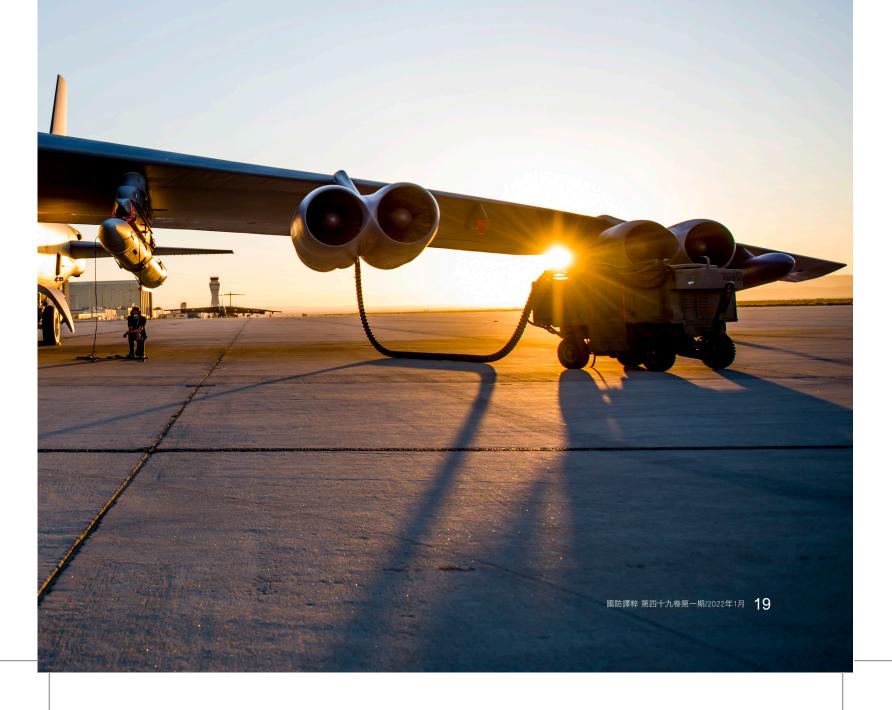


作者/Ezio Bonsignore


譯者/趙炳強 ● 審者/馬浩翔

Hypersonic Weapons: the Reasons Why

取材/2021年1月德國軍事科技雙月刊(Military Technology, January/2021)

極音速武器系統最大的優勢在於其極高速,與隨 之而產生的動能衝擊力。即便在飛行時造成的超 高溫很容易遭雷達與紅外線等早期預警系統偵 測,然而其最終俯衝階段速度高達十馬赫,成為 現有攔截系統之一大挑戰。

空射式AGM-183A ARRW預期將成為美國首款極音速武器,可能服役時間在2022年。將掛載在B-52機翼下的 飛彈原型照片,與即將投放的HGV彈頭藝術家想像圖比較(見右頁),可以看出後者尺寸非常小。

┏一本字典都會告訴你,「極音速」(Hyper-┷ sonic) 是描述能夠以超過五馬赫的速度 移動之物體(在ISA[International Standard Atmosphere,國際標準大氣]條件下約為6,200公里/小 時),並且可能高達25馬赫。不過,字典卻不會告 訴你,極音速武器也是刻正進行中的軍備競賽, 而該競賽至少涉及中共、俄羅斯和美國;這些強 權彼此主張對手正在開發或已在使用這種如科幻 小説情節的「超級武器」,同時反駁對手對自己的 指控。字典上當然也不會詳述,為何極音速技術 會讓各國產生如此濃厚興趣;而事實上,這種技

術具有全盤改變戰爭許多層面的潛力。

我們應該澄清的一點是,「極音速」一詞目前 主要用在兩種完全不同的武器系統,而此兩種系 統間幾乎沒有共同點存在:

一是極音速巡弋飛彈,顧名思義即是將武器的 速度從目前最大實際值的二馬赫以上,提高至超 過五馬赫,而理想的最佳數值則約為十馬赫;

另一種是適用在彈道飛彈、特殊重返大氣層載 具或彈頭,稱為「極音速滑翔載具」(Hypersonic Gliding Vehicles, HGV)。根據定義,這些載具一 直以極音速飛行,例如洲際彈道飛彈(ICBM)18到

畫家對彈道飛彈投放HGV彈頭的想像圖。此插圖與DARPA的「戰術助推 滑翔」(Tactical Boost Glide, TBG)計畫有關,但可以作為此概念的一般性描 述。(Source: Lockheed Martin)

20馬赫,甚至還可達更高速度。 目前重點不在速度更快,而是 即使在沒有推進系統情況下, 也能利用因而產生的空氣動力 來進行彈道修正,以滑翔方式 飛過高度在40公里到100公里 間的上層大氣層。在水平和垂 直平面上的此種修正,主要用 在迴避戰術運動,可預先建置, 或針對嘗試攔截的意圖有所 回應,但後者需要極其複雜的 系統。此修正也可用於突然改 變預期的彈著點、改變攻擊方 向,並且由於具備適當的導引 系統,也可提高對移動目標的 最終準確度。吾人應體認到,這 與現有之「機動式重返大氣層 載具」(Maneuverable Re-entry Vehicles, MaRV)差異甚大,後 者在大多飛行過程中都遵循純 粹的慣性彈道,並且在重返大 氣層後僅能進行有限運動,而 HGV在與發射火箭分離後,便 立即變為非彈道飛彈。

各種領域中令人振奮的研發 作為,都在此兩種運用中促進 新一代系統的開展,這些領域 從電漿物理學到「超音速衝壓 噴射發動機」和「超音速燃燒 衝壓發動機」等創新推進概念, 以及用於導引感應器的耐熱塗 層等。

同樣也是在這兩種運用中, 主要預期作戰優勢在於能夠 透過大幅壓縮敵可用之反應時 間,來克服對方的反飛彈防禦

系統。此優勢具有截然不同的 影響,取決於是要應對作為戰 術用途的傳統武器,還是用於 戰略目的之核子武器。

極音速巡弋飛彈

無論這些武器是替空中、地 面還是艦船發射而設計,或意 圖攻擊固定或移動目標,極音 速巡弋飛彈(Hypersonic Cruise Missile, HCM)都將比目前次音 速或超音速武器更能提供實質 上相當大的優勢。其大幅縮短 的飛行時間,既有利於與移動 目標接戰(特別是在海上),又大 幅減少可用在防禦偵測/追蹤/ 交戰序列的時間範圍。由於推 進系統的火羽流和其極高的蒙 皮溫度, HCM可能很容易被雷 達和紅外線顯像(Imaging Infra-Red. IIR) 感應器偵測到。然而, 預計30至50公里的巡航高度, 也使這些飛彈超出多數現有防 空系統的射程。而在其最終俯 衝期間,飛行速度將高達十馬 赫,以目前技術也很難解決與 攔截這種飛彈相關問題。

另一方面,極音速巡弋飛彈 則耗費相當大量燃料,因此飛 行範圍往往遠小於超音速武

器,甚至比質量大致等同的次音速武器要小得 多。至少狺部分可以诱過創新燃料構想和/或接 受體積較小的彈頭來抵銷;就後者而言,吾人所 應指出的是,極音速提供的額外優勢,即是透過 純粹動能來強化高爆彈頭的破壞力,對加固型或 地下目標,以及海軍艦艇之接戰具有重要結果。 這種額外的破壞力,隨飛彈速度的平方而增長: 一枚450公斤的飛彈若以五馬赫的速度撞擊,本 身就相當於1.2公噸的高爆彈藥,在七馬赫時則增 強至約2.4公噸,在十馬赫時增長到約5公噸。

當然,在極音速巡弋飛彈攜帶核彈頭的情況 下,動能上的考量亦將無關緊要,但目前並未有 跡象表明有任何國家在進行此種計畫。

極音速滑翔載具

「彈道飛彈防禦」(Ballistic Missile Defense, BMD)的標準理論上接戰程序,從衛星偵測到上 升火箭的發射羽流開始,然後沿著彈道軌跡進 行追蹤(包含分離後的重返大氣層載具),計算預 期彈著點,並且發射攔截飛彈以摧毀該載具或彈 頭。在理想情況下,應可在飛行中途階段便完成 攔截;或若中途攔截失敗,在最終階段時則已不 太可能(亦不可行)完成攔截。

極音速滑翔載具(Hypersonic Glide Vehicle, HGV)有效阻礙以上幾乎所有情況。發射羽流仍然 可以透過偵測來提供早期預警,但是在彈頭分離 後,該載具會沿著遠低於標準重返大氣載具的準 彈道軌跡飛行,並且由於地球表面的曲率,只有 在當其已經非常逼近時,才會出現在地面飛彈防 禦雷達的地平線上。更重要的是,無法預測非彈

中共DF-ZF極音速滑翔載具搭載DF-17短程彈道飛彈 上,與俄羅斯的「先鋒」爭奪第一套投入服役的極音速武 器稱號,該武器於2019年10月1日在閱兵式上亮相。目前 尚不清楚中共在短程彈道飛彈,而非中程/次中程彈道飛 彈或洲際彈道飛彈上部署極音速滑翔載具的決定為何, 是否反映其作戰優先事項,或者更有可能是出自技術挑 戰。與更長程、更高速的導彈相比,搭配DF-17/DFZF後 的十馬赫估計速度所產生的熱阻力和導引問題,可能更 容易管控。

道軌跡結合極高速度,導致任何攔截嘗試都成為 數學和技術上的夢魘,因為發射器到目標的時間 範圍大大縮短,幾乎不可能計算出來目標的未來

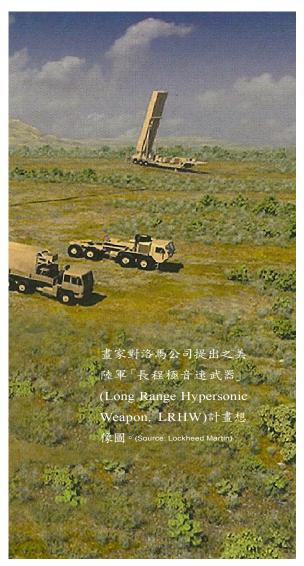
位置以提供攔截飛彈足夠時間遂行攔截。

因此,極音速滑翔載具將會使現有彈道飛彈防 禦系統(以美國國家飛彈防禦系統[US National Missile Defense]或稱NMD網路最為有名),以及 未來相同概念之擴展幾乎毫無用處。理論上,唯 一可以想像的防禦形式,是可在助推階段攔截、 部署於太空的戰鬥站臺,和/或直接能量武器。在 這兩種情況下的相關技術和預算資源,至少比開 發和部署重型無人機的成本更高出一級。

與可攜帶多個標準重返大氣層載具的彈道飛 彈,或體積更小的彈頭(飛彈僅攜帶單一重返大氣

層載具)相比,要具備這些優勢的代價,是讓極音 東滑翔載具的數量明顯減少。除了需要數量更多 的飛彈,使所擎數量的目標處於危險中,而這對 核武系統來説並非主要問題。然而,在傳統戰術 系統情況下,需要極高的精確終端準確性以保證 目標效果,而這部分可透過彈頭的極高動能,來 補充其高爆彈藥之威力。

目前,各國看來都在追求不同目標。基於與美 國的「相互保證毀滅」(Mutually Assured Destruction, MAD)關係架構,俄羅斯已開始在洲際彈道 飛彈上部署「先鋒」(AVANGARD)極音速滑翔載 具,以維持其核子嚇阻力量的效度;莫斯科認為 其核子嚇阻力量,受到美國彈道飛彈防禦計畫所 威脅。另一方面,中共在DF-17型短程彈道飛彈上 導入傳統彈頭(或可能根本沒有彈頭,僅依靠動能 進行攻擊)的DF-ZF極音速滑翔載具,作為其在反 介入/區域拒止「泡泡」中,可進一步自信使用的 工具;其主要目的為阳止美海軍航空母艦的特遣 部隊能在中國大陸沿海自由行動。我們當然可以 想像,中共最終也希望將其極音速滑翔載具技術 應用於戰略系統,因為他們有比俄羅斯更急迫理 由去擔憂嚇阻力量的效度。就美國而言,其對攜 帶核子彈頭的戰略極音速滑翔載具沒有興趣,最 簡單的原因,就是除了莫斯科周邊有限的A-135 系統外,美國的戰略對手都不具備,或打算擁有 值得留意的彈道飛彈防禦網路。相反來說,美國 未來將有三套系統來共用同一套極音速滑翔載 具機體,分別為空射型AGM-183A「空射型快速 反應武器」(Air-launched Rapid Response Weapon, ARRW)、陸射型「長程極音速武器」(Long-



Range Hypersonic Weapon, LRHW),以及艦射型 「傳統快速打擊」(Conventional Prompt Strike, CPS)系統,此三種系統均為全球快速打擊構想 中的戰術、傳統武器,意欲提供遠距快速打擊能 力,抓準機會來擊潰轉瞬即逝的目標。隨著《中 程飛彈條約》(Intermediate-Range Nuclear Forces Treaty)失效後的新一代次中程/中長程飛彈系統 發展,這種情況可能會發生變化,但目前還未有

明確跡象。

反制措施何在?

任何形式的防禦都無法與之對抗的「終極」武 器其實並不存在。即便潛在敵人手中握有核子武 器,吾人也可以透過擁有類似武器,並據此產生 嚇阻作用來有效加以反擊。話雖如此,無可否認 的是,各種形式的極音速武器都確實會帶來極為

嚴重的防禦問題,因此導入這 些武器至少會暫時改變攻守平 衡,轉而對攻方有利。這可能在 戰術和戰略層面上產生嚴重影 響。

上述防禦問題涉及偵測/追 蹤(尤其針對極音速滑翔載具) 和攔截階段,此兩者都須進一

俄羅斯3M22「鋯石」(ZIRCON)飛彈目前正處試驗完成階段,也很可能成為 世界上首套投入使用的燃燒衝壓發動機極音速巡弋飛彈。這枚速度達九馬 赫的武器係用於艦上和地面發射。(Source: Pravda.ru)

步壓縮至大幅縮短的時間範圍 中。在偵測/追蹤方面,解決方 案可能須仰賴一組以衛星為基 礎的感應器,這不僅能提供早 期預警功能,而且至少能夠沿 著整個極音速滑翔載具與可能 的極音速巡弋飛彈彈道進行追 蹤。至於在攔截方面,「以一顆 子彈擊中另一顆子彈」的嘗試 很可能依然徒勞無功;唯一有 用的答案,可能就存在於導能 武器(Directed-Energy Weapon, DEW)中。然而,吾人應該注意 的是,極音速系統已經針對其

極高溫進行強化,因此需要非 常強大的導能武器方能將之摧 毁。有關的科學和技術挑戰無 比巨大,相關成本也是如此,甚 至可能超過即便是超級強權也 無法承擔的極限。至少在可預 見未來中,極音速技術確實代 表了所有形式戰爭的新典範。

作者簡介

Ezio Bonsignore曾在義大利海軍服務,在 1980年至2011年間曾任MilTech雜誌編 輯。

Reprint from Military Technology with permission.