏色,共具備紅、橙、藍、綠與全亮等 5 種燈光模式可供選擇,「反射稜鏡燈」各部名稱與功能說明如圖 31、表 8。

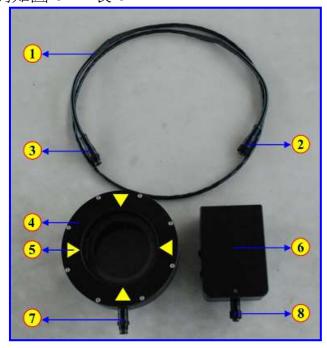


圖 31 「反射稜鏡燈」示意圖 資料來源:筆者自製

表8	「反射稜鏡燈」	各部名稱與功能說明表
· []		

項次	名	爭	功能說明
1	電源纜線	泉	連接「電池盒」與「稜鏡燈本體」之傳輸纜線, 作為電源供應用途。
2	纜線接頭 ′	1	連接至「稜鏡燈本體」之「纜線接頭 A」,作為電源供應用途。
3	纜線接頭 2	2	連接至「電池盒」之「纜線接頭 B」,作為電源供應用途。
4	稜 鏡 燈 本 體	典豆	由鋁合金材質打造(符合 IP65 等級 ⁹),正面採隱藏式光源設計並搭配夜間螢光標記,兼顧夜間敵情顧慮及便於測量人員實施夜間標定,另可依夜間測地需求,彈性調整光源亮度與顏色,共具備紅、橙、藍、綠與全亮等 5 種燈光模式可供選擇。
5	夜間螢光標記	2	標示光源投射部位上、下、左、右各一,作為夜間標定輔助,以利測量人員快速尋獲目標。
6	電 池 盒	ДпД	「稜鏡燈」供電需求為安裝市售 3 號電池 3 顆,可連續使用 2 小時(含)以上,操作人員可自行實施電池更換。另電池盒之左、右側分別為「燈光模式轉換鍵」與「電源開關」。
7	纜線接頭 4	4	與「電源纜線」之「纜線接頭1」實施連結,作為電源供應用途。
8	纜線接頭 E	3	與「電源纜線」之「纜線接頭2」實施連結,作為電源供應用途。

(五) M2 方向盤連接器:「M2 方向盤連接器(如圖 32)」主要由黃銅與鋁合金材質打造(避免影響 M2 方向盤磁針運作),用途為結合於 M2 方向盤底座,使其亦得適用「雷射求心基座」。

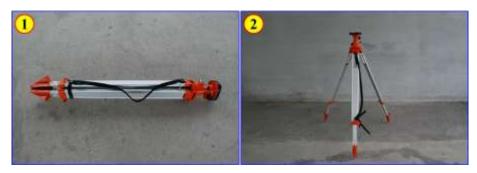
圖 32 「M2 方向盤連接器」示意圖 資料來源:筆者自製

⁹ 同註 10。

(六)攜行箱:符合 IP65 等級之強固式攜行箱(如圖 33),長距離運動或長時間不使用時,作為裝運器材之用途。內含塑膠護墊與防震泡棉,標桿(稜鏡)燈本體放入後具避震作用,置於攜行箱內之物品,可承受之墜落高度約為76公分。

圖 33 攜行箱示意圖 資料來源:筆者自製

- 三、裝備操作運用:「砲兵夜間測地輔助器材」裝備操作區分為「安裝」及「夜間測地作業實施」等2部分,說明如次。
- (一)安裝:「砲兵夜間測地輔助器材」之安裝,可區分為「M2 方向盤與連接器」、「通用型儀器腳架與雷射求心基座」、「標桿(架)與標桿燈」、「反射稜鏡燈」等4項。
 - 1. M2 方向盤與連接器
- (1) 備妥「M2 方向盤本體」與「連接器」(如圖 34①),以左手開啟 M2 方向盤本體底部之護蓋,再以右手持「連接器」並對正螺孔位置(如圖 34②)。


(2)順時針旋轉連接器(如圖 35③),直至連接器轉螺與 M2 方向盤本體底部螺孔完成緊密結合(如圖 35④),即完成安裝。

M2 方向盤與連接器安裝要領(二) 資料來源:筆者自製

- 2.通用型儀器腳架與雷射求心基座(以 M2 方向盤為例)
- (1) 備妥「通用型儀器腳架」與「雷射求心基座」(如圖 36①)。
- (2)將腳架調整至固定高度後,概略置於測站上方,並取下架頭護蓋(如 圖 36②)。

通用型儀器腳架與雷射求心基座安裝要領(一) 資料來源:筆者自製

(3)將「雷射求心基座」置於架頭,順時針旋緊「本體緊定螺」,並開啟 「雷射開關」(如圖 373),接續,鬆開「架頭固定螺」,轉動「架頭升降手把」 調整架頭高度,完成後旋緊「架頭固定螺」,防止架頭鬆動(如圖 37④)。

通用型儀器腳架與雷射求心基座安裝要領(二) 圖 37 資料來源:筆者自製

(4) 測手移動腳架,確使「雷射求心基座」產生之光源對正地面測站(如 圖 38⑤),並以順時針方式踩踏腳架踏板直至腳尖沒入土中,接續,調整腳架高 度居中「雷射求心基座」之圓形水準氣泡。最後,取出 M2 方向盤本體(須完成 連接器安裝),由上而下至置「雷射求心基座」上方後,順時針緊定「本體結合螺」(如圖 38⑥)。

圖 38 通用型儀器腳架與雷射求心基座安裝要領(三) _{資料來源}: 筆者自製

(5)調整 M2 方向盤水平調整螺,居中「管形水準氣泡」(如圖 39⑦),並 將各部分劃歸零後,即完成器材整置(如圖 39⑧)。

圖 39 通用型儀器腳架與雷射求心基座安裝要領(四) _{資料來源:筆者自製}

(6)國軍現役蔡司、徠卡全站儀均可依上揭要領,使用本案研發之「通用型儀器腳架」與「雷射求心基座」實施夜間測地作業(如圖 40)。

圖 40 蔡司與徠卡全站儀亦適用於通用型儀器腳架與雷射求心基座 _{資料來源}: 筆者自製

3.標桿(架)與標桿燈

(1) 備妥「標桿」、「標桿架」與「標桿燈」(如圖41①),完成「標桿」與 「標桿架」組裝結合,並將標桿鐵錐(即底部尖端)置於測站上方,接續,踩 踏踏板直至腳尖沒入土中,最後,按壓「伸縮握把」調整腳架長度並居中圓形 水準氣泡(如圖 41②)。

圖 41 標桿(架)與標桿燈安裝要領(一) 資料來源:筆者自製

(2)取出「標桿燈」,由上而下順時針旋轉,將標桿燈底部之「連接器」 與標桿頂端之「結合座」,完成緊密結合(如圖 423),接續,逆時針旋鬆標桿 「固定螺」,將其內部標桿調整至所望高度後,順時針緊定「固定螺」,即完成 「標桿(架)」與「標桿燈」整置(如圖 42④)。

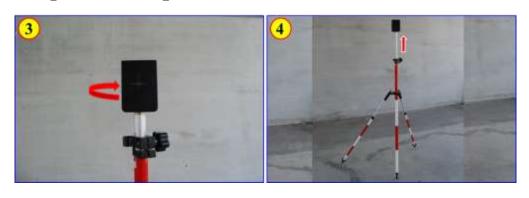


圖 42 標桿(架)與標桿燈安裝要領(二) 資料來源:筆者自製

(3) 開啟標桿燈右側「電源開關」,並按壓左側「燈光模式轉換鍵」,即可 實施燈光顏色轉換,本案研發之「標桿燈」,共具備紅、橙、藍、綠與彩色等五 種燈光模式可供選擇(如圖 43)。

圖 43 「標桿燈」燈光模式示意圖 資料來源:筆者自製。

4.反射稜鏡燈

(1) 蔡司全站儀反射器

A. 依野戰砲兵測地訓練教範第四節第二款「器材操作」,完成「蔡司全站儀反射器」整置(如圖 44①); B. 將「稜鏡燈本體」佩掛於「反射稜鏡」上方,並順時針旋緊「稜鏡燈」上方之「緊定螺」(如圖 44②)。

圖 44 反射稜鏡燈安裝要領(蔡司全站儀) _{資料來源:筆者自製}

C. 將「電池盒」與「纜線」結合至稜鏡燈本體之「纜線接口 A」(如圖 45),即完成「反射稜鏡燈」整置。

圖 45 完成蔡司全站儀「反射稜鏡燈」整置示意圖 資料來源:筆者自製

(2) 徠卡全站儀反射器: A. 依野戰砲兵測地訓練教範第四節第一款「器材操作」,完成「徠卡全站儀反射器」整置(如圖 46①); B. 將「稜鏡燈本體」佩掛於「反射稜鏡」上方,並順時針旋緊「稜鏡燈」上方之「緊定螺」(如圖 46②)。

圖 46 反射稜鏡燈安裝要領(徠卡全站儀) _{資料來源}:筆者自製。

C. 將「電池盒」與「纜線」結合至稜鏡燈本體之「纜線接口 A」(如圖 47),即完成「反射稜鏡燈」整置。

圖 47 完成徠卡全站儀「反射稜鏡燈」整置示意圖 _{資料來源}:筆者自製

(3) 稜鏡燈操作:開啟電池盒右側「電源開關」,並按壓左側「燈光模式轉換鍵」,即可實施燈光顏色轉換,本案研發之「稜鏡燈」,共具備紅、橙、藍、綠與彩色等五種燈光模式可供選擇(如圖 48)。

(二)夜間測地作業實施:國軍砲兵「夜間測地」有別於一般測地作業,因視線不佳致縮短覘視距離,極易產生誤差,加上夜間通信連絡不易,作業相對困難。野戰砲兵夜間測地區分「有定位定向系統」與「無定位定向系統」等2種作業型態,本案研製「砲兵夜間測地輔助器材」可支援上述兩種型態之夜間測地作業,惟不論使用何種作業型態,砲兵於夜間測地均須使用(或搭配)「導線法¹⁰(Traverse Survey)」作業。基此,本節茲將「砲兵夜間測地輔助器材」

¹⁰ 在地面上設置若干測站,使測站間連接成一系列之折線或閉合多邊形,並測定各點之水平角、天頂角(高低

如何搭配「M2 方向盤」或「全站儀」實施夜間「導線法」作業要領,說明如次。 1.M2 方向盤

(1)人員編組:運用「M2 方向盤」於夜間實施「導線法」作業,人員編組區分班長、測手、前標桿手、後標桿手、前捲尺手與後捲尺手等職務(如表 9)。

表 9 運用「M2 方向盤」實施夜間「導線測量」編組表

	是用 ··· / / / / / / / / / / / / / / / / /
運用「M	23 13 mm 3 26 30 DC 123 3 MM (22 DC
職稱	職
班 長	偵查、選定測站位置,監督其餘人員作業。
測 手	兼記錄手,負責整置器材並測量測站間之水平角與垂直角,
┃測 手	且完成成果記錄。
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	於班長選定之前視點位置,設置標桿(架)與標桿燈,供測
前標桿手	手標定作業。
後標桿手	於後視點位置,設置標桿(架)與標桿燈,供測手標定作業。
前捲尺手	搭配後捲尺手測量測站至前視點(即目標)之距離。
後捲尺手	搭配後前尺手測量測站至前視點(即目標)之距離。
備考	1.增加額外人員時各員職掌 (1)記錄手:記錄水平角、距離。 (2)計算手:可增加1~2員計算手,便於測量時同時計算各要點坐標 ¹¹ 。 2.缺員時之各員職掌 (1)前標桿手:由班長兼任。 (2)後標桿手:測手兼,測手離開測站(P點)時,利用標桿代用品標示之,以供反覘,惟因標桿代用品較難立即尋獲,且測手標定標桿代用品較易產生誤差,故非必要時,勿缺少標桿手。

資料來源:筆者自製

(2) 作業要領

A.將「M2 方向盤本體」與「結合器」實施結合。

- B.測手於測站上整置「通用型儀器腳架」(如圖 49),結合「雷射求心基座」, 設定架頭高度後,開啟雷射光源,並完成對正測站(定心)與調整水平(定平)。
- C.測手將「M2 方向盤本體(含結合座)」與「雷射求心基座」結合,完成器材整置(如圖 50)。
 - D.前標桿手於班長選定之「前視點¹²(Fore Sight, FS) 位置,完成標桿(架)

角)及距離,以決定各測站之位置,謂之「導線法測量」。

¹¹ 砲兵測地所得之「坐標」,係為 6 度分帶橫麥卡托方格投影坐標(Universal Transverse Mercator, UTM)。

¹² 係指導線法測量時,對「未知點」實施之觀測,稱為「前視」或「直覘」。資料來源:測繪學辭典。

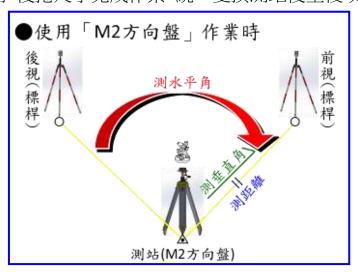
與標桿燈整置(如圖 49),並開啟電源開關。

E.後標桿手於班長選定之「後視點13(Back Sight, BS)位置,完成標桿(架) 與標桿燈整置(如圖 49),並開啟電源開關。

F.前、後捲尺手操作「捲尺」與「測針」測量測站至前視點之距離(如圖 49), 並完成紀錄。

G.測手操作「M2 方向盤」,標定「後視點標桿燈」(如圖 51),順時針測至 「前視點標桿燈」(如圖 51),完成「水平角」與「垂直角」測量(如圖 49), 並完成紀錄。

H.待測手與前、後捲尺手完成作業,統一變換測站後重複項次 B~G 之程序。



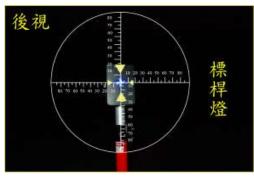

圖 49 運用「M2 方向盤」實施夜間測地示意 資料來源:筆者自製

圖 50 完成「M2 方向盤」器材整置示意 資料來源:筆者自製

¹³ 係指導線法測量時,對「已知點」實施之觀測,稱為「後視」或「反覘」。資料來源:測繪學辭典。

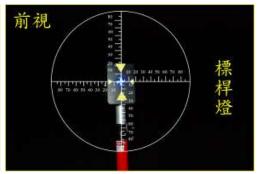


圖 51 夜間測地標定前、後視標桿燈示意 資料來源:筆者自製

2.全站儀(蔡司或徠卡)

(1)人員編組:運用「全站儀」於夜間實施「導線法」作業,人員編組區 分班長、測手、記錄手、反射器手、後標桿手等職務(如表 10

表 10 運用「全站儀」實施夜間「導線測量」編組表

	《····································
運用「全	:站儀」實施夜間「導線測量」編組表
職稱	職
班 長	偵查、選定測站位置,監督其餘人員作業。
測 手	負責整置器材並測量測站間之水平角、垂直角與距離。
記錄手	協助測手完成測地成果記錄。
反射器手	於班長選定之前視點位置,設置反射器與稜鏡燈,供測手標
区 别 品 于	定作業。
後標桿手	於後視點位置,設置標桿(架)與標桿燈,供測手標定作業。
	1.增加額外人員時各員職掌:(1)記錄手:記錄水平角、距
	離;(2)計算手:可增加 1~2 員計算手,便於測量時同時
	計算各要點坐標。
備考	2.缺員時各員職掌:(1)反射器手:由班長兼任;(2)後標
	桿手:測手兼,測手離開測站(P點)時,利用標桿代用品
	標示之,以供反覘,惟因標桿代用品較難立即尋獲,且測手
	標定標桿代用品較易產生誤差,故非必要時,勿缺少標桿手。

資料來源:筆者自製

(2)作業要領

A. 測手於測站上整置「通用型儀器腳架」(如圖 52),結合「雷射求心基座」, 設定架頭高度後,開啟雷射光源,並完成對正測站(定心)與調整水平(定平)。

B. 測手將「全站儀(蔡司與徠卡)」與「雷射求心基座」結合,完成器材整 置(如圖53)。

- C.反射器手於班長選定之「前視點¹⁴」位置,完成反射器與稜鏡燈整置(如圖 53),並開啟電源開關。
- D.後標桿手於班長選定之「後視點¹⁵」位置,完成標桿(架)與標桿燈整置(如圖 52),並開啟電源開關。
- E.測手操作「全站儀(蔡司與徠卡)」,標定「後視點標桿燈」(如圖 54),順時針測至「前視點稜鏡燈」(如圖 54),完成「水平角」、「垂直角」與「距離」測量(如圖 52),並完成紀錄。

F.待測手完成作業,統一變換測站後重複項次 A~E 之程序。

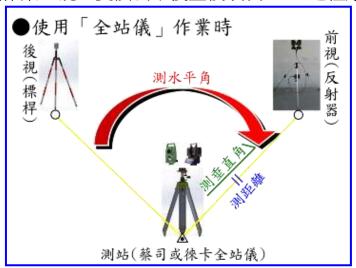


圖 52 運用「全站儀」實施夜間測地示意 資料來源:筆者自製

圖 53 完成「全站儀」器材整置示意 資料來源:筆者自製

¹⁴ 同註 14。

¹⁵ 同註 15。

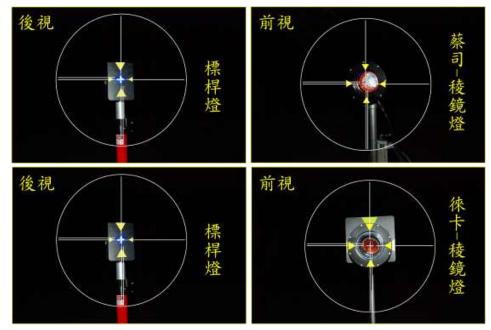


圖 54 夜間測地標定前、後視稜鏡燈與標桿燈示意 資料來源:筆者自製

四、綜合結論:本研發案係針對國軍現役測量裝備設計其專用之「砲兵夜 間測地輔助器材」,茲將其性能與諸元,歸納說明如次(性能諸元如表 11)。

- (一)統一「夜間測地輔助器材」規格:國軍現行制式標桿燈等夜測輔助 工具,因逾壽期,均已損壞殆盡。部隊長期缺乏制式夜測輔助工具,須使用均 用手電筒或自製燈具因應,不但規格未統一,且使用效能不彰。本案研發之「砲 兵夜間測地輔助器材」,有助於統一國軍「夜間測地輔助器材」規格,解決部隊 問題。
- (二)提升夜間測地效能:夜間測地因視線受限,肇牛夜間器材定心、標 定目標與覘標高度調整困難等窒礙問題,本案研發之「砲兵夜間測地輔助器材」, 可有效提供上揭問題之解決方案。
- (三) 裝備通用性良好:本案研製之「夜間測地輔助器材」,可同時適用砲 兵 M2 方向盤、蔡司全站儀與徠卡全站儀等測量裝備,大幅提升砲兵測量裝備於 夜間操作之適用性與通用性。
- (四)夜間電源供應便利:本案研製之「夜間測地輔助器材」,其電源供應 係使用市售 3 號、號電池,便於取得與自行更換,可有效減輕後勤能量之負荷。
- (五)不破壞裝備本體:本研發案採拆卸式設計,故可於不破壞裝備之前 提下,執行安裝與操作。

隨著科技發展日新月異,光電技術於夜間作戰上之運用日趨廣泛,舉<u>凡全</u> 站儀、定位定向系統、多功能雷觀機等均涉及其相關領域之應用。基此,「知識 永遠有助於我們戰備整備的遂行,了解敵人在何處及如何遂行攻擊,或決定在 何處接戰,以獲致最佳戰果¹⁶」。國軍全體幹部須具備前瞻思維與廣泛的科技知 識,瞭解相關科技之作用原理及特性,充分發揮裝備效能,確保部隊運用效益。

表 11 「砲兵夜間測地輔助器材」性能諸元表

砲	兵	夜	間	1 2	則	地	輔	助	器	材	性	能	諸	元	表	
研	發	裝	備	名	稱	砲兵	〔夜 間	別則地	輔助	器材						
研	祭	裝	備	組	成	二三四五、	雷射標桿反射	対稜鏡 方向:	基座 !)及 i燈	標桿類	登					
適	J	甲	裝		備	砲兵 M2 方向盤、蔡司全站儀與徠卡全站儀										
電	}	原	供		應	使用市售3、4號電池										
連	續	工	作	時	間	2 小	・時(含)	以上							
重					量	全重<1公斤										
工	1	乍	闪	1	度	-3	0°C ∃	至+50	0°C							
平均故障時隔(MTBF)						1,000 小時以上										
防	撞	惠	圣	能	力	放置	置攜行	方箱內	,可	承受	76公	分高	度墜落	客		

資料來源:筆者自製

運用「砲兵夜間測地輔助器材」之作業效益

本節採「實驗分析法」,區分「研發經費分析」、「測試評估、性能提升」與 「提升夜間測地速度與精度」等 3 部分,初期分析本案「砲兵夜間測地輔助器 材」之籌購成本與效益;接續以「測試評估、性能提升」進行性能測試,並將 實驗數據彙整作為量化分析;最後,以「提升夜間測地速度與精度」為實驗主 軸,分析其夜間測地作業速度及效能,並結合國軍砲兵戰術運用作為,進行作 戰測試與評估,驗證本計畫運用於實際作戰之可行性與效益。

一、研發經費分析 : 本案研發總經費為 10 萬 5 仟元,其中包含「砲兵夜 間測地輔助器材 1 套成品研製,合計所需費用為 8 萬元(約占總研發經費之 76%),研發作業所需之雜項行政支出為2萬5仟元(約占總研發經費之24%), 研發經費分析如表 12、圖 55。

¹⁶ 馬丁·李比奇原著,張天虹譯,《掌握明日戰爭》(臺北:國防部史政編譯室,民國90年2月),頁33。

表 12	「砲兵夜間測地輔助器材」	研發經費分析表
~ ~		17 1 32 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Γ	砲	兵	夜	間	測	地	輔	助	器	材		研	發	經	費	分	析	表	
項	次	研		發	•	4	逕		費			明細			合			計	
•	1	「砲兵夜間測地輔助器材」內部組件設計研發費												3萬元					
2	2	外音	17機	械結	構設	計與	製圖	副(~	含加	工)					3萬	亡			
3	3	燈具	具與	纜線	組(含加	工)								1萬:	5仟	元		
4	4	強同	5式	攜行	箱										5 仟ラ	亡			
5	5	物品	遺	(文	具、	紙発	· 美	墨出	等費	用)					5 仟ラ	Ī.			
6	3	一舟	ひ事.	務費	(縣	片自	攝汽	中洗:	等雜	支費	用)				5 仟ラ	Ī.			
7	7	差扩	差旅費 1萬5仟元																
總													口	+	10 萬	5 行	元		

圖 55 「砲兵夜間測地輔助器材」研發經費圓形圖 資料來源:筆者自製

本研究依據當前光電技術發展、運用趨勢與國軍實際需求,適切規劃,創 新研發「砲兵夜間測地輔助器材」,以提升砲兵夜間測地效能。另依砲兵部隊全 站儀概略需求 110 套以上估算,如全面推廣本案(新臺幣 5 萬元/套),所需籌 購經費約需新臺幣 500 餘萬元;又全站儀每套購價約新臺幣 60 萬元,本案推廣 費用僅占每套全站儀購置費用之 0.083%,故就提升既有舊型堪用裝備效能與節 省公帑而言,本研究實為現階段之最佳方案。

二、測試評估、性能提升:「測試評估」旨在規範國軍主要武器系統與裝備 測試評估執行策略,並依根本性、整體性、長期性之著眼,確立推展方向。各 軍司令部、國防科技工業機構應按教則,編訂或修訂相關教範、作業手冊,據 以執行測試評估工作,使國軍武器系統及週邊裝備,均能充分發揮預期之功能,

達成建軍備戰之使命。¹⁷本案依據測試評估五大步驟(如圖 56) 撰擬測評構想 與項目如次。

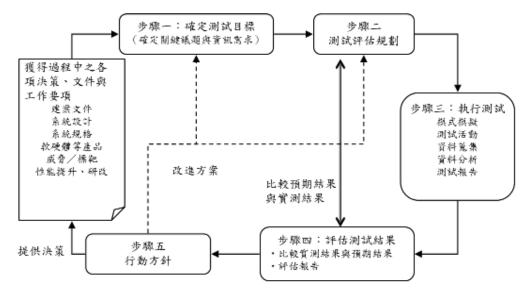


圖 56 測試評估五大步驟

資料來源:國防部《國軍主要武器系統與裝備測試評估教則》(臺北:國防部)。

- (一)測試構想與目標:測試構想區分研發功能與操作驗證等兩部分,實 施裝備測試與評估,全案將考量時間、環境等因素,參酌統計手法,採多次驗 證方式實施,以驗證本案之實際之效益與可行性。本研發案係將現役砲兵定位 定向系統實施性能提升,以不破壞本體為原則,設計其專用之「砲兵夜間測地 輔助器材。採「光學科技」手段取代傳統「目視操作」,以期符合先進國家「砲 兵自動化」之作戰需求,達成節約人力、縮短作業時間及強化夜間測地精度之 目標。
- (二)測試項目與內容規劃:測試規劃區分硬體(研發功能)、功(性)能 測試與作戰效益評估等 3 大主軸,測試規劃摘要如表 13。另依據測試規畫擬定 測試項目,區分裝備通用性、模擬惡劣天候(雨天)、 野戰測試與夜間測試等 內容,研發測試項目如表 14。

		V1D (\)(10 \
「砲兵夜間	測地輔助器材」	測試規劃摘要表
區分 時間	測 試 項 目	測 試 場 地
D+1 ⊟~+30 ⊟	硬體 (研發功能)	砲訓部測教場
(D日為測評計畫	功(性)能測試	砲訓部測教場
核定時間)	夜間(作戰)效能驗證	砲訓部測教場

「砲丘夜間測地輔助器材」測試規劃摘要表 表 13

資料來源:筆者自製

¹⁷ 國防部,《國軍主要武器系統與裝備測試評估教則》(臺北:國防部)。

表 14	「砲兵夜間測地輔助器材」	研發測試項目表
· L - ·		9 1 1X (V)112/1 2X 11 1/V

「耐	回兵夜間測地輔	助器材」研發測試項目表				
	本體	外觀完整無變形,非活動部之表面上漆(廠商已於驗收時出示經第三公正單位檢驗合				
	1 /9312	格之測試報告)。				
	與測量器材結合狀況	各部結合狀況及作用良好,拆卸與安裝容易,不得影響原裝備操作功能。				
硬體		裝備攜行箱堅固耐用,符合野戰攜行需求				
/4	攜行箱	(廠商已於驗收時出示經第三公正單位檢				
	4.41117 VIII V 114.1111 V 114.11111	驗合格之測試報告)。				
	腳架(標桿)升降測試	檢查腳架(標桿)升降功能是否作用正常。				
	腳架(標桿)水準氣泡 水平測試	檢查腳架(標桿)水準氣泡是否作用正常。				
功	連續使用時間	須達2小時(含)以上。				
(性)	穩定性	操作中是否發生異常(當機)現象,而影響裝備操作。				
_	扫索M	可否適用全軍測量裝備(含其附件)與測				
能測試	相容性	量輔助器材。				
試	電力供應	能否使用市售電池實施電力補充。				
作	夜間作業效能	能否於夜間執行相關測地作業。				
作戰效益評	崎嶇地形作業效能	能否於崎嶇地形執行野戰砲兵測地作業。				
效		能否於惡劣天候下執行野戰砲兵測地作業				
	雨天下之作業效能	(如測評期間未遇雨天,則採人工灑水方				
估		式施測)。				

資料來源:筆者自製

- (三)研發測試紀實:本案實施裝備研發測試時,力求將各種環境、時空 因素納入測試考量,如夜間操作,惡劣天候,平坦與起伏地形等,並運用統計 方法實施數據分析,以驗證裝備研發成效,本節針對「通用性」、「野戰與模擬 惡劣天候(兩天)」、「夜間(作戰)測試」與「作業精度計算」等項次實施說明。
- 1.通用性:現行國軍測量儀器區分 M2 方向盤、蔡司與徠卡全站儀等 3 種類型,然為增加研發效益、提升運用範圍,本案於研發階段即針對上述 3 類裝備之結構與機械設計,實施全般考量,目前「砲兵夜間測地輔助器材」已適用國軍各式測量裝備,且安裝方式與操作要領概同,大幅節省公帑與降低轉換(學習)成本。
- 2.野戰與模擬惡劣天候(兩天)測試:野戰測試評估,係為確認武器系統於 真實作戰環境下,能否符合實際作戰需求;其主要工作並非檢驗規格(規格檢

驗為研發測試評估工作),而係驗證武器系統之作戰效益性及作戰適應性,進而掌握系統特性、操作限制並評析有無研改需求;測試評估結果可提供決策層級下達量產決心、系統修改、性能提升及部署運用之參考依據。¹⁸本案為確保裝備符合野戰需求,故將相關測試納入測評主要項目,除驗證裝備於平坦與起伏地形操作實際情形外,另考量惡劣天候(兩天)下之作業場景,確保「砲兵夜間測地輔助器材」符合國軍實際作戰效益性與適應性。

3.夜間(作戰)測試(如圖 57):「夜間測地」為野戰砲兵測地之一部,其作業成果之良窳,影響火砲射擊效果甚鉅,現行測量儀器多為民用規格,設計時並未將「夜間作業」納入考量,造成作業時諸多不便,影響戰備任務遂行。有鑑於此,本案重新考量戰場實際需求與夜間作業場景,並於研發階段將其列入全般考量,新增「夜間照明」、「雷射對點」與「高度調整」等功能,現階段之「砲兵夜間測地輔助器材」已克服各種夜間作業之不利時空因素,大幅提升本案之研發效益與貢獻。

圖 57 夜間(作戰)測試前整備 資料來源:筆者自製

- 4.作業精度計算:野戰砲兵夜間測地作業精度規範,區分「精度比」、「標高許可誤差」、「砲兵營測地現行作業規範」等3部分,說明如次。
- (1)精度比¹⁹:「精度比」(Ratio of Precision; P),又稱作「比較精度」,即「測量距離之相對誤差」;係依據「徑誤差」與所測「水平距離總合」之比,如 1/3000、1/1000、1/500等,通常適用於傳統測地之導線法。設 W 為徑誤差,D 為導線全長(平距總和),則精度比計算公式如下:精度比(P)=徑誤差(W)/水平距離總合(D)
 - (2)標高許可誤差²⁰:標高許可誤差須依測量精度要求決定,亦依測量距

¹⁸ 同註 19,頁 4-5。

^{19 《}陸軍野戰砲兵測地訓練教範(上冊)》(桃園:國防部陸軍司令部,民國107年08月),頁4-24。

²⁰ 砲兵測地所謂之「標高」,即正高或水準高,係指由平均海水平面至地表某一點之垂直距離。《陸軍野戰砲兵

離總長區分如下表 15。

(3)砲兵營測地現行測地作業規範:茲將砲兵營測地現行測地作業規範,區分「作業時間」與「精度要求」等2項說明。

A.作業時間:砲兵營測地其現地作業時間,依時間限制可區分為全部、應急及夜間等三種情況;另依測地型態及人員器材編組不同,亦可區分為有、無定位定向系統作業方式(如表 16)。

B.精度要求:砲兵營觀測所、陣地及抄圖點精度,依全部、應急及夜間測地等三種情況,與有、無定位定向系統作業方式分別規範(如表 17)。

=	衣 15								
精度 測量距離	1/3,000	1/1,000	1/500						
4,000 公尺 以下	√ 距離總長千除	±2M	±4M						
4,000 公尺 以上	√ 距離總長千除	1.2×							

表 15 標高許可誤差規範表

資料來源:《陸軍野戰砲兵測地訓練教範(上冊)》(桃園:國防部陸軍司令部,民國 107 年 08 月),頁 4–27。 表 16 砲兵營測地時間規範表。

砲	兵	營	ž	則	地	<u></u>	時		間	夫	見	範	į	表
測地型	時間	三分	全	部	測	地	應	急	測	地	夜	間	測	地
無定位測	定向	系統 地		小時 30 分	至 2 分鐘	小	1 /]	诗			未养	常定是	, 所	推應 更求
有定位測	Z定向:	系統 地	1 / 時	時	至 2	小	1 /]	塘			2 /	時		
附記	定位为	定向系	統統	則地	時間	,不	含剂	刀始		時間	0 21			

資料來源:《陸軍野戰砲兵測地訓練教範(下冊)》(桃園:國防部陸軍司令部,民國 107 年 08 月),頁 7-19。表 17 砲兵營測地精度規範表。

測地訓練教範(上冊)》(桃園:國防部陸軍司令部,民國107年08月),頁4-27。

^{21「}初始校準」(Alignment, ALN)為定位定向系統之操作模式,目的在使系統依據輸入之起始位置資料執行尋 北、平台穩定與等交互校準程序,直至系統各部達到正確之感測位置與狀態,使具備完整之測量能力。

砲兵	營(觀測	所、	陣 地	及抄圖	副點) 測 均	也精	度規筆	包表
測地型	區分 賃度 !態	全	部	測	地	應測		夜測	間地
無定位測地	江定向系統	1/1,00 標高:	00以_	度 比 原 比之要求 態小於 ± 求。	ें ०	1/500	以上,誤差例	度比加 之要求 應小於 ± 求。	0
有定位 測地	江定向系統	坐標:徑誤差應小於±7公尺。 標高:誤差應小於±3公尺。							
附記	方向基角、方位基準點、方向基線及射向方位角應小於 ±2 密位之要求。							於 ±2	

資料來源:《陸軍野戰砲兵測地訓練教範(下冊)》(桃園:國防部陸軍司令部,民國 107年 08月),頁 7-10。

三、提升「夜間測地」速度與精度:砲兵為祕匿企圖,避免遭敵空中攻擊 及延續日間(預備、臨時陣地)行動,或於夜間加入戰鬥,均須實施夜間測地。 本項目將採實驗方式,比較使用本案「砲兵夜間測地輔助器材」與現行作法等 不同作業方式之 10 組測量班人員,分別實施夜間測地作業,驗證其作業速度與 精度, 並分析其效益。並運用實驗數據進行研發案之效益分析、比較, 針對不 同單位或接訓班隊交叉驗證,藉此突顯本案之重要性。共區分「夜間測地組合 作業-砲兵基本測量」與「夜間測地綜合作業-砲兵營測地」等2部分說明。

(一) 夜間測地組合作業 - 砲兵基本測量22

1.實驗設計:採隨機抽樣方式由本組測量師資班與士官高級班學員中遴選 10組成員(每組納編6員),實施「夜間測地組合作業-砲兵基本測量」,分別 使用本案「砲兵夜間測地輔助器材」與現行作法,驗證其作業時間與精度差異 變化,實驗場地為本部測地教練場,實驗設計內容如圖 58,表 18。

²² 國軍砲兵將測量方法中較為常用之導線法、交會法,律定為砲兵基本測量項目。本研究「夜間測地組合作業 - 砲兵基本測量」係使用導線法中之「迴歸閉塞導線(Closed Traverse)」,其定義為由已(未)知點開始,至 原已(未)知點為止之導線。

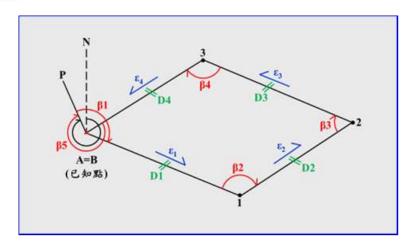


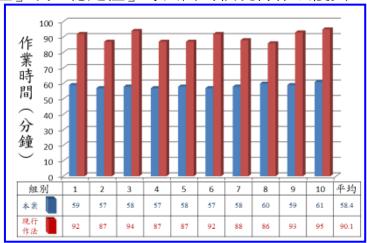
圖 58 A點(作業起始點)與 B點(作業終止點)重合之回歸閉塞導線 資料來源:筆者自製

表 18 「夜間測地組合作業 - 砲兵基本測量」實驗設計

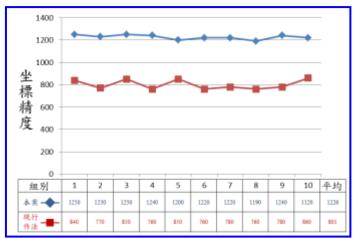
實	驗	班	隊	本組測量師資班、士官高級班學員
實	驗	場	地	本部測地教練場
				採隨機抽樣方式選取 10 組成員(每組納編 6 員),實施「夜間測
實	驗	内	容	地組合作業 - 砲兵基本測量」,分別使用本案「砲兵夜間測地輔
				助器材」與現行作法,並分析其結果。
實	驗	目	的	驗證使用 2 種不同作業方式,其作業時間與精度差異變化。
				次州 市 语 · 英 土 白 制

資料來源:筆者自製

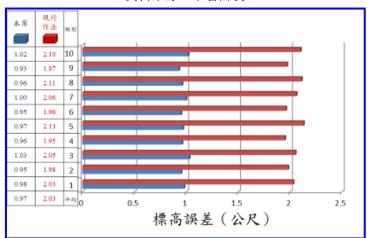
2.實驗結果分析:針對實驗對象,驗證其「作業時間」、「坐標精度」與「標高誤差」等面向之差異變化,並將實驗數據彙整如圖 59~圖 61。


由圖 59 發現,10 組研究對象於相同的實驗狀況下,使用「砲兵夜間測地輔助器材」實施夜間「基本測量」,平均作業時間約為 58 分鐘,然使用現行作法則平均時間約為 90 分鐘。前者較後者之作業時間提升約 36%。

由圖 60 發現,10 組研究對象於相同的實驗狀況下,使用「砲兵夜間測地輔助器材」實施夜間「基本測量」,平均坐標精度約為 1/1200,然使用現行作法則平均坐標精度約為 1/800。前者較後者之坐標精度提升約 33%。


由圖 61 發現,10 組研究對象於相同的實驗狀況下,使用「砲兵夜間測地輔助器材」實施夜間「基本測量」,平均標高誤差約為 0.97 公尺,然使用現行作法則平均標高誤差約為 2.03 公尺。前者較後者之標高誤差減少約 55%。

分析使用現行作法之折線、直條圖(如圖 59~圖 61,紅色所示),其折線(直條)起伏落差較顯著,表示現行作法因使用「軍用手電筒」或「自製燈具」,致 夜間測地成效不彰;反觀使用「砲兵夜間測地輔助器材」之折線(直條)則呈 現相對平穩狀態(如圖 59~圖 61,藍色所示),表其無論於「作業時間」、「坐標


精度」、「標高誤差」或「穩定性」等面向均較現行作法優異。

「夜間測地組合作業 - 砲兵基本測量」量化分析(作業時間) 圖 59 資料來源:筆者自製

「夜間測地組合作業 - 砲兵基本測量」量化分析(坐標精度) 圖 60 資料來源:筆者自製

「夜間測地組合作業 - 砲兵基本測量」量化分析(標高誤差) 圖 61 資料來源:筆者自製

(二)夜間測地綜合作業-砲兵營測地23

1.實驗設計:採隨機抽樣方式由本組測量師資班與士官高級班學員中遴選 10 組成員(每組納編 10 員),實施「夜間測地組合作業-砲兵營測地」,分別 使用本案「砲兵夜間測地輔助器材」與現行作法,驗證其作業時間與精度差異 變化,實驗場地為本部測地教練場,實驗設計內容如圖 62,表 19。

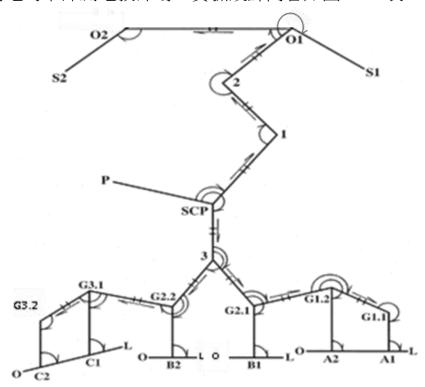


圖 62 砲兵營夜間測地作業示意

資料來源:轉引自《陸軍野戰砲兵測地訓練教範(下冊)》(桃園:國防部陸軍司令部,民國 107 年 08 月),頁 7 - 11。

表 19 「夜間測地綜合作業 - 砲兵營測地」實驗設計

實	驗	班	隊	本組測量師資班、士官高級班學員
實	驗	場	地	本部測地教練場
實	驗	內	容	採隨機抽樣方式選取 10 組成員(每組納編 10 員),實施「夜間 測地組合作業 - 砲兵營測地」,分別使用本案「砲兵夜間測地輔 助器材」與現行作法,並分析其結果。
實	驗	Ī	的	驗證使用 2 種不同作業方式,其作業時間與精度差異變化。

資料來源:筆者自製

2.實驗結果分析:針對實驗對象,驗證其「作業時間」、「坐標精度」與「標高誤差」等面向之差異變化,並將實驗數據彙整如圖 63~圖 65。

由圖 63 發現,10 組研究對象於相同的實驗狀況下,使用「砲兵夜間測地

²³ 砲兵營測地之目的在決定火砲、觀測所與各目標之水平與高低關係位置,供射擊指揮運用,並提供火砲、觀測器材、氣象系統、雷達及雷射定位指示器等,射向賦予及器材定位(向)所需之有關資料。

輔助器材」實施夜間「砲兵營測地」,平均作業時間約為 89 分鐘,然使用現行 作法則平均時間約為 122 分鐘。前者較後者之作業時間提升約 27%。

中圖 64 發現,10 組研究對象於相同的實驗狀況下,使用「砲兵夜間測地 輔助器材」實施夜間「砲兵營測地」,平均坐標精度約為 1/1000,然使用現行作 法則平均坐標精度約為 1/500。前者較後者之坐標精度提升約 50%。

由圖 65 發現,10 組研究對象於相同的實驗狀況下,使用「砲兵夜間測地 輔助器材」實施夜間「砲兵營測地」,平均標高誤差約為 1.04 公尺,然使用現 行作法則平均標高誤差約為 3.29 公尺。前者較後者之標高誤差減少約 68%。

分析使用現行作法之折線、直條圖(如圖 63~圖 65,紅色所示),其折線(直 條)起伏落差較顯著,表示現行作法因使用「軍用手電筒」或「自製燈具」,致 夜間測地成效不彰;反觀使用「砲兵夜間測地輔助器材」之折線(直條)則呈 現相對平穩狀態(如圖 63~圖 65,藍色所示),表其無論於「作業時間」、「坐標 精度」、「標高誤差」或「穩定性」等面向均較現行作法優異。

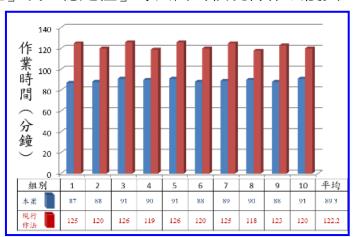


圖 63 「夜間測地組合作業 - 砲兵營測地」量化分析(作業時間) 資料來源:筆者自製

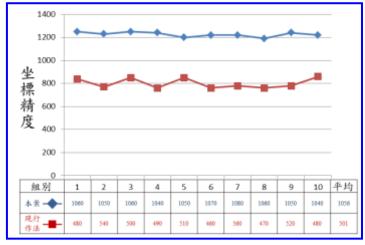


圖 64 - 夜間測地組合作業 - 砲兵營測地 - 量化分析(坐標精度) 資料來源:筆者自製

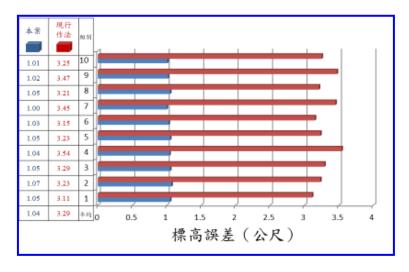


圖 65 「夜間測地組合作業 - 砲兵營測地」量化分析(標高誤差) _{資料來源}: 筆者自製

四、綜合分析:評估「砲兵夜間測地輔助器材」之研發效能,並藉由實驗 數據分析比較後,再次印證本案無論運用於夜間「基本測量」或「砲兵營測地」, 其「作業時間」、「坐標精度」、「標高(方位)誤差」與「作業穩定性」等面向, 均較現行作法優異,充分符合砲兵「夜間測地」時效與作戰需求(本案與現行 作法優劣分析如表 20)。

表 20 「砲兵夜間測地輔助器材」與現行作法優劣分析表

「砲兵夜間測地輔	〕助器材」與	現現行作法	優劣分析表
區 分	砲兵夜間測地輔 助器材	現行作法	效益分析
通用性與相容性	可同時適用國 軍現役 M2 方向 盤、蔡司與徠卡 全站儀	僅適用單一形 式之測量裝備	本案裝備具較佳之通用性
研 發 經 費 分 析	5 萬元/1 套,僅 占每套全站儀 購 置 費 用 0.083%	部隊長期缺乏期輔時之期,須使用與原用手電管與人工具,須使用與原用,與人工,與人工,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上,	本案裝備具研發效益
定 心 方 式	雷射定心	垂球或光學定 心	本案較適合於 夜間定心使用

	夜間測地	基本測量	約 58 分鐘	約90分鐘	本案提升約 36 %
	作業時間	砲兵營測地	約 89 分鐘	約 122 分鐘	本案提升約 27 %
夜間		基本測量	1/1200	1/800	本案提升約 33 %
測	坐精標度	砲兵營測地	1/1000	1/500	本案提升約 50 %
地	横端	基本測量	±0.97 公尺	+2.03 公尺	本案減少約 55 %
作	標誤高差	砲兵營測地	±1.04 公尺	±3.29 公尺	本案減少約 68 %
業	十 迪	基本測量	±1 密位	+2 密位	本案減少約 50 %
精度	方誤位差	砲兵營測地	±1 密位	±2 密位	本案減少約 50 %
	下便利與	具作業穩定性	本案專為砲兵 「夜間測地」需 求研製,規格統 一、且經實驗證 實操作便利與 作業穩定性佳。	現行作法因使用「軍用手電筒」或「自製燈具」因應,致「夜間測地」成效不彰。	本案裝備符合 軍事規格,具較 佳之操作便利 與作業穩定性

資料來源:筆者自製

結論與建議

國防法第二十二條即揭示「結合民間力量,發展國防科技工業,獲得武器 裝備,以自製為優先,向外採購時,落實技術移轉,達成獨立自主之國防建設 」。 近年來國軍為響應政府政策,積極鼓勵所屬單位參與各式軍品研發產製,不僅 建立「軍轉民、民通軍」雙向機制及運作平臺,更可發展創新軍、民通用科技, 進而達成國防自主、潛艦、國機國造等終極目標。

為貫徹此一目標,國軍應率先於武器裝備「研究發展」上,透過創新的思 維及方法,同步革新作業(研製)程序、步驟、要領,方能不斷精進並厚植單 位研究發展能量,充份支援作戰;筆者希冀透過個人研發經驗分享,藉拋磚引 玉方式提升單位研發(究)風氣,如此不但人人能發掘單位問題,亦可由研發

(究)過程中腦力激盪,進而解決問題致獲得工作之成就感,以達節約公帑及提升裝備操作效益之目標,一舉數得。

砲兵「測量裝備」種類繁多,因其具備提供砲兵精確測地成果,與目標獲得裝備定位定向精確諸元之強大功能,故可遂行「砲兵測地」與「射向賦予」作業,在長達十餘年的服役中,對國軍戰力之貢獻,實有目共睹。惟於「夜間測地」部分,為確保其戰力不墜,砲兵部隊除落實各級保養、維護與操作要領外,理應透過各式研發作為,採性能提升方式有效發揮測量裝備之「夜間作業」效能,進而提升砲兵全天候作戰能力,基此,本案「砲兵夜間測地輔助器材」實為一立意良好之研究典範。

「砲兵夜間測地輔助器材」經研發驗證,具有「小投資、大效益」之優點, 其具備通用、穩定、且便利夜間電源供應等能力,俾利砲兵部隊遂行夜間測地 任務,有效提升整體作業之速度與精度。綜上,最後提出5點建議事項:

- 一、保留後續研改及擴充介面:因應新一代全站儀即將獲得,本研發案已 預先保留後續研改及擴充介面,未來仍可針對新式裝備之機械結構,實施研改 與精進,致力提升「砲兵夜間測地輔助器材」之適用性與通用性。
- 二、模組化、輕量化:「模組化、輕量化」為現代化軍事裝備之發展趨勢與 終極目標,未來將針對「砲兵夜間測地輔助器材」,不斷持續研改與精進,期使 裝備符合後勤檢修及裝設需求,致力提升整體研發效益。
- 三、積極爭取納入軍品推廣:未來將積極爭取本案納入國軍軍品推廣之品項,進而配發至全軍砲兵部隊使用,期能精進野戰砲兵測地之效能,提升作業之速度與精度,達成「節約時間、提升效益、減少危安」之目標。

四、完善後勤補保機制:後續本研究將持續針對該裝備之保養要領、操作 與維護方法等後勤規劃,及未來人員專業訓練與操作程序之預劃準備等,納入 全般考量,以期延長軍品壽期及符合整體實務之需求與效益。

五、結合民間光電產能:為響應政府「國防自主」之重要政策,未來本研究亦得與民間光電廠商密切配合,持續研究太陽能儲能、環境保護與提升作業安全與穩定性等相關議題,期使本案研究成果得以落實於其他國防(裝備)用途,發揮整體效益。

參考文獻

- 一、《陸軍野戰砲兵測地訓練教範(上冊)》(桃園:國防部陸軍司令部,民國 1 07 年 08 月)。
- 二、《陸軍野戰砲兵測地訓練教範(下冊)》(桃園:國防部陸軍司令部,民國 1 07 年 08 月)。
- 三、焦人希,《平面測量學之理論與實務(五版)》(臺北:文笙書局,民國84

- 年03月)。
- 四、施永富,《測量學》(臺北:三民書局,民國 97 年 06 月)。
- 五、鄭瓦金、〈KI-SE 紅外線測距經緯儀之校正〉《砲兵月刊》(臺南),第 63 期,砲訓部,民國 82 年 05 月。
- 六、于澤謙、〈經緯儀各軸誤差影響及其修正方法〉《砲兵月刊》(臺南),第67期,砲訓部,民國82年09月。
- 七、賀建榮、〈砲兵測地用測距儀現況檢討與建議〉《砲兵月刊》(臺南)、第68期、砲訓部、民國82年10月。
- 八、耿國慶、〈砲兵測量用紅外線測距經緯儀性能需求研究〉《砲兵雙月刊》(臺南),第74期,砲訓部,民國83年10月。
- 九、耿國慶、〈 DM 501、502 測距儀測距精度檢定與校正之研究〉《 砲兵雙月刊》(臺南),第 76 期,砲訓部,民國 84 年 02 月。
- 十、耿國慶、〈對共軍『七五式地砲微波測距儀』之研究〉《砲兵雙月刊》(臺南), 第85期,砲訓部,民國85年08月。
- 十一、王正亞,〈測量器材之保養與維護〉《砲兵雙月刊》(臺南),第88期,砲訓部,民國86年02月)。
- 十二、林文章、〈蔡司 Rec Elta 13 測距經緯儀操作與運用〉《砲兵雙月刊》, 第 92 期, 砲訓部, 民國 86 年 10 月。
- 十三、徐坤松,〈砲兵測地作業新利器-瑞士徠卡 TPS-700 系列電子式全測站儀〉《砲兵季刊》(臺南),第 142 期,砲訓部,民國 97 年 08 月。
- 十四、陳天祐、〈運用測距經緯儀精進砲兵測地作業之具體作為〉《砲兵季刊》(臺南),第143期,砲訓部,民國97年10月。
- 十五、《ULISS 30 定位定向系統操作手冊》(桃園:國防部陸軍司令部,民國87年12月)。
- 十六、《陸軍 SPAN 7 砲兵定位定向系統(第一版)》(桃園:國防部陸軍司令部,民國 102 年 09 月)。
- 十七、《陸軍徠卡 TPS 700 系列(TCRA705 型)測距經緯儀操作手冊(第一版)》(桃園:國防部陸軍司令部,98 年 10 月 12 日)。
- 十八、陳見明、〈精進 ULISS-30 定位定向系統運用於砲兵測地作業之研究〉《砲兵季刊》(臺南),第157期,砲訓部,民國101年06月。
- 十九、黃盈智、〈陸軍砲兵測地電算機(程式)之發展與進程〉《砲兵季刊》(臺南),第182期,砲訓部,民國107年09月。
- 廿、耿國慶、〈跨越「方向盤」階段,邁向「數位化」目標之研究-以美軍為例〉 《砲兵季刊》(臺南),第 183 期,砲訓部,民國 107 年 11 月。
- 廿一、國家教育研究院「雙語詞彙、學術名詞暨辭書資訊網」,網址 http://terms.naer.edu.tw,檢索日期:民國 92 年 10 月。
- $\pm \pm$ \sim Artillery survey (TM6 200) , Published June 2016 by GHQ Army GRC $^{\circ}$
- 廿三、楊逢峮,經濟日報,「長泓能源科技 10/3 舉行說明會」,網址

http://money.udn.com/money/story/8521/3395823,檢索日期:民國 10 8年06月。

- 廿四、梁介豪,〈淺談夜視裝備發展及砲兵運用之探討〉《砲兵季刊》(臺南), 第 154 期, 砲訓部, 民國 100 年 08 月。
- 廿五、林山和、〈擊破暗夜的限制 砲兵觀測夜視裝備〉《砲兵季刊》(臺南), 第 169 期,砲訓部,民國 104 年 06 月。
- 廿六、牛彥凱, 〈提升砲兵觀測所夜間標定設備之研究〉《砲兵季刊》(臺南), 第 177 期,砲訓部,民國 106 年 6 月。
- 廿七、詹曙維、〈微光夜視技術對我砲兵之影響〉《砲兵季刊》(臺南),第 185 期,砲訓部,民國 108年06月。

作者簡介

黄盈智士官長,領導士官班87年第12期、陸軍專科學校士官長正規班24 期畢業,崑山科技大學企業管理研究所碩士、高苑科技大學土木工程研究所碩 士,乙級工程測量、乙級地籍測量、丙級測量證照;歷任班長、作戰士、測量 組長、連士官督導長,現任職於陸軍砲兵訓練指揮部目標獲得教官組。